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Abstract
An Italian dominating function (IDF) on a graph G is a function f : V (G) →
{0, 1, 2} such that for every vertex v with f (v) = 0, the total weight of f assigned
to the neighbours of v is at least two, i.e.,

∑
u∈NG (v) f (u) ≥ 2. For any function

f : V (G) → {0, 1, 2} and any pair of adjacent vertices with f (v) = 0 and u with
f (u) > 0, the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u) − 1 and
fu→v(x) = f (x) whenever x ∈ V (G)\{u, v}. A secure Italian dominating function
on a graph G is defined as an IDF f which satisfies that for every vertex v with
f (v) = 0, there exists a neighbour u with f (u) > 0 such that fu→v is an IDF. The
weight of f is ω( f ) = ∑

v∈V (G) f (v). The minimumweight among all secure Italian
dominating functions on G is the secure Italian domination number of G. This paper
is devoted to initiating the study of the secure Italian domination number of a graph.
In particular, we prove that the problem of finding this parameter is NP-hard and we
obtain general bounds on it. Moreover, for certain classes of graphs, we obtain closed
formulas for this novel parameter.
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1 Introduction

The following approach to protection of a graph was described by Cockayne et al.
(2005). Suppose that one or more guards are stationed at some of the vertices of a
simple graph G and that a guard at a vertex can deal with a problem at any vertex in its
closed neighbourhood. Consider a function f : V (G) −→ {0, 1, 2} where f (v) is the
number of guards at v, and let Vi = {v ∈ V (G) : f (v) = i} for every i ∈ {0, 1, 2}.
We will identify a function f with the subsets V0, V1, V2 of V (G) associated with
it, and so we will use the unified notation f (V0, V1, V2) for the function and these
associated subsets. The weight of f is defined to beω( f ) = f (V (G)) = |V1|+2|V2|.
Informally, we say that G is protected under f if there is at least one guard available
to handle a problem at any vertex. Next we show some approaches to the protection
of graphs. The functions in each approach protect the graph according to a certain
strategy.

We assume that the reader is familiar with the basic concepts, notation and ter-
minology of domination in graphs. If this is not the case, we suggest the textbooks
(Haynes et al. 1998a, b). For the remainder of the paper, definitions will be introduced
whenever a concept is needed.

A Roman dominating function (RDF) is a function f (V0, V1, V2) such that for
every vertex v ∈ V0 there exists a vertex u ∈ NG(v) ∩ V2, where NG(v) denotes
the open neighbourhood of v. The Roman domination number, denoted by γR(G), is
the minimum weight among all RDFs on G. This concept of protection has historical
motivation (Stewart 1999) and was formally proposed by Cockayne et al. (2004). A
Roman dominating function with minimum weight γR (G) on G is called a γR (G)-
function. A similar agreement will be assumed when referring to optimal functions
(and sets) associated with other parameters used in the article.

A generalization of Roman domination, known as Italian domination, was intro-
duced by Chellali et al. (2016) under the name of Roman {2}-domination. The concept
was studied further in Henning and Klostermeyer (2017) and Klostermeyer and
MacGillivray (2019). An Italian dominating function (IDF) on a graph G is a function
f (V0, V1, V2) satisfying that f (NG(v)) = ∑

u∈NG (v) f (u) ≥ 2 for every v ∈ V0, i.e.,
f (V0, V1, V2) is an IDF if NG(v) ∩ V2 �= ∅ or |NG(v) ∩ V1| ≥ 2 for every v ∈ V0.
The Italian domination number, denoted by γI (G), is the minimum weight among all
IDFs on G. Since every γR (G)-function is an IDF, γR (G) ≥ γI (G).

For any function f (V0, V1, V2) and any pair of adjacent vertices v ∈ V0 and u ∈
V1 ∪ V2, the function fu→v is defined by fu→v(v) = 1, fu→v(u) = f (u) − 1 and
fu→v(x) = f (x) whenever x ∈ V (G)\{u, v}.
A vertex v ∈ V0 is said to be undefended under a function f (V0, V1, V2) if NG(v)∩

(V1 ∪ V2) = ∅. A function f (V0, V1, V2) is a weak Roman dominating function
(WRDF) if for every vertex v ∈ V0 there exists u ∈ N (v) ∩ (V1 ∪ V2) such that G
does not have undefended vertices under fu→v . Theweak Roman domination number,
denoted by γr (G), is the minimum weight among all WRDFs on G. This concept of
protection was introduced by Henning and Hedetniemi (2003) and studied further in
Chellali et al. (2014), Cockayne et al. (2003) and Valveny et al. (2019).

Notice that, every γI (G)-function is a WRDF, which implies that γI (G) ≥ γr (G).
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A secure dominating set is a dominating set S which satisfies that for every v ∈
V (G)\S there exists u ∈ S ∩ NG(v) such that (S\{u}) ∪ {v} is a dominating set as
well. The secure domination number, denoted by γs(G), is the minimum cardinality
among all secure dominating sets. Notice that S is a secure dominating set if and
only if there exists a WRDF f (V0, V1, V2) such that V1 = S and V2 = ∅. Hence,
γs(G) ≥ γr (G). This concept of protection was introduced by Cockayne et al. (2005),
and studied further in Merouane and Chellali (2015), Burger et al. (2008), Chellali
et al. (2014), Cockayne et al. (2003), Klostermeyer and Mynhardt (2008) and Valveny
and Rodríguez-Velázquez (2019).

Now, from the previous inequalities, we derive the following inequality chains.

γR (G) ≥ γI (G) ≥ γr (G) ≥ γ (G) and γs(G) ≥ γr (G) ≥ γ (G).

In this article we introduce the study of secure Italian domination in graphs. We
define a secure Italian dominating function (SIDF) to be an IDF f (V0, V1, V2) which
satisfies that for every vertex v ∈ V0 there exists u ∈ NG(v) ∩ (V1 ∪ V2) such that
the fu→v is an IDF on G. In particular, whenever fu→v is an IDF, we will say that u
is a moving neighbour of v. Obviously, if f (V0, V1, V2) is an SIDF, then every vertex
v ∈ V0 has at least one moving neighbour. The secure Italian domination number,
denoted by γ s

I (G), is the minimum weight among all SIDFs on G. In Fig. 1 we show
two examples of γ s

I (G)-functions.
By definition of secure Italian domination number we immediately deduce the

following inequalities.

