
209

27–29th September, 2012, Łódź, Poland 

new trends in audio and video / signal processing algorithms, architectures, arrangements and applications

ntav/spa 2012

Sample Rate Conversion 
with Fluctuating Resampling Ratio

Marek Blok
Faculty of Electronics, Telecommunications and Informatics

Gdańsk University of Technology
11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland

e-mail: mblok@eti.pg.gda.pl

Abstract — In this paper a sample rate conversion with continuous-
ly changing resampling ratio has been presented. The proposed im-
plementation is based on variable fractional delay filter implemented 
using a Farrow structure. It have been demonstrated that using the 
proposed approach instantaneous resampling ratio can be freely 
changed. This allows for simulation of audio recored on magnetic 
tape with nonuniform velocity as well as removal of these distortions 
using the same algorithm.

Piotr Drózda
ADVA Optical Networking Sp. z o.o

35/37 Śląska Street, 81-310 Gdynia, Poland
e-mail: PDrozda@advaoptical.com

Sample Rate Conversion with Fluctuating
Resampling Ratio

Marek Blok
Faculty of Electronics, Telecommunications and Informatics
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Email: mblok@eti.pg.gda.pl

Piotr Drózda
ADVA Optical Networking Sp. z o.o
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Abstract—In this paper a sample rate conversion with con-
tinuously changing resampling ratio has been presented. The
proposed implementation is based on variable fractional delay
filter implemented using a Farrow structure. It have been
demonstrated that using the proposed approach instantaneous
resampling ratio can be freely changed. This allows for simulation
of audio recored on magnetic tape with nonuniform velocity as
well as removal of these distortions using the same algorithm.

I. INTRODUCTION

A huge number of sample rate standards [1] available today
create a demand on development of sample rate conversion
(SRC) algorithms [2]–[4]. The digital resampling algorithm
replaces digital-analog conversion followed by analog sig-
nal sampling allowing for more flexible implementations. A
common example used to demonstrate usefulness of such
algorithms is the conversion between compact disc (CD) with
Fs = 44.1 kHz (multimedia standard) and digital tape (DAT)
with Fs = 48 kHz (communications standard) [3], [5]. In
this paper we present SRC implementation based on variable
fractional delay (VFD) filter. Using this algorithm we not
only can implement an arbitrary constant resampling ratio
but fluctuating changes in resampling ratio can be readily
implemented as well. Based on this tool we propose a novel
application for resampling algorithm which is correction of
signals with unintentional nonuniform sampling. For example
correction of old recordings with distortions resulting from
nonuniform velocity of the media [6]–[8] which is typically
addressed with interpolation techniques [9]. On the other
hand, with correctly sampled signal we might simulate such
distortions using the same VFD SRC algorithm. In both cases,
we make use of the fact that nonuniformly sampled signal
when reconstructed with uniform sampling changes its pitch
inversely proportionally to the sample rate changes.

II. VFD FILTER

The SRC algorithm investigated in this paper is based on
FD filters and its performance depends on the design method
used to calculate coefficients of FD filter. In this paper to
the approximate ideal FD filter the FIR FD filter with the
frequency response

HN (f) =

N−1∑
n=0

h[n] exp(−j2πfn) (1)

is used where h[n] is the impulse response of the length
N . The designer tries to find the coefficients of this impulse
response which offer the best performance of FD filter, which
is usually evaluated using frequency domain error function
[10]

E(f) = HN (f)−Hid(f) (2)

where the ideal frequency response Hid(f) of the FD filter
with total delay τd is defined by the following formula [10]

Hid(f) = exp(−j2πfτd), f ∈ [−0.5, 0.5) (3)

which corresponds to the ideal impulse response

hid[n] = sinc(n− τd) (4)

Because of the causality requirement, high performance
FD filters are characterized with nonzero integer delay D =
round(τd), which for FIR filters is usually selected close to the
bulk delay τN = (N − 1)/2. With those two delays defined,
we receive the following formula for the total delay

τd = D + d = τN + ε (5)

where d ∈ [−0.5, 0.5) is the fractional delay and ε is the net
delay.

