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Second-order Stark effect and polarizability of a relativistic two-dimensional
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The second-order Stark effect for a planar Dirac one-electron atom in the ground state is analyzed within
the framework of the Rayleigh-Schrodinger perturbation theory, with the use of the Sturmian series expansion
of the generalized Dirac-Coulomb Green’s function. A closed-form analytical expression for the static dipole
polarizability of that system is found. The formula involves the generalized hypergeometric function 3 F, with
the unit argument. Numerical values of the polarizabilities for relativistic planar hydrogenic atoms with atomic
numbers 1 < Z < 68 are provided in a tabular form. A simple formula for the polarizability of a nonrelativistic
two-dimensional hydrogenic atom, reported previously by several other authors, is recovered from our result in

the nonrelativistic limit.
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I. INTRODUCTION

For several decades, theoreticians have been investigating
properties of model planar quantum systems. Recent years
have seen a growth of interest in such studies, driven primarily
by the rapid progress in low-dimensional condensed matter
physics and materials science. It is not surprising that the
system that has attracted much interest in this context is the
planar analog of the one-electron atom. Its exceptional charm
is rooted in its physical simplicity, as well as in the fact that
the pertinent Schrodinger, Klein-Gordon, and Dirac equations
admit analytical solutions [1,2]. In consequence, a good deal
of information about various properties of that particular
system has been gathered over the past years. However, a
somewhat astonishing asymmetry may be observed: whereas
a number of works have dealt with the planar hydrogenic
atom subjected to the action of a magnetic field (the reader
will find a comprehensive relevant bibliography in our recent
works [3,4]), much less effort has been put into considering
such an atom immersed in an electric field [1,5-14] (cf. also
Refs. [15-18]). Further studies on the Stark effect for planar
one-electron atoms are thus desirable, and the present paper
meets that demand.

In Refs. [1,6-10,15-17], a simple analytical expression for
the polarizability of the two-dimensional hydrogenlike atom
in the ground state has been found (or may be inferred from
akin results presented therein). A common feature of all these
works is that the atomic electron has been described with
the use of the Schrodinger equation. In the present paper,
we derive an analytical formula for the polarizability of that
particular atomic system, but with the employment of the
Dirac equation rather than the Schrodinger one. The calcu-
lations are carried out within the framework of the second-
order Rayleigh-Schrodinger perturbation theory, with the use
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of the Sturmian series expansion of the generalized radial
Dirac-Coulomb Green’s function. The resulting formula for
the polarizability appears to be much more complex than its
nonrelativistic counterpart and involves an irreducible gener-
alized hypergeometric function, 3 F,, with the unit argument.
In the nonrelativistic limit, we recover the expression found in
Refs. [1,6-10,15-17].

II. PROBLEM FORMULATION

We are concerned with a Dirac one-electron atom (or ion)
with a pointlike, spinless, and motionless nucleus of electric
charge +Ze. The atomic electron is constrained to move in
a plane through the nucleus. It is assumed that the interaction
potential between the electron and the nucleus is the one-over-
distance Coulomb one. The system is immersed in a static
and uniform lateral electric field of strength F. It is posited
that the electric field is weak, in the sense that the electron
is considered to stay bounded (in other words, the probability
of the occurrence of the field-ionization process is negligibly
small), and field-induced energy shifts are small compared
to the fine-structure splitting of the planar Dirac-Coulomb
energy levels. Under the assumptions specified above, the
time-independent electronic wave function is taken to be a
solution to the planar Dirac equation

[—icha'V—i—,Bmcz— +V(1)(r)—Ei|\IJ(r)=O

_Le
(Ameg)r
(r € R?), (la)

subject to the standard constraint of single valuedness and the
boundary conditions

e 20, Jrwe) =2 o. (1b)
In Eq. (1a),
VD(r)y=eF -r 2)
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is the potential energy of the interaction between the electron
and the perturbing electric field F. Henceforth, we assume
that the atomic plane is the {x, y} one, with the Cartesian
unit vectors n, and n,, and that the field F is directed along
ny,ie.,

F = Fn,. 3)
The two components of the Dirac vector matrix
a=an, +an, 4)

and the matrix g are taken to be

_ 0 01 _ 0 (o))
o) = o 0) Q) = o) 0)

respectively, where

01=<(1) (1)) 02=<(i) gi>, ©)

while / stands for the unit 2x2 matrix.