γ s
I (G) ≥ γI (G) and γ s

I (G) ≥ γr (G).

The paper is structured as follows. In Sect. 2 we show that the general problem
of finding the secure Italian domination number of a graph is NP-hard. In Sect. 3 we
derive general bounds and discuss some extremal cases. In particular, we show that
any non-empty graph G satisfies max{γ2(G), γr (G)+ 1} ≤ γ s

I (G) ≤ γ (G)+ γs(G).
In Sect. 4 we obtain a formula for the secure Italian domination number of paths and

2

21

2

1
Fig. 1 The labels in these graphs define γ s

I (G)-functions
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cycles. Furthermore, we characterize all trees T satisfying γ s
I (T ) = γ (T ) + 1 or

γ s
I (T ) = γ (T ) + 2. Finally, Sect. 5 is devoted to the study of join graphs.

2 NP-hardness

This section is devoted to prove that for any graph G of order n there exists a graph
G ′ such that γ s

I (G
′) = γr (G) + n, showing that the problem of finding γ s

I (G
′) is as

difficult as the problem of finding γr (G). To begin with, we need to state the following
lemma. Let L(G) denotes the set of all leaves in G.

Lemma 1 If G is a graph with set of leaves L(G) �= ∅, then there exists a γ s
I (G)-

function f such that f (v) = 1 for every v ∈ L(G).

Proof Let f be a γ s
I (G)-function, v ∈ L(G) and s the support of v. If f (v) = 2, then

f (s) = 0, by the minimality of ω( f ). In such a case, f ′ = fv→s is a γ s
I (G)-function

with f ′(v) = 1. Now, if f (v) = 0, then f (s) = 2 and s is a moving neighbour only
of v. Hence, f ′′ = fs→v is a γ s

I (G)-function with f ′′(v) = 1. Therefore, the result
follows. ��

Let G be a graph with vertex set V (G) = {v1, . . . , vn} and let H be a rooted
graph. The rooted product of G and H is the graph G ◦ H constructed from G and
n copies H1, H2, . . . , Hn of H , by identifying vi with the root vertex of Hi for every
i ∈ {1, . . . , n}.
Theorem 2 For any graph G of order n, γ s

I (G ◦ K2) = n + γr (G).

Proof Let h be a γr (G)-function and h′ the function defined on G ◦K2 in the way that
h′(x) = h(x) if x ∈ V (G) and h′(x) = 1 otherwise. Since h′ is an SIDF on G ◦ K2,
we conclude that γ s

I (G ◦ K2) ≤ ω(h′) = n + ω(h) = n + γr (G).

We show that γ s
I (G◦K2) ≥ n+γr (G).Let f (V0, V1, V2) be a γ s

I (G◦K2)-function.
By Lemma 1 we can assume that f (v) = 1 for every leaf v. Let g(W0,W1,W2) be
the restriction of f to V (G). That is, Wi = Vi ∩ V (G) for i ∈ {0, 1, 2}. Notice that
W0 = V0 and W2 = V2. We claim that g is a WRDF on G. We have to show that
for every x ∈ W0 there exists y ∈ W1 ∪ W2 such that G does not have undefended
vertex under gy→x . We know that for every x ∈ V0 = W0 there exists y ∈ V1 ∪ V2
such that fy→x (V ′

0, V
′
1, V

′
2) is an IDF on G ◦ K2, and also the restriction of fy→x to

V (G) equals gy→x . Thus, y has to belong toW1 ∪W2 and for every z ∈ V0\{x} either
|NG◦K2(z)∩V ′

1| ≥ 2or |NG◦K2(z)∩V ′
2| ≥ 1,which implies that |NG(z)∩V ′

1∩V (G)| ≥
1 or |NG(z) ∩ V ′

2 ∩ V (G)| ≥ 1. Consequently, G does not have undefended vertex
under gy→x . Therefore, γ s

I (G ◦ K2) = ω( f ) = |V1| + 2|V2| = n + |W1| + 2|W2| =
n + ω(g) ≥ n + γr (G). ��

Our next result shows that we can use rooted product graphs to study the problem
of finding the secure Italian domination number of a graph. In this case, the main tool
is Theorem 2. It is well known that the weak Roman dominating set problem is an
NP-complete decision problem (Henning and Hedetniemi 2003), i.e., given a positive
integer k and a graph G, the problem of deciding if G has a weak Roman dominating
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set D of cardinality |D| ≤ k is NP-complete. Hence, the optimization problem of
computing the weak Roman domination number of a graph is NP-hard.

Corollary 3 The problem of computing the secure Italian domination number of a
graph is NP-hard.

Proof By Theorem 2, for any graph G of order n we have that γ s
I
(G ◦ K2) = n +

γr (G). Hence, the problem of computing γr (G) is equivalent to the problem of finding
γ s
I
(G ◦ K2), which implies that the general problem of computing the secure Italian

domination number of a graph is NP-hard. ��
According to Corollary 3, it would be desirable to obtain tight bound or closed

formulas for the secure Italian domination number of a graph. This is precisely the
aim of the next sections.

3 General bounds and extremal cases

To begin this section, we proceed to characterize the graphs achieving the following
trivial bounds.

Remark 4 For any graph G of order n ≥ 2,

2 ≤ γ s
I (G) ≤ n.

Obviously, when characterizing the graphs achieving the bounds we can restrict
ourselves to the case of connected non-trivial graphs, and from that characterization
it is easy to deduce the result for non-connected graphs.

Theorem 5 Let G be a connected non-trivial graph of order n. Then the following
statements hold.

(i) γ s
I (G) = 2 if and only if G ∼= Kn;

(ii) γ s
I (G) = n if and only if G ∼= K1,n−1.

Proof If G ∼= Kn, then obviously γ s
I (G) = 2. Suppose γ s

I (G) = 2 and G � Kn .

Let f be a γ s
I (G)-function and u, v two non-adjacent vertices. If f (u) = 2, then

f (NG [v]) = 0, which is a contradiction. Assume that f (u) = 0. Hence, either u is
adjacent to two vertices x, y where f (x) = f (y) = 1 or u is adjacent to a vertex z
such that f (z) = 2. Thus, since γ s

I (G) = 2, in both cases f (v) = 0. In the first case,
neither fx→u nor fy→u is an IDF on G, which is a contradiction. In the second case,
fz→u is not an IDF on G, which is a contradiction again. Now, if f (u) = f (v) = 1,
then for any vertex x ∈ V (G)\{u, v} = NG(u) ∩ NG(v) we have that f (x) = 0 and
neither fu→x nor fv→x is an IDF on G, which is a contradiction again. Therefore, (i)
follows.

