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A B S T R A C T   

Background: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 
2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti
ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. 
Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma
lignant) and multiple BI-RADS classes based on a single ultrasonographic image. Achieving this task should 
reduce the subjectivity of an individual operator’s assessment. 
Materials and Methods: Automatic image segmentation methods (PraNet, CaraNet and FCBFormer) adapted to the 
specific segmentation task were investigated using the U-Net model as a reference. A new classification method 
was developed using an ensemble of selected segmentation approaches. All experiments were performed on 
publicly available BUS B, OASBUD, BUSI and private datasets. 
Results: FCBFormer achieved the best outcomes for the segmentation task with intersection over union metric 
values of 0.81, 0.80 and 0.73 and Dice values of 0.89, 0.87 and 0.82, respectively, for the BUS B, BUSI and 
OASBUD datasets. Through a series of experiments, we determined that adding an extra 30-pixel margin to the 
segmentation mask counteracts the potential errors introduced by the segmentation algorithm. An assembly of 
the full image classifier, bounding box classifier and masked image classifier was the most accurate for binary 
classification and had the best accuracy (ACC; 0.908), F1 (0.846) and area under the receiver operating char
acteristics curve (AUROC; 0.871) in the BUS B and ACC (0.982), F1 (0.984) and AUROC (0.998) in the UCC BUS 
datasets, outperforming each classifier used separately. It was also the most effective for BI-RADS classification, 
with ACC of 0.953, F1 of 0.920 and AUROC of 0.986 in UCC BUS. Hard voting was the most effective method for 
dichotomous classification. For the multi-class BI-RADS classification, the soft voting approach was employed. 
Conclusions: The proposed new classification approach with an ensemble of segmentation and classification 
approaches proved more accurate than most published results for binary and multi-class BI-RADS classifications.   

1. Introduction 

Breast cancer is the most common female cancer, accounting for 
around 2.2 million new cases and more than 0.6 million cancer-related 
deaths around the globe in 2020 [1]. A breast ultrasound scan (USS) 
detects and characterises breast lesions and assesses locoregional lymph 
nodes. USS assessment requires extensive training and certification 

because it is highly influenced by the ultrasonographer’s experience and 
the equipment used. Lesion characterisation is standardised by the 
Breast Imaging Reporting & Data System (BI-RADS) atlas developed by 
the American College of Radiology (ACR) [2]. The physician assigns one 
of nine possible classes based on the specific breast lesion’s features, 
including the shape, orientation, margin, echo pattern, posterior fea
tures, presence of calcifications and associated features. Based on the BI- 
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RADS class and associated malignancy probability, oncologists decide 
whether an invasive breast biopsy is required. Pathological assessment 
of biopsy specimens is the only examination that provides indisputable 
information on tumour characteristics. Proper USS assessment and the 
assignment of BI-RADS classes are essential in guiding clinical decisions. 

Numerous approaches have been proposed for detecting and classi
fying breast lesions using computer assistance. These can be classified 
into classic computer vision–based and machine learning (ML)–based 
algorithms. The former class can be categorised into region-based 
methods [3,4], edge-based methods [5,6], thresholding [7] and energy 
function–based methods [8]. Their main limitations are low solution 
generality and relatively long computation times. 

The second group includes unsupervised methods that can effec
tively handle data that are not clearly separated [9] and supervised 
methods, including neural networks (ANN), which rely heavily on the 
quality and diversity of labelled training data. It remains crucial to 
address bias, overfitting and generalisation challenges to ensure the 
models’ reliable and ethical deployment [10]. 

Comparing the methods using the area under the receiver operating 
characteristics (AUROC) curve metric, the ML approaches achieve a 
value of approximately 0.97, texture feature–based methods achieve 
0.89 and morphological features achieve 0.93 [11]. Some authors have 
reviewed various 2D and 3D semantic segmentation strategies using 
deep convolutional neural networks (CNNs), demonstrating outstanding 
outcomes for biomedical image analysis [12–14]. In [15], the authors 
provided a compilation of the performance of 11 models, with the 
average dice similarity coefficient (DSC) ranging from 0.61 to 0.89, 
depending on the dataset. 