Since the field F has been assumed to be weak, we
treat the term V(r) as a small perturbation of the Dirac-
Coulomb Hamiltonian. Proceeding within the framework of
the Rayleigh-Schrodinger perturbation theory, £ and W(r)
may be sought in the forms of the series

E=E9+EV+E?+... (7a)
and
V() =vOr) + D) +wPr) + - (Tb)

The zeroth-order terms E© and W©(r) appearing above
are those solutions to the planar bound-state Dirac-Coulomb
energy-eigenvalue problem

|:—icfwt -V + IBmcz — _ E(O)i|\p(0)(r) -0

(47'[60)?‘

(r e R?), (8a)

VU0 220, e =20, (8b)

from which E and W(r) evolve in effect of the action of the
electric field.

In this work, we shall carry out calculations of the energy
corrections E(V and E@ in the case when E© and WO (r)
refer to the ground state of the isolated atom. The energy E©
of that state is

E(O) = 2)/1/sz2, (9)
with
Ye = ViK? = (@Z)?, (10)

where o = e?/(4mey)ch is the Sommerfeld fine-structure
constant, while the wave function WO (r) is

vOr) = a W) +al Wl 0w, A
with the basis eigenfunctions chosen to be

POED_y /2 m, (@) )
o= x5 12
100D (@) T ED) (1D

w00 = %(
r

and with the mixing coefficients afl) /2 constrained to obey

aip|* +1a,[ = 1. (13)

In Eq. (12) and hereafter, 0 < ¢ < 27 is the polar angle
between the unit vector n, and the radius vector r, and

@ e
KMy (ﬂD) - m 8/<m ei(mK+l/2)(p

1 3 5
K==F—, -, ==, ...
22 2

are the axial spinors introduced by Poszwa and Rutkowski
[19] and are discussed more comprehensively in Ref. [4,
Appendix] (notice that the quantum number « used in the
present paper and in Ref. [4] has the opposite sign in relation
to the one from Ref. [19]), while the ground-state radial
functions P©@(r) and Q©(r) are

22(1 42 4zZr\""
P(O)(}") — ( + 7/1/2) r 672Zr/a0 (153)
aclT' Qyip+ 1)\ ao

27Z(1 — 27/1/2) 4Zr y1/2872Zr/a0 (15b)
aol'Qy12 + 1)\ ao '

LM = :i:/c) (14)

and

0¥ =
with ag = (4mep)h? /me? being the Bohr radius. To ensure
that yy; is real and positive, we impose the constraint

Z < %a‘l. (16)

It may be verified that the axial spinors (14) are orthonor-
mal in the sense of

2
f de ®Im“ (¢)¢K/m:( (p) = SKK’Sme,’( a7
0

and that the radial functions (15) are normalized to unity in
the sense of

/ T {POOPR+ 100} = 1. (18)
0

Consequently, it holds that

1
/ dzl‘ \I/;:)T(r)q/l(nq)(r) — Sm[,m’ (ma, m; = :I:—), (19)
R2 a a “ 2

and, by virtue of the constraint (13), the function (11) is
normalized to unity in the sense of

/ r v v Oy = 1. (20)
]RZ

III. THE FIRST-ORDER STARK EFFECT

The first-order corrections E" and WV (r) appearing in
Egs. (7a) and (7b) solve the inhomogeneous system

[—icha -V + Bmc? — - E(O):|\IJ(1)(r)
(Amep)r
=—[VO@E)= EOO@), (21a)
Ve 220, ey =20, (21b)
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subject to the orthogonality constraint

1
/ d’r v (rwr) =0 (m = j:§>. (22)
]RZ

Inserting Eq. (11) into the right-hand side of Eq. (21a) and
then projecting the resulting equation from the left onto
the unperturbed eigenfunctions \Ilil 12(r) yields the algebraic
system

> WD, - £,

]a“)) =0 (m = j:%) (23)

m,==+1/2
with
Vrff)m:/ Cr vt v w9 ) (ma,m;zﬂ:l).
@a R2 a a 2
(24

Since the perturbation operator (2) may be written in the form
VD(r) = eFrcosg, (25)
using Eq. (12) and the integral identity