If G ∼= K1,n−1, then it is easy to observe that γ s
I (G) = n. Conversely, suppose

γ s
I (G) = n and there are two vertices, u, v such that dG(u) ≥ 2 and dG(v) ≥ 2; let us

choose u, v such that uv ∈ E(G). We can define an SIDF g on G such that g(u) = 0
and g(x) = 1 for any x ∈ V (G)\{u}. Notice that ω(g) = n− 1 < n = γ s

I (G), which
is a contradiction. Therefore, (ii) follows. ��
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For any vertex x ∈ V (G) and any γ s
I (G)-function f (V0, V1, V2) such that f (x) =

2, we define the following set associated with x and f ,

Pf (x) = {y ∈ V0 : NG(y) ∩ (V1 ∪ V2) = {x}}.

The subgraph of G induced by a set S ⊆ V (G) will be denoted by 〈S〉. From the
definition of SIDF on G we have the following straightforward observation.

Observation 6 If there exists a vertex x ∈ V (G) and a γ s
I (G)-function f such that

f (x) = 2 and Pf (x) �= ∅, then 〈Pf (x)〉 is a clique.
The k-domination number of a graph G, denoted by γk(G), is the cardinality of a

smallest set of vertices such that every vertex not in the set is adjacent to at least k
vertices in the set. Such sets are called k-dominating sets. Since every 2-dominating
set S is a secure dominating set, and the function f (V0, V1 = S, V2 = ∅) is an IDF,
we conclude that

γ2(G) ≥ γs(G) and γ2(G) ≥ γI (G).

From the inequality γ2(G) ≥ γs(G) and the lower bound stated by the next theorem,
we will be able to deduce that the expected inequality γ s

I (G) ≥ γs(G) holds for any
graph G.

Theorem 7 For any non-empty graph G,

max{γ2(G), γr (G) + 1} ≤ γ s
I (G) ≤ γ (G) + γs(G).

Proof Let D be a γ (G)-set and D′ a γs(G)-set. Let us construct a function f from D
and D′ such that

f (x) =
⎧
⎨

⎩

2 if x ∈ D ∩ D′,
1 if x ∈ (D ∪ D′)\(D ∩ D′),
0 otherwise.

We claim that f is an SIDF on G. Obviously, f is an IDF on G. For every vertex
x ∈ V (G)\(D ∪ D′) there exists y ∈ D′ such that x is protected by y under D′. We
will show that fy→x is an IDF on G. Let x ′ be a vertex such that fy→x (x ′) = 0. If
x ′ /∈ NG(y), then we are done as f is an IDF on G.Assume x ′ ∈ NG [y].We consider
two cases.

Case 1 x ′ ∈ NG(x). If y ∈ D ∩ D′, then fy→x (x) = fy→x (y) = 1. Otherwise
there exists z ∈ NG(x ′) ∩ D such that fy→x (x) = fy→x (z) = 1.

Case 2 x ′ /∈ NG(x). In this case, there exists y′ ∈ (D′\{y}) ∩ NG(x ′) and z ∈
NG(x ′)∩D. If y′ = z, then fy→x (y′) = 2,otherwise fy→x (y′) ≥ 1 and fy→x (z) ≥ 1.

According to the two cases above we can conclude that fy→x is an IDF on G.

Therefore, f is an SIDF, and so γ s
I (G) ≤ ω( f ) = |D| + |D′| = γ (G) + γs(G).

Now we prove the lower bound γ s
I (G) ≥ γ2(G). Let g(V0, V1, V2) be a γ s

I (G)-
function. Notice that if V2 = ∅, then V1 is a 2-dominating set and so γ2(G) ≤
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|V1| = γ s
I (G). Assume that V2 �= ∅. Let x ∈ V2 and notice that if Pg(x) �= ∅, then the

subgraph induced by Pg(x) is a clique.With this fact inmind, for every x ∈ V2 such that
Pg(x) �= ∅we fix one vertex x ′ ∈ Pg(x), and let Vg be the set of these representatives.
Now, if u ∈ V0 and u does not belong to any Pg(x), then |NG(u) ∩ (V1 ∪ V2)| ≥ 2,
while if u ∈ Pg(x) for some x ∈ V2, then x, x ′ ∈ NG [u]. Thus S = V1 ∪ V2 ∪ Vg is a
2-dominating set ofG. Therefore, γ2(G) ≤ |S| = |V1|+|V2|+|Vg| ≤ |V1|+2|V2| =
γ s
I (G) and the lower bound γ s

I (G) ≥ γ2(G) follows.
Finally, we proceed to prove the lower bound γ s

I (G) ≥ γr (G) + 1. In this case,
let h(W0,W1,W2) be a γ s

I (G)-function. If γ s
I (G) = |V (G)|, then we are done,

as γr (G) ≤ |V (G)| − 1 for every non-empty graph. Hence, we fix x ∈ W0 and
y ∈ W1 ∪ W2 such that y is a moving neighbour of x . We now construct a weak
Roman dominating function h′(W ′

0,W
′
1,W

′
2), which is defined in two different ways

depending on whether y ∈ W2 or not.
Case 1′ y ∈ W2. In this case, we define the function h′ by h′(y) = 1 and h′(z) =

h(z) for every z ∈ V (G)\{y}. Since h is an IDF, G does not have undefended vertices
under h′, i.e., W1 ∪ W2 = W ′

1 ∪ W ′
2 is a dominating set. Moreover, since for every

v ∈ W0 = W ′
0, there exits u ∈ W1 ∪ W2 such that hu→v is an IDF, we conclude that

G does not have undefended vertices under h′
u→v . Therefore, h

′ is a weak Roman
dominating function on G.