In this study, we compare automatic methods for breast lesion seg
mentation in ultrasound images, PraNet [16], CaraNet [17] and 
FCBFormer [18], with the U-Net model [19] used as a reference. All 
models were adapted to the specific segmentation task. A new automatic 
classification method for breast lesions based on a single ultrasono
graphic breast image is developed and described based on an ensemble 
of selected segmentation approaches. This method is tested on various 
datasets for binary (benign vs. malignant) and multi-class BI-RADS 
classifications. Achieving this task should reduce the subjectivity of in
dividual operator assessments, consequently minimising inter-reader 
variability, and benefit both patients and doctors. 

2. Literature review 

A literature review was conducted in June 2023 using the IEEE 
Xplore database with the keywords ‘segmentation’, ‘breast’ and’cancer’. 
All publications from 2016 were included, resulting in a total of 633 
articles, of which 81 were USS-related. 

Most studies (62/81) used ML, while 35 used CNNs. CNNs are shown 
to be effective in processing image input through convolutional layers. 
Different CNN architectures were used, such as the U-Net model 
[20–22], which is popular due to its extendable architecture that allows 
problem adaptation. In [20], the authors extended the U-Net network 
with the fusion and multi-scale dilated convolution modules to segment 
irregular and large breast lesions. They proposed class imbalance min
imisation with a focal-DSC loss function. Other modifications of CNN 
architecture include recursive methods that allow variable-length in
puts, such as the Faster R-CNN [23] and the attention module [24]. 

Studying lesions involves two main tasks: segmentation and classi
fication. Fifty-three papers addressed both tasks, while 26 focused solely 
on segmentation. Although segmentation provides valuable information 
about lesion shape, only a few studies tackled BI-RADS multi-class as
signments due to their challenging nature and lack of appropriate 
datasets. 

Only two studies dealt with BI-RADS classification. In [25], the au
thors used a private dataset consisting of 641 images (413 benign cases 
and 228 malignant). They trained a binary classifier on the CNN-based 
architecture, which consisted of four convolutional layers and two 

fully connected layers with a single neuron in the last layer, returning 
the answer’s certainty (benign or malignant). Then, fixed threshold 
values were assigned to the six BI-RADS classes using doctors’ knowl
edge and a trial-and-error method. The final classification was per
formed by comparing the activation/certainty of the last neuron from 
the binary classification with the predetermined threshold values for 
each class and determining the interval into which the value fell. This 
two-stage framework attained an accuracy of 0.998 for Category 3 BI- 
RADS, with the lowest accuracy of 0.734 for Category 4B. 

In contrast, the authors of [26] attempted to train a classifier 
mimicking the human decision-making process. They employed four 
dCNNs, utilising a sliding window approach. The initial model aimed to 
classify metadata from any tissue type, while the second focused on 
distinguishing normal healthy tissue from regions containing irregu
larities or lesions. The third model aimed to differentiate between cysts 
and soft tissue lesions, and the fourth was tasked with discerning lesions 
warranting follow-up from those necessitating biopsy. Unfortunately, 
the authors did not provide details about the proposed architecture. The 
training utilised 1019 images from 582 patients, with testing conducted 
on 144 images. The classification accuracy for differentiating BI-RADS 2 
from BI-RADS 3–5 lesions was 87.1 %, and it was 93.1 % for BI-RADS 
2–3 versus BI-RADS 4–5. 

Both recent cases had the disadvantage of analysing entire images 
rather than focusing on the areas of the lesions. 

3. Materials and methods 

3.1. Proposed solution 

Our method relies on deep neural networks to identify the important 
features of objects in images. Instead of looking at entire images indis
criminately, this approach focuses on specific regions (tumours) deemed 
informative by the neural network. It further refines these regions to 
make them more distinct and useful for distinguishing between different 
objects. This process is likely to involve some form of image processing 
or feature extraction to enhance the discriminative power of these 
regions. 

To achieve this, the prediction is made as a result of the decisions 
made by three CNN classifiers, each operating on a different input image 
(see Fig. 1). The first classifier, the full image classifier (FIC), takes an 
entire original image as its input. Next, the bounding box classifier (BBC) 
uses a cropped area containing a lesion as an input. The size of this area 
is based on segmentation (the segmenter is described later). It corre
sponds to a bounding box surrounding the lesion with a certain fixed 
margin around it. The last classifier, the masked image classifier (MIC), 
takes a modified semantic mask generated by a segmenter as input. The 
mask is negatively thresholded, removing all values below certain 
thresholds. It leaves the centre of the lesion unmasked while not 
changing the remaining part. This approach was chosen because the 
irregular shape of lesion edges is a clinical discriminatory feature. This 
study explored ensemble methods to enhance classification perfor
mance, including hard voting for malignancy classification and aver
aging predictions for BI-RADS classification. Hard voting ensured robust 
decisions in binary malignancy classification, while averaging pre
dictions (soft voting) with the highest probability emerged as the best 
method for multi-class BI-RADS classification, capturing the collective 
knowledge of the ensemble and ensuring reliable classification 
outcomes. 