2w
/ dg cos @L, (@) Pm; (9)
0

1
- E(Smk/l(,m:(/lf/(ak,léuﬁl + 8/{,){’71)’ (26)
we infer that
(1) g l
V.-, =0 mg,m, = +—|. 27
mgm, a 2

Consequently, the first-order contribution to the energy eigen-
value E vanishes:

ED =0, (28)

and the mixing coefficients afl) /» Temain undetermined at this

stage.
With the result (28) taken into account, a formal solution
to the system (21) is

(9)—is a solution to the inhomogeneous system

[—icha -V + Bmc? — _ E(O)}gm)(n )

(47'[60)?‘

=82 —rI—- Y wOrwWie)
mg==+1/2

(r,r € R?), (30a)
V¢ =0, SréQOw ) =20  (30b)

(here 7 is the unit 4 x4 matrix), subject to the disambiguating
orthogonality constraint

R 1
/ d’r OGO, =0 (ma =+ ) G
R2

The expression for v () given in Eq. (29) is used in the next
section, where the second-order Stark effect is analyzed.

IV. THE SECOND-ORDER STARK EFFECT
AND THE ATOMIC POLARIZABILITY

The second-order corrections E® and W®(r) are solu-
tions to the inhomogeneous system

Ze?
(Amep)r

|:—ichot -V + ﬂmc2 — _ E(O)i|\p(2)(r)

=—[VP@) - EDO @)+ EP9Or), (32a)
VU 220, re@e) =0, (32b)

augmented with the orthogonality condition
1
/ dr v (v ) =0 (m = :l:—). (33)
R2 a 2

Proceeding as in the preceding section, after making use of the
results (28) and (29), one arrives at the following algebraic
system for the thus far undetermined mixing coefficients

Atipo-
vy = —/ r' GO, rHvOEHYWO G, 29 1

") R2 ( ) " " @) Z [Vn(;zn? E(z)(SmMm;]a’g?,):O (ma:i§>y (34)
where GO (r, r')—the generalized planar Dirac-Coulomb ma=1/2
Green’s function associated with the unperturbed energy level with

|
1
Vo) = f d*r / Ir W VOGO, VO E o) (mm/ = i§>. (35)
o R? R?

Plugging Egs. (12) and (25), and also the following multipole representation of GO (r, '),

GOy — *"i‘” 5 <§§ﬁ+)K<r )@, (@)l (¢)  —i8 r)<1>mk<<p)d>mk(<p/>> 56

12t VTN P (@)L, (9) 2 PP, (0)DL (0

into the right-hand side of Eq. (35) and then carrying out angular integrations with the aid of Eq. (26) casts the matrix element

(L1 .
Vm[,m,; into the form

mgm,

1
vy _ _Bmam;’%eze[RSél)(P(O)’ Q(O);P(O), Q(O))+ R(,lé}%(P(O), Q(O);P(O), Q(O))] <ma’m; = :I:E), 37
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with
LD pO HO. pO) O T R O (N3O oy (PO
RIVPY, Q0P 0 = [Car [Car(POw) 006600 (o) ) (38)
0 0

where

~(0) / ~(0) ’
g rr) 8L 1)
(++)x (+-)« (39)

GO0, 1) = (
? A(0 A(0
gé7)+),( (rv r/) ggf),),( (ry r/)

is the generalized radial Dirac-Coulomb Green’s function associated with the unperturbed ground-state energy level (9). It is
seen from Eq. (37) that the matrix with the elements V,filri) is a multiple of the 2x2 unit matrix; in effect the secular equation
for the algebraic system (34) has the double root

E® — —i€2F2[RS'21)(P(O)v 0O, pO Oy 4 Rgg};(P“”, 0©. pO Q(O))], (40)

and the mixing coefficients afl) /> again remain undetermined.

To complete the task of calculation of the second-order energy correction £, we have to evaluate the double radial integral
(38) for k = 1/2 and for k = —3/2. For that purpose, we shall exploit the following series representation of the generalized
Green’s function GO (r, r'):

GO0 - S L [SEON 0 co 7o ! 41

P = 3 o i R 120 (e#-3) “
with

|nr|+y/<+Nn,K

<= (42)

Vit 3

involving the pertinent radial Dirac-Coulomb Sturmian functions (cf. Ref. [4, Sec. 3]) evaluated at the energy (9):

S,EOZ(V)Z\/MGO (I + 2y10)n 1 Y(ny | + 2vi) (@)“e-zzr/ae[ﬁw <4ﬁ>_MU2W(4ﬁ)} (432)
) a0

€2 4ZN,«(Ny —iO0(In,| 4+ 2y0) \ ao =1\ g |+ 2y ™!

and

Yk
TGy = \/4neO (1= 2yl 1| + 270) <4Zr> e_zz,/ao[L(zyk) <4Zr) L Nk Layk)(m)} #3b)
v o

€2 4ZN,,«(Ny« —iOT(n, ] +2y0) \ ao =T\ ag In.|+ 2y, ™!