Case 2′ y ∈ W1. In this case, we define the function h′ by W ′
0 = W0 ∪ {y},

W ′
1 = W1\{y} and W ′

2 = W2. Since h and hy→x are IDFs, we can conclude that
G does not have undefended vertices under h′. Moreover, for every v ∈ W0, there
exits u ∈ W1 ∪ W2 such that hu→v is an IDF. Hence, if u �= y, then G does not
have undefended vertices under h′

u→v . Suppose that y is the only moving neighbour
of v ∈ W0 under h and there exists w ∈ W ′

0 which is undefended under the function
h′
x ′→v

, where x ′ ∈ NG(v) ∩ (W1 ∪ W2)\{y}. In such a case, h′(x ′) = h(x ′) = 1,
w /∈ NG(v) and NG(w) ∩ (W1 ∪ W2) = {x ′, y}. Thus, hy→v(NG(w)) = h(x ′) = 1,
which is a contradiction. Finally, it is readily seen that the set X = NG(y)∩(W1∪W2)

is not empty and G does not have undefended vertices under the function h′
z→y for

every z ∈ X . Therefore, h′ is a weak Roman dominating function on G.
According to the two cases above, γ s

I (G) = ω(h) = ω(h′) + 1 ≥ γr (G) + 1.
Therefore, the proof is complete. ��

Next we show that the bounds above are tight.

• If G is the graph shown in Fig. 2 or the graph shown in Fig. 1 on the right, then
γ s
I (G) = γr (G) + 1.

• If G ∼= K1,n−1, G ∼= Kn or G is the graph shown in Fig. 1 on the left, then
γ s
I (G) = γ (G) + γs(G).

• If G is a corona graph H � Kp for p ≥ 2, then γs(G) = γ (G) = |V (H)| and
γ2(G) = 2|V (H)|, which implies that γ2(G) = γ s

I (G) = γs(G) + γ (G).

In summary, we can state the following domination chains.

Remark 8 For any non-empty graph G,

(a) γr (G) ≤ min{γI (G), γs(G)} ≤ max{γI (G), γs(G)} ≤ γ2(G) ≤ γ s
I (G) ≤

γ (G) + γs(G).
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1 1
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1

Fig. 2 A graph with γ s
I (G) = γr (G) + 1 = 7 and γ2(G) = γI (G) = γs (G) = γr (G) = 6

(b) γr (G) + |γI (G) − γs(G)| ≤ γ2(G) ≤ γ s
I (G) ≤ γ (G) + γs(G).

(c) γ (G) + 1 ≤ γr (G) + 1 ≤ γ s
I (G) ≤ γ (G) + γs(G).

For any set S ⊆ V (G) and any pair of different vertices x, y ∈ S, we define the
following set.

Sxy = {v ∈ V (G)\S : NG(v) ∩ S = {x, y}}.

Theorem 9 If for every γ2(G)-set S there exist two vertices x, y ∈ S such that the set
Sxy contains two non-adjacent vertices, then

γ s
I (G) ≥ γ2(G) + 1.

Proof We claim that if γ s
I (G) = γ2(G), then there exists a γ2(G)-set S such that for

every x, y ∈ S either Sxy = ∅ or 〈Sxy〉 is a clique.
Let g(V0, V1, V2) be a γ s

I (G)-function and S the 2-dominating set constructed
in the proof of Theorem 7, i.e., if V2 = ∅, then S = V1, while if V2 �= ∅, then
S = V1 ∪ V2 ∪ Vg . Since γ s

I (G) = γ2(G), we have that S is a γ2(G)-set. Suppose
to the contrary that there exist two different vertices x, y ∈ S and two different non-
adjacent vertices u, v ∈ V0 such that u, v ∈ Sx,y . We differentiate the following
cases.

Case 1 x, y ∈ V1. Since u and v are not adjacent, neither gx→u nor gy→u is an IDF,
which is a contradiction, as g is a γ s

I (G)-function.
Case 2 x ∈ V1 and y ∈ V2. Since 〈Sxy〉 is not a clique and g is a γ s

I (G)-function,
Pg(y) = ∅.Hence, |Vg| < |V2|,which implies thatγ2(G) = |S| = |V1|+|V2|+|Vg| <

|V1| + 2|V2| = γ s
I (G), and this is a contradiction.

Case 3 x, y ∈ V2. Since Sxy �= ∅ and g is a γ s
I (G)-function, Pg(x) = ∅ or

Pg(y) = ∅. Hence, |Vg| < |V2| and, as in Case 2, we arrive to a contradiction.
Case 4 x ∈ Vg . If x ∈ Pg(y), then Sxy ⊆ Pg(y) and 〈Pg(y)〉 is a clique, which is a

contradiction. Now, if y ∈ Vg\{x}, then Sxy = ∅, which is a contradiction. Finally, if
y ∈ V1 ∪ V2 and x /∈ Pg(y), then u, v ∈ Pg(y), which is a contradiction, as 〈Pg(y)〉
is a clique.

According to the four cases above, the proof of our claim is complete. Therefore, if
for every γ2(G)-set S there exist two vertices x, y ∈ S such that the set Sxy contains
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two non-adjacent vertices, then γ s
I (G) �= γ2(G), and by Theorem 7 we conclude that

γ s
I (G) ≥ γ2(G) + 1. ��
The bound above is tight. To see this we can take, for instance, the graph shown in

Fig. 1, on the right. Now, in order to show that the converse of Theorem 9 does not hold,
we can consider the graph shown in Fig. 1, on the left, where γ s

I (G) = 5 = γ2(G)+1
and the γ2(G)-set S consisting of all vertices of degree five satisfies that 〈Sxy〉 is a
clique for every x, y ∈ S. Another example in the same direction is the graph sown
in Fig. 2, where γ s

I (G) = 7 = γ2(G) + 1 and the γ2(G)-set S consisting of all
black-coloured vertices, except the central one, satisfies Sxy = ∅ for every x, y ∈ S.

4 The particular case of cycles and trees

Next we obtain closed formulas for the secure Italian domination number of cycles
and paths. For this purpose, we shall need the following lemma.

Lemma 10 If G ∼= Pn or G ∼= Cn, then there exists a γ s
I (G)-function f (V0, V1, V2)

such that V2 = ∅.