There are several design methods offering optimal FD filters
with maximally flat (MF), least squares (LS) and minimax
being the most popular methods. The optimality criteria for
each of these methods is based on complex approximation
error (2). For MF filters approximation error and its N − 1
derivatives must be equal to zero. The MF filter offers excellent
performance but only around zero frequency. Differently, the
LS and minimax filters allow the designer to specify the ap-
proximation band f ∈ [0, fa] in which the error is minimized.
The LS FD filter [10] has the energy of error minimized

ELS(fa) = 2

∫ fa

0

|E(f)|2 df (6)

while the minimax FD filter [10], [11] has minimized peak
error (PE)

EPE(fa) = max
f∈[0,fa]

|E(f)| (7)

in the approximation band.
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The coefficients of the impulse response, vector h, of all
these optimal filters, MF, LS and minimax, with fractional
delay d can be found solving the following matrix equation
[10]

Ph = p (8)

where the coefficients of matrix P and vector p depend on the
optimization criteria. For MF filter matrix P is a Vandermonde
matrix

Pk+1,n+1 = nk (9)

and vector p has elements

p1,k+1 = τd
k (10)

where k, n = 0, 1, ..., N − 1. To find the LS filter we need
only to change coefficients of matrix P

Pk+1,n+1 = fa sinc fa(n− k) (11)

and column vector p

p1,k+1 = fa sinc fa(k − τd) (12)

A minor modification is needed for minimax filters. First a set
of N +1 frequency points fk, called extremal points, must be
found using recursive complex Remez algorithm [12]. Then
coefficients of matrix P and vector p can be computed using
the following formulas

Pk+1,n+1 = cos(2πfkn)− sin(2πfkn) (13a)
Pk+1,N+1 = (−1)k (13b)

and

p1,k+1 = cos(2πfkτd)− sin(2πfkτd) (14)

where k = 1, 2, ..., N + 1 and n = 1, 2, ..., N . In this case
vector h has one additional element with magnitude equal to
peak approximation error (7).

Since VFD filter needs to be able to change its delay for
each output sample the high numerical costs related to solving
matrix equation (8) become a significant problem. The most
popular solution is the Farrow structure [11], [13]–[15]. The
idea of this structure is to approximate each sample of the
impulse response with a separate polynomial of the order q
dependent on fractional delay d

h[n] =

q∑
m=0

cm[n]dm (15)

Now, the output samples of the FD filter can be expressed
with the following formula

y[n] =

N−1∑
k=0

h[n]x[n− k] =

q∑
m=0

ym[n]dm (16)

where

ym[n] =

N−1∑
k=0

cm[k]x[n− k] (17)

Fig. 1. Farrow structure of the order q = 2 implementing VFD filter of the
length N = 5.

Formulas (16) and (17) define the Farrow structure presented
in Fig. 1 where each row coefficients implement separate filter
with impulse response cm[n].

To find coefficients cm[n] we need to compute only a
few impulse responses of FD filters for fractional delays d
uniformly spread in range [−0.5, 0.5]. In practice, to compute
approximation polynomials it is enough to use just q + 1
impulse responses. The polynomials of order q equal to 6 or
7 offer performance adequate for high quality FD filters with
approximation error about −100dB [11].

III. SAMPLE RATE CONVERSION USING VFD FILTER

Classic three rate sample rate conversion algorithm is pre-
sented in Fig. 2. Input signal samples with sample rate Fs1

is up-sampled by means of insertion of L− 1 zeros between
each pair of consecutive input samples. Next, at the interme-
diate sample rate, the lowpass interpolation filter with upper
frequency fu = min(0.5/L, 0.5/M) prevents the aliasing and
removes spectral images resulting from zeroinserting. At last
stage, the sample rate is reduced to the desired one by means
of decimation, only every M -th sample remains in the output
signal.

This approach, because of its simplicity, is well suited
for simple cases requiring constant sample ratio with small
factors L and M . In other cases the intermediate sampling
ratio is very high and the passband of the interpolation filter
becomes extremely narrow. In the result numerical costs in-
crease drastically and, what’s more important, the interpolation
filter becomes very difficult to design. Therefore for arbitrary
resampling ratios the VFD filter is used (Fig. 3).

As we can see in Fig. 4, the output sample y[m] can be
interpreted as the closest input sample delayed by a fraction of
sampling period d[m]. This fractional delay can be computed

Fig. 2. Classic three-rate sample rate conversion algorithm by rational factor
L/M .
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Fig. 3. General VFD filter structure applied to SRC.