Here Lﬁ[")( p) is the generalized Laguerre polynomial [20, Sec. 5.5] [we define L(f‘l) (p) =0], and

Npo = £y/02 4 2|0y + &2, (44)

where one chooses the positive sign for n, > 0 and the negative sign for n, < 0; if n, = 0, then the positive sign is to be chosen
for k < —% and the negative one for x > %, i.e., it holds that Ny, = —«. The functions (43) and the expansion (41) may be
constructed proceeding along the route analogous to the one taken by us in Ref. [21] for the three-dimensional Dirac-Coulomb
problem.

Insertion of the expansion (41) into Eq. (38) transforms the latter into

[ee]

1 o0
RID(P®, 0O PO 00y = Y o 1/ dr r[PO)SO.(r) + 0O T)]
0

[e9]
X / dr' r'[uO POE)SO ) + 0V T O] (45)
0

The two radial integrals which enter the summand may be evaluated with the use of Egs. (15), (42), and (43), together with the
known integration formula

o r nr —
f dpp? e L@(py = LY X DLOHOZY) pey oy, (46)
) AT — )
042507-4
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The results are

/ N drr[PO)SO.r) + 0V ()T ()]
0

Ve ay? (N — LR + v = vij2 = 2) = 2910 (Np #1601 T 4 v1p2 + 2T(ne | + v — v12 — 2)

e 822\/2|nr|!Nn,K(Nn,-K - K)F(2V1/2 + l)r(|nr| + 2)/1( + ]) F(VK — V2= 1)

(47a)
and
/ drr[py PO@ST )+ QO T ()]
A , , .
VAmeq)? (5 = 1) (N = K) T + y12 + 200 + e = 112 = 2)
e 1622,/2[n,'Np, i« (N« — K)TQy12 + DE(n [+ 2y + 1) Fe—vip—1
Nn,K + %
X 1271000 + Ve —vi2 = 2) = (Npje 1)+ ——————[(In:| + Ve =712 = 2) = 2712(Nypie +6)]1 . (47D)
7|+ Y — vi2

Plugging Eqgs. (47) and (42) into the right-hand side of Eq. (45), collecting then the terms corresponding to n, and —n,, after
some algebra one arrives at the following representation of the double integral (38):

RUD(PO_QO; pO o©) = (4meo)a] C*(ve + 12 +2) Y1202k + Dyip + 4]
p » Q75 P e AZTCyp+ DI+ D1 ve—rp+l

w3 F» Ve=vip=Lve=—np—LYe=np+l ) _Ytnso
VK_V1/2+27 2y + 1 ’ 2k + 1

Ye =Vi2—L Ve—=vip—1 % —nip. _ 1 _ 3
X3F2< VK_VI/2+L 2VK+1 ’1)} (K_Z or k= 2 ’ (48)

Here and hereafter, 3 F, (- - - ) denotes the generalized hypergeometric function

F (ah as, a3.z> _ T@Dr(b) i ['(a; + k)(ax + k)I'(a; +k)i 49)
32 by, by [(a1)(ay)T(a3) = Tb +k)C(b + k) k!
Application of the identity
ai, a, a; rO)rkb—a;—a+1)
3k ;1) =
az+1, b (b—as— DI'(b—a)T(b —ay)
(ar —a3—1)(ap —a3z — 1) ap, az, az + 1
— F. Tomer ;1 Re(b — a; — -1 50
@+ Db —a;— 1) 32( a3 +2. b Re(b —ar —a) > —1]  (50)

brings the expression (48) to the final general form:

_ (4meo)a (i + D2y + D2y +3) {1 _ @+ Dyip+ 21T (v + 12 +2)
&2 32742k + 1) Ve =112+ DICy12 + D2y + 1)