Proof It readily seen that the result follows for n ≤ 5. Assume that n ≥ 6. Let
f (V0, V1, V2) be a γ s

I (G)-function such that |V2| is minimum among the functions
satisfying Lemma 1. Suppose that there exists x ∈ V (G) such that f (x) = 2. As
assumed, x is not a leaf. Let NG(x) = {y, z}. If f (y) ≥ 1, then we can construct a
γ s
I (G)-function g(W0,W1,W2) where g(x) = 1, g(z) = max{1, f (z)} and g(v) =
f (v) for every v ∈ V (G)\{x, z}, which is a contradiction, as |W2| < |V2|. Hence,
f (y) = f (z) = 0. Let {y′} = N (y)\{x} and {z′} = N (z)\{x}. Notice that f (y′) ≥ 1
or f (z′) ≥ 1, otherwise f is not a γ s

I (G)-function. Now, if f (y′) ≥ 1, then x is a
moving neighbour of z, and so we can construct a γ s

I (G)-function g(W0,W1,W2)

where g(x) = g(z) = 1 and g(v) = f (v) for every v ∈ V (G)\{x, z}, which again is
a contradiction, as |W2| < |V2|. ��
Proposition 11 For any integer n ≥ 3,

γ s
I (Cn) =

⌈
3n

5

⌉

.

Proof The cases n ∈ {3, 4} are easy to check. Hence, from now on we assume that
n ≥ 5. Let V (Cn) = {v0, v1, . . . , vn−1}, where consecutive vertices are adjacent.
First we show that γ s

I (Cn) ≤ � 3n
5 � by constructing a secure Italian dominating

function f (V0, V1,∅) of weight ω( f ) = � 3n
5 �. For n ≡ i (mod 5) we define

l = n−i
5 and consider a partition �l of V (Cn) defined as follows. If i = 0, then

�l = {X0, . . . , Xl−1} and if i ≥ 1, then �l = {X0, . . . , Xl−1, Xl}. For any j < l,
the set X j = {v5 j , v5 j+1, . . . , v5 j+4} contains five consecutive vertices of Cn , while
Xl contains the remaining i consecutive vertices.

For every 0 ≤ j ≤ l − 1, let f (v5 j ) = 1, f (v5 j+1) = 0, f (v5 j+2) = 1,
f (v5 j+3) = 1, f (v5i+4) = 0. We can see these weights as l consecutive sequences
of numbers 10110. The weight of the vertices in Xl is assigned as follows.
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– If n ≡ 1 (mod 5), then f (vn−1) = 1.
– If n ≡ 2 (mod 5), then f (vn−2) = f (vn−1) = 1.
– If n ≡ 3 (mod 5), then f (vn−2) = 0 and f (vn−3) = f (vn−1) = 1.
– If n ≡ 4 (mod 5), then f (vn−3) = 0 and f (vn−4) = f (vn−2) = f (vn−1) = 1.

The weight of f can be expressed in terms of n ≡ i (mod 5) as follows.

– If i = 0, then ω( f ) = 3n
5 = � 3n

5 �.
– If i = 1 or i = 2, the ω( f ) = 3(n−i)

5 + i = � 3n
5 �.

– If i = 3 or i = 4, the ω( f ) = 3(n−i)
5 + i − 1 = � 3n

5 �.
Notice that if f (x) = 0 for x ∈ V (Cn), then x belongs to a sequence of consecutive
vertices axbc with sequence of weights 1011, or belongs to a sequence of consecutive
vertices abxc with sequence of weights 1101. In both cases, fb→x is an IDF. Hence,
f is an SIDF and so γ s

I (Cn) ≤ ω( f ) = � 3n
5 �.

Now we show that γ s
I (Cn) ≥ � 3n

5 �. Let f (V0, V1, V2) be a γ s
I (Cn)-function which

satisfies Lemma 10. Since V2 = ∅, we have that V1 is a 2-dominating set, and so for
any vertex vi ∈ V0, we have that f (vi−1) = f (vi+1) = 1. Moreover, if vi−1 is the
moving neighbour of vi , then f (vi−2) = 1, otherwise the moving neighbour of vi is
vi+1 and so f (vi+2) = 1. Thus, for every sequence of five consecutive vertices, at
most two of them can belong to V0, i.e.,

ψi = f (vi−2)+ f (vi−1)+ f (vi )+ f (vi+1)+ f (vi+2) ≥ 3 for every i ∈ {0, . . . , n}.
(1)

Hence,

5γ s
I (Cn) = 5ω( f ) =

n−1∑

i=0

ψi ≥ 3n.

Therefore, γ s
I (Cn) ≥ � 3n

5 �. ��
Let G be a graph and e ∈ E(G). The edge-deletion subgraph G − e of G is defined

to be G − e = (V (G), E(G)\{e}). Observe that every γ s
I (G − e)-function is an SIDF

on G, which implies the following result.

Theorem 12 For any spanning subgraph H of a graph G,

γ s
I (G) ≤ γ s

I (H).

From Proposition 11 and Theorem 12 we derive the following consequence.

Theorem 13 For any Hamiltonian graph G of order n,

γ s
I (G) ≤

⌈
3n

5

⌉

.

As an example of graph G � Cn where the bound above is achieved, we take the
graph shown in Fig. 1, on the left.
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Proposition 14 For any non-trivial path Pn,

γ s
I (Pn) =

⌈
3n + 2

5

⌉

.

Proof The cases where n ≤ 4 are easy to check. Hence, from now on we assume
that n ≥ 5. Let f (V0, V1, V2) be a γ s

I (Pn)-function which satisfies Lemma 10. In
this proof we adapt the procedure developed in the proof of Proposition 11 to the
case of paths. Thus, we assume that V (Pn) = {v0, v1, . . . , vn−1}, where consecutive
vertices are adjacent. From Eq. (1) we know that ψi ≥ 3 for every i ∈ {0, . . . , n}.
In this case, the weight of the leaves has to be one, i.e., f (v0) = f (vn−1) = 1.
Hence, the sequence f (v0) f (v1) f (v2) f (v3) has to be 1011 or 1101. Analogously,
the sequence f (vn−4) f (vn−3) f (vn−2) f (vn−1) has to be 1101 or 1011. In all cases,
ψ1 = f (v3)+ f (v2)+ f (v1)+ f (v0)+ f (vn−1) ≥ 4 andψn−2 = f (v0)+ f (vn−1)+
f (vn−2) + f (vn−3) + f (vn−4) ≥ 4. Hence,

5γ s
I (Pn) = 5ω( f ) =

n−1∑

i=0

ψi ≥ 3n + 2,

which implies that γ s
I (Pn) ≥ � 3n+2

5 �.
To conclude the proofwe only need to construct an SIDF as described in the proof of

Proposition 11, with the only difference that, for n ≡ 0 (mod 5)we take f (vn−1) = 1
and for n ≡ 3 (mod 5) we take f (vn−2) = 1. In this case, the weight of f can be
expressed as follows.