Fig. 4. Illustration of sample rate conversion by L/M = 2/3. Input samples
x[n] – o, output samples y[m] – x.

using the following recursive formula [16]

d[m] = d[m− 1]− r[m] + ∆n[m] (18)

where the reversal of instantaneous resampling ratio

r[m] = Fs1[m]/Fs2[m] = Ts2[m]/Ts1[m] (19)

and ∆n[m] is a number of new samples required in input
buffer to compute the next output sample

∆n[m] = round(r[m]− d[m− 1]) (20)

For rational resampling ratio (Fig. 2)

r[m] = M/L (21)

sequences d[m] and ∆n[m] are periodic with period L, but in
general with VFD filter the resampling ratio can be an arbitrary
positive number and can change in time. Nevertheless, if we
want to avoid resampled signal distortions then r[m] must be
limited by the instantaneous signal oversampling ratio.

With the above two parameters defined ((18) and (20)) the
resampling algorithm is following (Fig. 3):

1) start with d[0] = 0 and ∆n[0] = 0,
2) wait for ∆n[m] new samples in input buffer,
3) find output sample y[m] delayed by d[m] using FD filter,
4) calculate ∆n[m] and d[m] for next m and go back to

step 2.
For every output sample the resampling algorithm requires

different fractional delay (18). This means that for each output
sample we need to compute a new impulse response of the
FD filter. For rational resampling ratio L/M we actually need
only L impulse responses which can be stored in look-up-
table (LUT) [3] but when ratio is arbitrary and additionally
changing in time, the filters needed in resampling cannot be
specified beforehand and must be computed during runtime
which can be done readily using Farrow structure presented
in the previous section.

Fig. 5. Diagram of SRC algorithm based on VFD filter.

IV. FD FILTER DESIGN FOR SRC

If the best performance of SRC algorithm must be achieved
then the optimal FD filters like minimax or LS [10], [12],
[16] with approximation band specified by the designer seem
to be the best option. Especially that with the Farrow structure
the complexity of the FD filter design algorithm does not
affect the runtime VFD filter implementation since all structure
coefficients can computed beforehand.

Nevertheless, we must notice that it is not sufficient to know
just the errors of FD filters to assess the performance of the
SRC algorithm based on these filters. It can observed that the
SRC algorithm based on FD filters (Fig. 3 and 5) is equivalent
to the classic approach (Fig. 2) [16]. We only need to replace
the interpolation filter in the classic approach with the overall
filter which is composed of FD filters used in resampling [16].
This can be done only for rational resampling ratios but the
conclusions can be readily adapted to arbitrary resampling
ratios.

To obtain the impulse response of the overall filter [16] we
need to interleave impulse responses hd[m][n] of FD filters
with fractional delays d[m]

ho[m+ nL] = hd[m][n]; m = 0, 1, . . . , L− 1 (22)

with delays d[m] arranged in decreasing order

d[m− 1] = d[m] + 1/L; m = 1, . . . , L− 1 (23)

Using the overall filter (22) we can readily analyze distortions
introduced by the SRC algorithm based on FD filters since this
filter must fulfill the same requirements as the interpolation
filter in the classic approach (Fig. 2).

In Fig. 6 we can see overall filter obtained for minimax FD
filters with upper frequency of approximation band fa = 0.4.
The problem with the SRC based on optimal filters is that
the overall filter demonstrates large lobes in stopband which
may result in aliasing when input signal has components above
fa. Moreover, the transition band location of the overall filter

Fig. 3. General VFD filter structure applied to SRC.
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Fig. 6. Comparison of overall filters composed of minimax FD filters (blue)
and composed of FD filters designed using offset window method (red) of
the length N = 17 and with fa = 0.4 and offsetting MF filter of the length
Noff = 5 for L = 9.

cannot be manipulated. These disadvantages of optimal FD
filter can be overcome with the use of offset window method
[17]–[20]. Using filters designed with offset window method
for window extracted from minimax filter, the large lobes
in stopband are eliminated and the transition band can be
readily shifted [20] (Fig. 6). The numerical cost of the VFD
implementation do not change since, as we have observed, the
Farrow structure of the same order can be used also in this
case.

Although the overall filters in Fig. 6 are composed of just
L = 9 filters their properties are maintained for any resampling
ratio. An excellent testing signal for the SRC algorithm is
the constant amplitude LFM chirp, which has been used in
Fig. 7. We can see there that the signal converted using
minimax FD filters demonstrates high distortions when input
signal frequency exceeds fa. On the other hand, the signal
converted using FD filters designed with offset window has no
components caused by nonlinear distortions larger than −60
dB which is directly related to the peak error (7) of the worst
FD filter used in the SRC algorithm [16].