R(]v])(P(O)’ Q(O); P(O), Q(O)) —
J/K_Vl/z_]’VK_J/I/Z_lv)/K_yl/2+1,1 :1 =_§ 1
XSFZ( Ve = Vip+2, 2y +1 ’ “=3 or « 2) Gh

For k = 1/2, the hypergeometric series in Eq. (51) is a truncating one and may be expressed in terms of elementary algebraic
functions. In that case one has

3
11, p©) A©O). p© ~O, _ AT€)ay Yip(ip+ 1DC2yips+ DAy +5)
R]/2 (P ’ Q 7P ’ Q ) - 82 64Z4 ’ (523)
while for k = —3/2 Eq. (51) becomes
R(l,l) (P(()) Q(O)' poO Q(o)) _ (47760)0(3) (V1/2 + 1)(2]/1/2 + 1)(2]/1/2 +3) {1 _ 4(7/1/2 - 1)21_‘2(7/3/2 + i+ 2)
-2 ' ' ' e? 64724 (V32 = vi2 + DIQy12 + HEQys30 + 1)
vie=—viep—L vip—vip—1 vsp—vip+1,
F ;1) ¢, 52b
X3 2< e —vip+2, 2pp+1 (52b)
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TABLE 1. Z*-scaled polarizabilities for planar Dirac one-electron atoms in the ground state, computed from the analytical
formula in Eq. (56). The number in parentheses following each entry is an uncertainty in its last two digits and stems from the
one-standard-deviation uncertainty (equal to 31) in the last two digits of the value of the inverse of the fine-structure constant

1 =137.035 999 139 (from CODATA 2014 [22]) used in calculations. The nonrelativistic limit of Z*«;(Z) is independent
of Z and equals Z*aM®(Z) = 0.164 0625 a3 [cf. Eq. (62)].

Z Z*%(Z) (units of a} VA Z*a((Z) (units of a3) Z Z*%(Z) (units of a}
1 0.164 031922357129 (14) 24 0.146 540774 6157 (79) 47 0.097 649 864 741 (30)
2 0.163940 192 827 883 (55) 25 0.145058299 164 6 (86) 48 0.094 824238984 (31)
3 0.163787 32160563 (12) 26 0.1435165934310(92) 49 0.091938523941 (32)
4 0.16357332566345 (22) 27 0.141915791 499 (10) 50 0.088991 948 689 (34)
5 0.163298 228 73023 (35) 28 0.140256 027 891 (11) 51 0.085983 547 673 (35)
6 0.162962 061 256 62 (50) 29 0.138537436674 (11) 52 0.082912 115141 (37)
7 0.162564 86037078 (68) 30 0.136760 150441 (12) 53 0.079776 146 327 (38)
8 0.162 106 669 823 04 (88) 31 0.134924299 151 (13) 54 0.076 573760 514 (40)
9 0.1615875399190(11) 32 0.133030008 805 (14) 55 0.073 302598760 (41)
10 0.161007 5274405 (14) 33 0.131077399917 (15) 56 0.069 959 685 549 (43)
11 0.160366 6955523 (17) 34 0.129066 585774 (16) 57 0.066 541237770 (45)
12 0.159665 1136957 (20) 35 0.126997 670418 (17) 58 0.063042394 713 (46)
13 0.158902 857464 6 (23) 36 0.124 870746 321 (18) 59 0.059456 825787 (48)
14 0.158 080008 465 4 (27) 37 0.122685891 688 (19) 60 0.055776 141 692 (51)
15 0.157196 654 1568 (31) 38 0.120443 167 320 (20) 61 0.051988 975236 (53)
16 0.156252 887 6689 (35) 39 0.118 142612955 (21) 62 0.048 079475 600 (56)
17 0.155248 807 597 6 (40) 40 0.115784242975 (22) 63 0.044 024 687441 (59)
18 0.154 1845177733 (45) 41 0.113368 041 358 (23) 64 0.039789 613916 (63)
19 0.153060 126999 5 (50) 42 0.110893 955708 (24) 65 0.035316 860204 (68)
20 0.151875748 7577 (55) 43 0.108 361 890 163 (25) 66 0.030501216714 (75)
21 0.150631 5008750 (61) 44 0.105771 696 922 (26) 67 0.025 108988013 (88)
22 0.149327505 1491 (66) 45 0.103 123 166 068 (27) 68 0.01833185081 (13)
23 0.147963 8869247 (72) 46 0.100416013 257 (28)