– If n ≡ 0 (mod 5), then ω( f ) = 3n
5 + 1 = � 3n+2

5 �.
– If n ≡ 1 (mod 5), the ω( f ) = 3(n−1)

5 + 1 = � 3n+2
5 �.

– If n ≡ 2 (mod 5), the ω( f ) = 3(n−2)
5 + 2 = � 3n+2

5 �.
– If n ≡ 3 (mod 5), the ω( f ) = 3(n−3)

5 + 3 = � 3n+2
5 �.

– If n ≡ 4 (mod 5), the ω( f ) = 3(n−4)
5 + 3 = � 3n+2

5 �.
Therefore, γ s

I (Pn) ≤ ω( f ) = � 3n+2
5 �. ��

From Remark 8 (c) we learned that γ s
I (G) ≥ γ (G) + 1 for every non-empty graph

G. We proceed to characterize the trees T satisfying the equalities γ s
I (T ) = γ (T )+1

or γ s
I (T ) = γ (T ) + 2. We begin with the following observation.

Observation 15 If T is a tree of order n ≥ 3, then always is possible to choose a
γ (T )-set not containing any leaf of T .

From Observation 15 and Lemma 1 we have the following lemma.

Lemma 16 Let T be a tree. If γ s
I (T ) = γ (T )+1, there there exists at most one strong

support s in T and s is the neighbour of exactly two leaves.

We are now ready to prove the following characterization.
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Theorem 17 γ s
I (T ) = γ (T ) + 1 if and only if T ∼= P2 or T ∼= P4.

Proof If T ∼= P2 or T ∼= P4, then obviously γ s
I (T ) = γ (T ) + 1.

Let n be the order of T . If n ≤ 4, then the only trees with γ s
I (T ) = γ (T ) + 1 are

P2 and P4, as desired. From now on, suppose that T is a tree of minimum order n ≥ 5
among the trees satisfying the equality γ s

I (T ) = γ (T ) + 1. Obviously, if T ′ is a tree
of order less than n such that γ s

I (T
′) = γ (T ′)+1, then T ′ is either P2 or P4. Let f be

a γ s
I (T )-function satisfying Lemma 1. Let P = (v0, . . . , vl) be a longest path in T . If

l ≤ 2, then T ∼= K1,n−1, which is contradiction with Lemma 16. Thus, l ≥ 3. Assume
first that dT (v1) > 2. Then, from Lemma 16, dT (v1) = 3, and so there exist two
leaves x, v0 adjacent to v1. Let T1 = T − {v0, x, v1}. Since f (v0) = f (x) = 1 and
f (v1)+ f (v2) ≥ 1, we deduce that γ s

I (T1)+2 ≤ γ s
I (T ) = γ (T )+1 ≤ γ (T1)+1+1,

what gives γ s
I (T1) ≤ γ (T1), which is a contradiction with Remark 8 (c). Hence,

dT (v1) = 2. Now, let T2 = T − {v0, v1}. Since f (v0) = 1 and f (v1) + f (v2) ≥ 1,
we deduce that γ s

I (T2) + 1 ≤ γ s
I (T ) = γ (T ) + 1 ≤ γ (T2) + 1 + 1, what gives

γ s
I (T2) ≤ γ (T2) + 1. Thus, Remark 8 (c) leads to γ s

I (T2) = γ (T2) + 1, and by
assumption T2 ∼= P2 or T2 ∼= P4. If T2 ∼= P2, then T ∼= P4, which is a contradiction, as
n ≥ 5. If T2 ∼= P4, then T ∼= P6 or T ∼= P3�K1, but in both cases γ s

I (T ) > γ (T )+1,
which is a contradiction again. ��

From the result above we conclude that if T � P2 and T � P4, then γ s
I (T ) ≥

γ (T ) + 2. Below we give the full characterization of the extremal trees. First we
define a familyR of trees. A spider is a graph obtained from the star K1,t for t ≥ 1 by
subdividing each edge of the star exactly once. Obviously, if T is a spider with t = 1,
then T ∼= P3. If t ≥ 3 and we subdivide once exactly t − 1 of the edges of a star K1,t ,
then we obtain a tree called slightly wounded spider. We say that T ∈ R if T is a
spider, a slightly wounded spider with t ≥ 3, a path P6, a path P7, a corona P4 � K1,
a star K1,3 with one subdivided edge (we denote it by T∗) or a star K1,3 with one edge
subdivided once and one edge subdivided twice (for simplicity we denote it by T∗∗).

Theorem 18 Let T be a tree. Then γ s
I (T ) = γ (T ) + 2 if and only if T ∈ R.

Proof If T ∈ R, then obviously γ s
I (T ) = γ (T ) + 2. To prove the converse, we

use induction on n, the number of vertices of a tree. The smallest tree such that
γ s
I (T ) = γ (T ) + 2 is T ∼= P3, which is a spider, so T ∈ R. Assume that n ≥ 4 and

if T ′ is a tree with |V (T ′)| < n and γ s
I (T

′) = γ (T ′) + 2, then T ′ ∈ R.

Let T be a tree of order n ≥ 4 such that γ s
I (T ) = γ (T ) + 2, and let f be a γ s

I (T )-
function which satisfies Lemma 1 and the values of f on supports on the longest paths
is as small as possible. Notice that f (x) = 0 for every support x of degree two. Let
P = (v0, . . . , vl) be a longest path in T . We differentiate some cases according to the
degree of v1 and v2.

Case 1 dT (v1) > 2. Let T ′ = T −{v0}. Since v1 is a support of T ′, the restriction of
f to T ′ is an SIDF. Thus, γ s

I (T
′) ≤ γ s

I (T )− 1 and γ (T ′) = γ (T ). From our assump-
tion, γ s

I (T ) = γ (T ) + 2, which implies that γ s
I (T

′) = γ (T ′) + 1. By Theorem 17,
T ′ ∼= P2 or T ′ ∼= P4. And since dT (v1) > 2, the only possibility is T ′ ∼= P4, where
v1 is a support of P4. This implies that T ∼= T∗ ∈ R.

Case 2 dT (v1) = 2. Let T ′ = T − {v0, v1}. From the choice of f we have
f (v0) = 1 and f (v1) = 0. Thus, the restriction of f to T ′ is an SIDF, which implies
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that γ s
I (T

′) ≤ γ s
I (T ) − 1 = γ (T ) + 1. Moreover, γ (T ′) + 1 ≤ γ s

I (T
′), by Remark 8.