3.2. Segmentation models 

Four segmentation approaches were utilised, including the baseline 
U-Net [19]. The remaining three models, which were first investigated 
for segmenting gastrointestinal polyps, incorporated attention modules. 
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3.2.1. PraNet 
Parallel reverse attention network (PraNet) [16] is an architecture 

developed to segment polyps in colonoscopy images. These images share 
characteristics with ultrasonographic images of breast lesions, such as 
varying sizes, textures and indistinct boundaries with surrounding tis
sues. The first step in the model involves aggregating image features at 
high-level layers through a parallel partial decoder. This generates a 
global map that is subsequently processed by successive components. 
Through reverse attention, masks of increasingly high resolution are 
generated, thereby improving segmentation accuracy with each step. 

3.2.2. CaraNet 
The context axial reverse attention network (CaraNet) model [17] is 

similar to PraNet, with the addition of contextual feature pyramid (CFP) 
blocks before the reverse attention modules. These blocks provide 
separate dilation rate values for each channel. In this study, the reverse 
attention modules were replaced with axial reverse attention modules. 
The input to these modules comes from the CFP blocks and consists of 
feature maps with general information about mask localisation. They 
mimic self-attention mechanisms, which aim to assign appropriate 
weights to each value. However, this can be computationally 
demanding, especially when dealing with large two-dimensional maps 
that require weight assignment. The authors replaced this with two one- 
dimensional vectors along both axes. This reduces the number of 
weights for a 256 × 256-pixel input to just 512. 

3.2.3. Fcbformer 
The FCN-Transformer [18], or FCBFormer, architecture was 

designed to analyse colon polyp images and combines fully convolu
tional networks (FCNs) and transformers. The FCN component is 
excellent at extracting spatial features and capturing detailed informa
tion. The transformer component then processes these spatial features, 
which uses its self-attention mechanism to consider the relationships 
between different image regions, incorporating the global context. This 
fusion of local and global understanding allows the FCBFormer to 
segment the USS accurately. It can be trained end to end, improving its 

efficiency and effectiveness. 

3.3. Classifiers 

3.3.1. Masked image classifier 
The masked image classifier (MIC) considers clinically significant 

features, such as lesions’ shape, border, symmetry, surrounding area 
continuity and clarity as well as the presence of ‘spiculations’. It con
centrates only on the surroundings of the main part of the breast lesion 
and not on its centre. It uses the information from the whole ‘areola’ of 
the lesion with all clinically significant features without distinguishing 
or separate analysis of each feature, as proposed by some authors [27]. 
We prepared the input by generating a semantic mask and prioritising 
the lesion’s shape and boundaries. We modified the mask by first nor
malising the pixel values in the mask to a range of 0 to 1. We then set the 
pixel values in the centre of the lesion to zero by changing all values 
higher than 0.95 to zero. This step ensured that the central region would 
be masked out while maintaining the normalised pixel values within the 
desired range. 

3.3.2. Bounding box classifier 
The BBC extracts information from a lesion’s surroundings using the 

bounding box obtained from the segmentation process as input. Through 
a series of experiments, we determined that adding an extra 30-pixel 
margin to the segmentation would counteract the potential errors 
introduced by the segmentation algorithm. 

3.4. Ensemble methods 

The following ensemble approaches have been explored to enhance 
classification performance:  

• Majority voting (hard majority) [28]: This is an algorithm in which 
each classifier makes a prediction, and the ensemble’s prediction is a 
majority vote of each individual classifier. 

Fig. 1. Flowchart for our proposed method: The process begins with an original ultrasound image. Using a segmentation model, we derive a segmented image. This 
image undergoes two transformations: 1) cropping with a 30-px margin to create a bounding box image that primarily contains the tumour and 2) applying a negative 
mask where all values above 0.95 are set to 0, highlighting the lesion’s border. These processed and original images are inputs for the three convolutional neural 
network classifiers. The outputs are then combined through ensemble methods for final decision-making. 
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• Soft voting [29]: This algorithm works by initially having each 
classifier assign a probability to each class. The ensemble’s predic
tion is the class with the highest total probability.  