V. PROCESSING WITH FLUCTUATING RESAMPLING RATIO

In this section we will demonstrate SRC with changing ra-
tio. The first simple yet spectacular example is the conversion
of sinusoidal signal with constant frequency Fin into chirp
signal with linear instantaneous frequency

Fout[m] = F0 +m∆F (24)

where F0 is the initial output sample rate and ∆F is the chirp
rate. In this example the input sample rate is constant and
the output sample rate must change in such a way that the
oversampling ratio will change linearly according to output
time index m.

Fs2[m] = FinFs2/Fout[m] (25)

where Fs2 is the constant output sample ratio required for
resampled signal to observe chirp with assumed instantaneous
frequency (24). Since in this example input sampling fre-
quency Fs1 is constant the formula for the reversal of the
instantaneous resampling ratio can be readily obtained

rchirp[m] = Fs1/Fs2[m] =
Fin(F0 +m∆F )

Fs1Fs2

(26)

(a) Input chirp signal.

(b) Chirp signal resampled using minimax FD filters.

(c) Chirp signal resampled using FD filters designed using window offset with
MF filter of the length Noff = 5.

Fig. 7. Spectrograms illustrating resampling with constant resampling ratio
160/147. VFD filter of the length N = 17 and Farrow structure order q = 5.

The effects of resampling are presented in Fig. 9. Let
us notice that when the output signal is reconstructed using
variable output sample rate (25) the input (Fig. 9a) and output
(Fig. 9c) signals represent the same analog signal. However,
if we assume constant output rate Fs2, the output samples of
SRC algorithm represent the chirp signal (Fig. 9b) which we
wanted to obtain.

The process described above can be reversed. The chirp
signal obtained in the previous step can be converted back
to sinusoid but selection of the r[m] is now more difficult.
In the first scenario the sample rate and the frequency of
the input signal are constant which simplifies the derivations.
In this problem we need to assume that either the frequency
of the input signal or its sample rate is changing. Since we
want to demonstrate how to reverse the resampling process we
will assume that the signal frequency is constant with variable
distance between input samples.

From (25) we know the sample ratio and input sampling
instants but need to find the ratio r[m] (19 ) specified in
equidistant output instants m. Let us assume that we know the
instantaneous input sample rate Fs1[n] = 1/Ts1[n] sampled in
the same instants as the input signal x[n] and instantaneous
output sample rate Fs2[m] = 1/Ts2[m] sampled in the same
instants as the output signal y[m]. We are looking for ratio
r[m] = Ts2[m]/T̂s1[m] where T̂s1[m] is the input sampling

Fig. 6. Comparison of overall filters composed of minimax FD filters (blue)
and composed of FD filters designed using offset window method (red) of
the length N = 17 and with fa = 0.4 and offsetting MF filter of the length
Noff = 5 for L = 9.

cannot be manipulated. These disadvantages of optimal FD
filter can be overcome with the use of offset window method
[17]–[20]. Using filters designed with offset window method
for window extracted from minimax filter, the large lobes
in stopband are eliminated and the transition band can be
readily shifted [20] (Fig. 6). The numerical cost of the VFD
implementation do not change since, as we have observed, the
Farrow structure of the same order can be used also in this
case.

Although the overall filters in Fig. 6 are composed of just
L = 9 filters their properties are maintained for any resampling
ratio. An excellent testing signal for the SRC algorithm is
the constant amplitude LFM chirp, which has been used in
Fig. 7. We can see there that the signal converted using
minimax FD filters demonstrates high distortions when input
signal frequency exceeds fa. On the other hand, the signal
converted using FD filters designed with offset window has no
components caused by nonlinear distortions larger than −60
dB which is directly related to the peak error (7) of the worst
FD filter used in the SRC algorithm [16].

V. PROCESSING WITH FLUCTUATING RESAMPLING RATIO

In this section we will demonstrate SRC with changing ra-
tio. The first simple yet spectacular example is the conversion
of sinusoidal signal with constant frequency Fin into chirp
signal with linear instantaneous frequency

Fout[m] = F0 +m∆F (24)

where F0 is the initial output sample rate and ∆F is the chirp
rate. In this example the input sample rate is constant and
the output sample rate must change in such a way that the
oversampling ratio will change linearly according to output
time index m.