Hence,
γ (T ′) + 1 ≤ γ s

I (T
′) ≤ γ (T ) + 1. (2)

With this facts in mind, we consider the following three subcases, depending on the
degree of vertex v2.

Subcase 2.1 dT (v2) > 2 and there exists a vertex s ∈ NT (v2)\{v1, v3} which is a
support. Since s ∈ NT (v2) is a support, γ (T ′) = γ (T )−1. Hence, by Eq. (2) we have
that γ (T ′)+1 ≤ γ s

I (T
′) ≤ γ (T )+1 = γ (T ′)+2, and so either γ s

I (T
′) = γ (T ′)+1

or γ s
I (T

′) = γ (T ′) + 2. Observe that since there exists a vertex s ∈ NT (v2)\{v1, v3}
which is a support vertex, it follows that |V (T ′)| ≥ 5 (because of the diametral
path P). Using this fact, we deduce that γ s

I (T
′) = γ (T ′) + 1 cannot occur. So, if

γ s
I (T

′) = γ (T ′) + 2, then by induction hypothesis we have that T ′ ∈ R. If T ′ is
a spider or a slightly wounded spider, then T is also a spider or a slightly wounded
spider, respectively, so T ∈ R. Since s /∈ {v1, v3}, T ′ � T∗ and, in the remaining
cases it is easy to check that γ s

I (T ) ≥ γ (T ) + 3, which is a contradiction.
Subcase 2.2 dT (v2) > 2 and every vertex in NT (v2)\{v1, v3} is a leaf. Since v2 is a

support in T ′, γ (T ′) = γ (T )−1. Thus, as in Subcase 2.1, either γ s
I (T

′) = γ (T ′)+1
or γ s

I (T
′) = γ (T ′) + 2. If γ s

I (T
′) = γ (T ′) + 1, then from Theorem 17 and from the

fact that dT ′(v2) ≥ 2, we deduce that T ′ = P4 and T is a slightly wounded spider,
so T ∈ R. Now, if γ s

I (T
′) = γ (T ′) + 2, then by induction hypothesis, T ′ ∈ R.

If T ′ is a spider with t = 1, then T = T∗ ∈ R. If T ′ is a slightly wounded spider
with t = 3, then T = P4 � K1 ∈ R. In the remaining cases it is easy to check that
γ s
I (T ) ≥ γ (T ) + 3, which is a contradiction.
Subcase 2.3 dT (v2) = 2.Obviously, γ (T ′) ≥ γ (T )−1. Thus, by Eq. (2), γ (T ′)+

1 ≤ γ s
I (T

′) ≤ γ (T ′) + 2. By Theorem 17, if γ s
I (T

′) = γ (T ′) + 1, then T ′ ∼= P2
or T ′ ∼= P4. In the first case, T ∼= P4, which is a contradiction, as γ s

I (P4) = 3 �=
γ (P4) + 2. In the second case T ∼= P6 ∈ R. Now, if γ s

I (T
′) = γ (T ′) + 2, then by

induction hypothesis, T ′ ∈ R. If T ′ is a spider with t = 2, then T ∼= P7 ∈ R. If
T ′ ∼= T∗ and v2 is a leaf of T ′ adjacent to a central vertex, then T ∼= T∗∗ ∈ R. In the
remaining cases it is easy to check that γ s

I (T ) ≥ γ (T ) + 3, which is a contradiction.
��

5 The particular case of join graphs

To begin this section we consider the class of join graphs of the form Kn + G.

Theorem 19 For any non-complete graph G and any integer n ≥ 2, the following
statements hold.

(i) 3 ≤ γ s
I (K1 + G) ≤ min{γ (G) + 2, γr (G) + 1}.

(ii) γ s
I (Kn + G) = 3.

Proof Since G is a non-complete graph, K1 + G is a non-complete graph, and so
Theorem 5 leads to γ s

I (K1 + G) ≥ 3.
Now, let S be a γ (G)-set. It is immediate that the function f (V0, V1, V2), defined

on K1 + G by V2 = V (K1) and V1 = S, is an SIDF, which implies that γ s
I (K1 +
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G) ≤ ω( f ) = γ (G) + 2. To conclude the proof of (i) we take a γr (G)-function
g(X0, X1, X2) and define a function h(Y0,Y1,Y2) on K1 + G by Y1 = X1 ∪ V (K1)

and V2 = X2. Obviously, h is an SIDF and so γ s
I (K1 + G) ≤ ω(h) = γr (G) + 1.

Finally, if n ≥ 2, then Kn + G = K1 + (Kn−1 + G). Since γ (K1 + G) = 1, from
(i) we deduce (ii). ��

From the result above we deduce the following corollary.

Corollary 20 If γr (G) = 2, then γ s
I (K1 + G) = 3.

Next we consider the class of join graphs G + H where neither G nor H is a
complete graph.

Theorem 21 For any non-complete graphs G and H,

3 ≤ γ s
I (G + H) ≤ min{6, γ s

I (G), γ s
I (H)}.

Proof The lower bound is a consequence of Theorem 5, as G + H is a non-complete
graph. Now, since G and H are non-trivial graphs, we can construct a function
f (V0, V1, V2) on G + H by taking two vertices u, v ∈ V (G) and two vertices
x, y ∈ V (H), and defining V2 = {u, x} and V1 = {v, y}. It is readily seeing that
f is an SIDF, and so γ s

I (G + H) ≤ ω( f ) = 6. To conclude the proof we only need
to observe that γ s

I (G) ≥ 3 and so, from any γ s
I (G)-function g(X0, X1, X2), we can

construct an SIDF g′(Y0,Y1,Y2) on G + H by Y0 = X0 ∪ V (H), Y1 = X1 and
Y2 = X2. Therefore, γ s

I (G + H) ≤ ω(g′) = γ s
I (G). ��

Now we consider some particular cases.

Theorem 22 The following statements hold.

(a) If γ s
I (G) = 3, then γ s

I (G + H) = 3 for every graph H.
(b) If γ (G) = γ (H) = 2, then 3 ≤ γ s

I (G + H) ≤ 4.
(c) If γr (G) = 2 and γr (H) = 2, then γ s

I (G + H) = 3.
(d) If γr (G) ≥ 3 and H is a non-complete graph, then 3 ≤ γ s

I (G + H) ≤
min{6, γr (G) + 1}.