• Max: Similar to soft voting, each classifier assigns a probability to 
each class. The ensemble’s prediction is a class with the singular 
highest probability across all classifiers.  

• Dense: Here, a small neural network is added, connecting all three 
classifiers. The network has one linear layer with eight neurons. The 
classifiers are first trained separately and then connected together 
and frozen to train ensemble classifiers. 

Majority voting was the most effective method for dichotomous 
classification. With only two available classes (benign and malignant) 
and three classifiers, it ensured that one label always received two or 
three votes. However, majority voting with a secondary conflict reso
lution method could not yield satisfactory results in the multi-class BI- 
RADS classification. Instead, soft voting was utilised. 

3.5. Materials 

3.5.1. Dataset description 
The essential characteristics of the publicly available (BUSI [30], 

BUS B [31] and OASBUD [32]) and private (UCC BUS) datasets used in 
the study are presented in Table 1. More information can be sought in 
the original publications [30–32]. The UCC BUS dataset was curated by 
four researchers. All images were obtained with a single 

ultrasonography scanner by a single doctor with more than 10 years’ 
experience in breast ultrasound. Every image contained only a single 
breast lesion. Two doctors, one with five years and the other with more 
than 10 years of experience in breast ultrasonography, scored the BI- 
RADS classifications. When there was no consensus, a third opinion 
was sought from a breast radiologist with more than 15 years of expe
rience. Images with divergent scoring were independently assessed, and 
the final score was based on a consensus discussion. All lesions were 
biopsied and confirmed using pathology assessment. Ground truth labels 
were provided at the image level. The pre-processing of DICOM files 
involved anonymisation with the CTP anonymiser. Then, the actual 
image was cut out using an automatic Python script to remove all 
associated information. This image, with pseudo-ID, was then associated 
with a file containing the BI-RADS category and pathology results. The 
major characteristics of the dataset are included in Table 1. 

All datasets were employed separately for binary classification to 
ensure the reliability and robustness of the results. Only images with 
lesions were analysed. Only the UCC and OASBUD datasets were used 
for multi-class BI-RADS classification, as the other datasets lacked this 
variable. By leveraging these diverse datasets with varying imaging 
conditions, lesion types and patient populations, the study could 
comprehensively evaluate the proposed methodologies, enhancing the 
credibility and generalisability of the findings. All data came from 
retrospective studies. 

3.5.2. Evaluation metrics 
Following [33], we used the Dice similarity coefficient (DSC; Eq. (1) 

and the intersection over union (IoU; Eq. (2), or the Jaccard index, as the 
most suitable metrics for the segmentation problem. 

DSC = F1 =
2TP

2TP + FP + FN
(1)  

IoU =
TP

TP + FP + FN
(2)  

where TP is true positive, FP is false positive, and FN is false negative. 
DSC better handles unbalanced classes. When one class exhibits a 

substantially smaller pixel count, the Jaccard metric may yield a near- 
zero value, failing to reflect the extent of class overlap. We opted for a 
threshold of 0.7 since it consistently delivered the best results in our 
experiments. Similarly, for classification problem accuracy, recall pre
cision and F1 score are defined in Eqs. (3), 4, 5 and 1. 

ACC =
TP + TN

TP + TN + FN + FP
(3)  

Precision =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5)  

AUROC and average precision (AP), which summarises a precision- 
recall curve, were other metrics used. In the multi-class BI-RADS clas
sification, accuracy was counted by summing the statistics over all la
bels, and in all other classifications, it was counted by calculating the 
statistics for each label and averaging them. Dataset splitting was per
formed before the pre-processing steps. All models were validated with 
internal random five-fold cross-validation. The next step in the proposed 
solution is external validation. 

3.5.3. System and classification specifications 
The classification specifications were as follows:  

• Model: EfficientNet v2 L (118.5 M parameters, 56.08 GFLOPS)  
• Loss function: cross-entropy  
• Optimiser: Adam 

Table 1 
Breast ultrasound scan database characteristics.  