Fs2[m] = FinFs2/Fout[m] (25)

where Fs2 is the constant output sample ratio required for
resampled signal to observe chirp with assumed instantaneous
frequency (24). Since in this example input sampling fre-
quency Fs1 is constant the formula for the reversal of the
instantaneous resampling ratio can be readily obtained

rchirp[m] = Fs1/Fs2[m] =
Fin(F0 +m∆F )

Fs1Fs2

(26)

(a) Input chirp signal.

(b) Chirp signal resampled using minimax FD filters.

(c) Chirp signal resampled using FD filters designed using window offset with
MF filter of the length Noff = 5.

Fig. 7. Spectrograms illustrating resampling with constant resampling ratio
160/147. VFD filter of the length N = 17 and Farrow structure order q = 5.

The effects of resampling are presented in Fig. 9. Let
us notice that when the output signal is reconstructed using
variable output sample rate (25) the input (Fig. 9a) and output
(Fig. 9c) signals represent the same analog signal. However,
if we assume constant output rate Fs2, the output samples of
SRC algorithm represent the chirp signal (Fig. 9b) which we
wanted to obtain.

The process described above can be reversed. The chirp
signal obtained in the previous step can be converted back
to sinusoid but selection of the r[m] is now more difficult.
In the first scenario the sample rate and the frequency of
the input signal are constant which simplifies the derivations.
In this problem we need to assume that either the frequency
of the input signal or its sample rate is changing. Since we
want to demonstrate how to reverse the resampling process we
will assume that the signal frequency is constant with variable
distance between input samples.

From (25) we know the sample ratio and input sampling
instants but need to find the ratio r[m] (19 ) specified in
equidistant output instants m. Let us assume that we know the
instantaneous input sample rate Fs1[n] = 1/Ts1[n] sampled in
the same instants as the input signal x[n] and instantaneous
output sample rate Fs2[m] = 1/Ts2[m] sampled in the same
instants as the output signal y[m]. We are looking for ratio
r[m] = Ts2[m]/T̂s1[m] where T̂s1[m] is the input sampling
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Fig. 8. Diagram for computation of r[m] (19) based on instantaneous input
and output sample rates.

period corresponding to the output time instant m.
Assuming that we know the positions of input sampling

instants, which are our output instants from the previous
problem

tin[n] =

n∑
i=1

Ts1[n] = tin[n− 1] + Ts1[n] (27)

and output sampling instants, which are our input instants from
the previous problem

tout[m] =

m∑
i=1

Ts2[m] = tout[m− 1] + Ts2[m] (28)

We propose the following algorithm for computation of the
reversal of the instantaneous resampling ratio r[m].

1) Start with input and output discrete time indexes n := 0
and m := 0 with corresponding continuous time instants
tin := 0 and tout := 0.

2) Compute distance from the current output time instant
to the current and the next input time instant:

∆t := tout − tin,
∆t := Ts1[n]−∆t.

3) If ∆t >= 0 then
a) if the previous output sample is located in the same

input sampling interval (∆r = 0 and ∆t > 0) then
r[m] := Ts2[m]/Ts1[n],

otherwise
r[m] := ∆t/Ts1[n] + ∆r,

b) If ∆t < Ts2[m] then
∆r := ∆t/Ts1[n]
and move to the next input instant

(a) Spectrogram of input sinusoidal
signal.

(b) Spectrogram of chirp signal ob-
tained from sinusoidal signal. As-
sumed constant sample rate Fs2 =
Fs1.

(c) Spectrogram from Fig. 9b re-
shaped with accordance to variable
sample rate. Dashed line indicates the
folding frequency.

(d) Spectrogram of restored sinu-
soidal signal.

Fig. 9. Conversion from sinusoidal signal into chirp and back using SRC
based on VFD filters. VFD filter with fa = 0.4 of the length N = 17 and
Farrow order q = 5 designed using window offset using MF FD filter of
length Noff = 5.

tin := tin + Ts1[n],
n := n+ 1,

otherwise
∆r := 0,

c) move to the next output instant
tout := tout + Ts2[m],
m := m+ 1,

4) otherwise (∆t < 0)
a) ∆r := ∆r + 1,
b) move to the next input instant

tin := tin + Ts1[n],
n := n+ 1,

5) Go to point 2.
The proposed algorithm is universal and can be used for

computation of instantaneous ratio r[m] for any variable input
and output sample rates. Fig. 8 presents the modified version of
the proposed algorithm. The introduced modifications allow to
eliminate from algorithm the continuous accumulation of input
and output times which eventually would lead to roundoff
errors. In Fig. 9d spectrogram of sinusoidal signal recovered
from chirp signal generated in previous example is presented.
We can observe the nonlinear distortions but their level can
be controlled with the selection of the overall filter (Fig. 6)

Fig. 8. Diagram for computation of r[m] (19) based on instantaneous input
and output sample rates.
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the previous problem
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i=1

Ts2[m] = tout[m− 1] + Ts2[m] (28)

We propose the following algorithm for computation of the
reversal of the instantaneous resampling ratio r[m].