Hence, after Egs. (52a) and (52b) are plugged into Eq. (40), the second-order correction to energy is found to be
12+ D?Qyip + D@yip +3)

£ _ _
25674
y { B Ay = DT (y3p +y12+2)
V12 + D@12 +3) 32 — vip + DRy +3)0Q2ya + 1)
wAR (V32N Lyvp=vip=1yvp—vp+l, F_2 e’ (53)
V32 — Vijp +2, 2)/3/2 +1 ’ F¢ (4meg)ay’
where
=% ~514x10" V/m (54)
(4meg)ag

is the atomic unit of the electric field.
The relationship between the second-order energy correction and the strength of the perturbing electric field may be written
in the form

E® = —L(4mep)a F?, (55)

which defines the polarizability «; of the system under study. Comparison of Egs. (55) and (53) yields the following closed-form
expression for the polarizability of the planar Dirac one-electron atom in the ground state:

. ﬁ 2+ D*Qyip+ D@y12 +3) {1 _ 4(vip — DT (3p + 112 +2)
z4 128 i+ DGy +3) 32 —vipp + DEQyip + 32y + 1)
vie=—viep—L vip—vip—1 v3p—vipp+1,
3B ;1) ¢. 56
x ( V3/2_V1/2+2 2)/3/2+1 (56)

Numerical results for the scaled polarizabilities Z*a(Z) for planar hydrogenic atoms with 1 < Z < 68, computed from
Eq. (56), are listed in Table I. The value of the inverse of the fine-structure constant used in calculations has been o~! =

137.035999 139 (from CODATA 2014 [22]). The data are displayed in the form which also shows an estimated error in last
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two digits of each entry, resulting from the declared one-standard-deviation uncertainty (equal to 31) in the last two digits of the
value of a~! given above.
It remains to investigate the expression in Eq. (56) in the quasirelativistic limit « Z < 1. Using the approximations

(aZ)Z 4
Ve k| — + O[(@Z2)7], (57)
2|k
/ ! (aZ)Z a al A 4
T'(ay, +a'ye +b) ~T(alk|+ad'|k'| + b) I—T m—i-m Yalk|+a'lk'|+b)|+ O(«xZ)7], (58)
where 1 (z) is the digamma function defined as
1 dI'(z)
7)) = —— , 59
VO =55k o9
and
vie=vip=—Lyp=—vip=Lyp-—rp+l 1\ __ 4
F 1) >~ 1+ 0[(aZ2)], 60
’ 2( V32— Vi +2, 2yp+1 + Ol@z)] (60)

after straightforward but somewhat lengthy algebraic manipulations one arrives at the following quasirelativistic estimate of the
polarizability:
ar = af}[1 - 2@2)*] + Ol(@2)*]. (61)
Here
g 2 a
b 12824
is the polarizability of the nonrelativistic planar one-electron atom in the ground state. The expression in Eq. (62) is identical to
the one derived independently, from purely nonrelativistic considerations, by several other authors [1,6—-10,15-17].

It is instructive to compare the formulas in Egs. (56), (61), and (62) with their counterparts for the three-dimensional one-
electron atom, which are provided in the Appendix.

(62)

APPENDIX: POLARIZABILITY OF A RELATIVISTIC THREE-DIMENSIONAL HYDROGENIC ATOM
IN THE GROUND STATE

The polarizability of the three-dimensional Dirac one-electron atom in the ground state is

oy = G 1+ Dy 4+ Dy + Bn +12) { _ 200 =T+ 71 +2)
VA 36 1+ D@y + By + 12) (12 — 1+ D@y + 22y + 1)
m—-n—-Lyp-n—-1,nr—-n+l,
X3F2< n—rn+2 2n+1 ’1>} (Al)

(cf. Ref. [23, Eq. (3.24)], Ref. [24, Eq. (16)], and Ref. [25, Eq. (3.42)]), with y, defined as in Eq. (10). The quasirelativistic limit
of the expression displayed in Eq. (A1) is

ar >~ o [1 = F(@2)’] + 0l@2)*], (A2)
where
9al
NR 0
_’ A3
oA = 2% (A3)

is the polarizability of the nonrelativistic three-dimensional hydrogenic atom in the ground state.
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