Proof If H is a non-complete graph, then we deduce (a) from Theorem 21. Now, if
H ∼= Kn , n ≥ 2 then we apply Theorem 19 (ii), while for H ∼= K1 we apply Theorems
7 and 19 (i).

In the case of item (b), we only need to observe that for any γ (G)-set S and any
γ (H)-set S′ we can define an SIDF f (V0, V1, V2) on G + H , as V1 = S ∪ S′ and
V2 = ∅. Thus, 3 ≤ γ s

I (G + H) ≤ ω( f ) = 4.
Now, assume that γr (G) = 2 and γr (H) = 2. Let v ∈ V (H) be a vertex of a

positive weight under any γr (H)-function. Let f ′(W0,W1,W2) be a γr (G)-function.
We define a function f ′′(U0,U1,U2) on G + H by U1 = W1 ∪ {v} and U2 = W2.

Notice that either v is a universal vertex of H or 〈V (H)\N [v]〉 is a clique. Hence, f ′′
is an SIDF on G + H . Therefore, 3 ≤ γ s

I (G + H) ≤ ω( f ′′) = 3, concluding that (c)
follows.
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2

1

2

1

1

Fig. 3 γ s
I (K1 + P5) = 3 and γ s

I (K1 + P6) = 4

To conclude the proof, we take one vertex v ∈ V (H), a γr (G)-function
g(X0, X1, X2) and define a function g′(Y0,Y1,Y2) on G + H by Y1 = X1 ∪ {v}
and V2 = X2. Obviously, if γr (G) ≥ 3, then g′ is an SIDF and so γ s

I (G + H) ≤
ω(g′) = γr (G) + 1. Therefore, by Theorem 21 we conclude that (d) follows. ��

Since γr (G) = 2 if and only if G is a non-complete graph with γ (G) = 1 or
γs(G) = 2, from Theorem 22 (c) and Corollary 20 we deduce the following result.

Remark 23 The following statements hold.

(a) If γ (G) = γ (H) = 1 and (H � Kn or G � Kn′), then γ s
I (G + H) = 3.

(b) If γ (G) = 1 and γs(H) = 2, then γ s
I (G + H) = 3.

(c) If γs(G) = 2 and γs(H) = 2, then γ s
I (G + H) = 3.

Next we consider the classes of fan and wheel graphs.
The Italian domination number and weak Roman domination number of a cycleCn ,

where n ≥ 4, was determined in Chellali et al. (2016) and in Henning and Hedetniemi
(2003), respectively.

Lemma 24 For n ≥ 4,

1. (Chellali et al. 2016) γI (Cn) = ⌈ n
2

⌉
,

2. (Henning and Hedetniemi 2003) γr (Cn) = ⌈ 3n
7

⌉
.

Proposition 25 Let n ≥ 4 be an integer. For the classes of fan graphs K1 + Pn and
wheel graphs K1 + Cn,

γ s
I (K1 + Pn) = 2 +

⌈
n − 2

3

⌉

and γ s
I (K1 + Cn) = 2 +

⌈
n − 2

3

⌉

.

Proof The cases n ∈ {4, 5, 6} are easy to check. Hence, from now on we assume that
n ≥ 7. In Fig. 3 we show examples of γ s

I (K1 + Pn)-functions for n = 5 and n = 6.
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Let Pn = (x1, . . . , xn) and let S be a γ (Pn−2)-set, where Pn−2 is obtained from Pn
by removing xn−1 and xn . We can construct an SIDF g on K1 + Pn by assigning the
label 1 to every vertex in S, label 2 to the vertex of K1 and 0 to the remaining vertices.
Hence, γ s

I (K1 + Pn) ≤ ω(g) = 2 + γ (Pn−2) = 2 + ⌈ n−2
3

⌉
.

In order to show that γ s
I (K1 +Cn) ≥ 2+⌈ n−2

3

⌉
, let f be a γ s

I (K1 +Cn)-function,
f ′ the restriction of f to Cn and V (K1) = {v}. We differentiate three cases.
Case 1 f (v) = 0. In this case f ′ is an SIDF on Cn and so γ s

I (K1 +Cn) = ω( f ) =
ω( f ′) ≥ γ s

I (Cn) ≥ γI (Cn) = ⌈ n
2

⌉ ≥ 2 + ⌈ n−2
3

⌉
for n ≥ 7.

Case 2 f (v) = 1. If f ′ is a WRDF on Cn , then using Lemma 24 γ s
I (K1 + Cn) =

ω( f ) = 1 + ω( f ′) ≥ 1 + γr (Cn) = 1 + ⌈ 3n
7

⌉ ≥ 2 + ⌈ n−2
3

⌉
. Now, if f ′ is not a

WRDF on Cn , then there exists u ∈ V (Cn) such that fv→u is an IDF on Cn . Hence,
using Lemma 24 γ s

I (K1 +Cn) = ω( f ) = 1+ ω( f ′) ≥ γI (Cn) = ⌈ n
2

⌉ ≥ 2+ ⌈ n−2
3

⌉

for n ≥ 7.
Case 3 f (v) = 2. If f (NCn [x]) > 0 for every x ∈ V (Cn), then γ s

I (K1 + Cn) =
ω( f ) ≥ 2+ γ (Cn) = 2+ ⌈ n

3

⌉
> 2+ ⌈ n−2

3

⌉
. Now, if there exists exactly one vertex

x ∈ V (Cn) such that f (NCn [x]) = 0, then γ s
I (K1 + Cn) = ω( f ) ≥ 2 + γ (Pn−1) =

2+ ⌈ n−1
3

⌉ ≥ 2+ ⌈ n−2
3

⌉
. Finally, suppose that there exist two vertices x, y ∈ V (Cn)

such that f (NCn [x]) = f (NCn [y]) = 0. In such a case, x and y have to be adjacent,
otherwise neither fv→x nor fv→y is an IDF on K1 + Cn , which is a contradiction.
Hence, γ s

I (K1 + Cn) = ω( f ) ≥ 2 + γ (Pn−2) = 2 + ⌈ n−2
3

⌉
.

According to the three cases above we conclude that γ s
I (K1 + Cn) ≥ 2 + ⌈ n−2

3

⌉
.

Finally, since K1 + Pn is a spanning subgraph of K1 +Cn , by Theorem 12 we have
that γ s

I (K1 + Cn) ≤ γ s
I (K1 + Pn). Therefore, the result follows. ��
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