1) Start with input and output discrete time indexes n := 0
and m := 0 with corresponding continuous time instants
tin := 0 and tout := 0.

2) Compute distance from the current output time instant
to the current and the next input time instant:
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∆t := Ts1[n]−∆t.

3) If ∆t >= 0 then
a) if the previous output sample is located in the same

input sampling interval (∆r = 0 and ∆t > 0) then
r[m] := Ts2[m]/Ts1[n],

otherwise
r[m] := ∆t/Ts1[n] + ∆r,

b) If ∆t < Ts2[m] then
∆r := ∆t/Ts1[n]
and move to the next input instant

(a) Spectrogram of input sinusoidal
signal.

(b) Spectrogram of chirp signal ob-
tained from sinusoidal signal. As-
sumed constant sample rate Fs2 =
Fs1.

(c) Spectrogram from Fig. 9b re-
shaped with accordance to variable
sample rate. Dashed line indicates the
folding frequency.

(d) Spectrogram of restored sinu-
soidal signal.

Fig. 9. Conversion from sinusoidal signal into chirp and back using SRC
based on VFD filters. VFD filter with fa = 0.4 of the length N = 17 and
Farrow order q = 5 designed using window offset using MF FD filter of
length Noff = 5.

tin := tin + Ts1[n],
n := n+ 1,

otherwise
∆r := 0,

c) move to the next output instant
tout := tout + Ts2[m],
m := m+ 1,

4) otherwise (∆t < 0)
a) ∆r := ∆r + 1,
b) move to the next input instant

tin := tin + Ts1[n],
n := n+ 1,

5) Go to point 2.
The proposed algorithm is universal and can be used for

computation of instantaneous ratio r[m] for any variable input
and output sample rates. Fig. 8 presents the modified version of
the proposed algorithm. The introduced modifications allow to
eliminate from algorithm the continuous accumulation of input
and output times which eventually would lead to roundoff
errors. In Fig. 9d spectrogram of sinusoidal signal recovered
from chirp signal generated in previous example is presented.
We can observe the nonlinear distortions but their level can
be controlled with the selection of the overall filter (Fig. 6)
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(a) Spectrogram of the input piano
signal.

(b) Spectrogram of piano signal with
sinusoidal fluctuations in sample rate
introduced.

(c) Spectrogram from Fig. 10b re-
shaped with accordance to variable
sample rate.

(d) Spectrogram of the restored sig-
nal.

Fig. 10. Manipulations on piano music. Introduction and removal of sinu-
soidal fluctuations into instantaneous sample ratio. VFD filter with fa = 0.45
of the length N = 47 and Farrow order q = 6 designed using window offset
method using MF FD filter of length Noff = 6.

attenuation in the stopband.
Fig. 10 presents the example in which a sinusoidal sample

rate changes are introduced and later removed from the pro-
cessed signal. The signal contains the piano music sensitive
to such distortions. Presented example simulates the case
in which a velocity of magnetic tape changes because of
mechanical problems. As we can see, the proposed solution
can be used efficiently to remove such distortion if only we
are able to find out how the velocity/sampling ratio changes
[6]–[8].

VI. CONCLUSION

We have demonstrated that using Farrow structure im-
plementing VFD filter audio signal can be resampled with
continuously changing sample rate ratio. The proposed ap-
proach can be used to simulate signal distortions, for example
change or remove speech intonation, as well as to correct old
recordings distorted because of non-constant media velocity,
e.g. magnetic tape.

In this paper we have only demonstrated that the proposed
solution can be used in aforementioned applications. Further
research should focus on comparison with other resampling
methods and automatic selection on sample rate ratio based
for example on changes of pitch period for speech processing
or on the properties of recorded distortions for reconstruction
of old recordings [6]–[8].
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