Dataset with 
reference 

BUS B [31] OASBUD [32] BUSI [30] UCC BUS 
(private) 

Year of data 
collection 

2012 2017 2018 2022 

Source Diagnostic 
Centre of Parc 
Tauli, 
Sabadell, 
Spain 

Oncology 
Institute, 
Warsaw, 
Poland 

Baheya 
Hospital, 
Cairo, 
Egypt 

University 
Clinical 
Centre, 
Gdansk, 
Poland 

Ultrasound 
device 

Siemens 
ACUSON 
Sequoia C512 

Ultrasonix 
SonixTouch 
research 
device 

LOGIQ E9 LOGIQ E9 

Resolution 
(pixels) 

Variable; 
average 
760–570 

685 × 868 500 × 500 782 × 782 

File format PNG RF ultrasound 
echoes, mat 
lab format 

PNG PNG 

Age range 26–78 N/A 25–75 16–88 
Average age N/A N/A N/A 46 
Age variability 

(SD) 
N/A N/A N/A 14.7 

Ethnic group N/A European N/A European 
No. of women 163 78 600 610 
No. of images 163 200 780 6774* 
No. of 

malignant 
images 

53 104 210 3867* 

No. of benign 
images 

110 96 437 2907* 

No. of cases 
without 
lesions 

0 0 133 0 

Benign vs. 
malignant 
classification 

YES YES YES YES 

BI-RADS 
classification 

NO YES NO YES 

Segmentation 
mask 

YES YES YES NO 

Note: *In the UCC dataset, multiple cross-sectional images were obtained from 
different parts of the tumour in different axes of the lesion. 
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• Batch size: 36  
• Learning rate: 0.0003  
• Input image size: 224 × 224 px  
• Augmentations: horizontal flip, vertical flip, 180◦ rotation  
• Normalisation: mean = [0.485, 0.456, 0.406] and std = [0.229, 

0.224, 0.225] 

Transfer learning was utilised with default weights from the Torch
Vision library. A weighted loss function was tested because of an 
imbalance in the number of benign and malignant lesions. Experiments 
showed that this had no effect on the results. Hyperparameters were 
chosen by a grid search. The code used for the experiments can be found 
at https://github.com/Dumbldore/BI-RADS_classification. CNN 
training/validation and testing were done using a computer system with 
the following characteristics:  

• Intel(R) Core (TM) i7-12700 K CPU @ 3.60 GHz  
• 32 GB RAM (2 × 16 GB) DDR4 @ 3600 MHz RAM memory  
• RTX 3090 24 GB GPU 

3.5.4. Ethics statement 
The authors declare that the presented work was carried out in 

accordance with the Code of Ethics of the World Medical Association for 
experiments involving humans. The necessary consent of the Bioethics 
Committee for Scientific Research at the Medical University of Gdansk 
was obtained. All images were fully anonymised to ensure the patients’ 
privacy. 

4. Results and discussion 

4.1. Image segmentation results 

Table 2. shows the performance metrics for the different segmenters. 
DSC and IoU metrics are presented for three datasets used (BUS B, BUSI 
and OASBUD). Most results come from the original ESTAN model pub
lication [15], with additional results from UNet, PraNet, CaraNet and 
FCBFormer calculated during the project. A comparison with the SK- 
UNet model [34] was added for the two datasets. The results are 
based on five-fold cross-validation, ensuring reproducibility. 

In each of the three described datasets, the FCBFormer model out
performed the other methods. In BUS B, the model achieved an IoU 
value of 0.02 higher than PraNet and CaraNet and 0.07 higher than 
ESTAN. This was similar for the DSC metric (0.02 and 0.07, 
respectively). 

A graphical comparison of the segmentation results between the four 
models, with the ground truth superimposed over the masks (UNet as 
the baseline), is shown in Fig. 2. 

4.2. Image classification results 

4.2.1. Ablation study 
An ablation study was performed to test the different ensemble 

methods on cancer versus no cancer and BI-RADS classes. The results are 
summarised in Table 3. 

4.2.2. Cancer vs. No cancer classification 
The binary classification with FIC yielded the best results among 

single methods (except for the BUS dataset), yet it was only slightly 
better than the BBC (see Table 4), with an ensemble of classifiers being 
superior to any single classifier used. The aspect of margin selection in 
the BBC was also examined (F1 score averaged between datasets: 0 px: 
0.8353, 30 px: 0.884, and 60 px: 0.8385), with the conclusion that strict 
cropping of the segmented area leads to the loss of certain discriminative 
features located at the lesion’s boundaries. In contrast, the broader 
margin provided unnecessary input information, thereby reducing 
effectiveness. The achieved results were still lower than those obtained 

for the entire image. Both individual methods significantly out
performed the segmentation-based model. 

The application of an ensemble significantly improved the classifi
cation quality. Using the majority voting approach resulted in a 1.2 % 
increase in classification accuracy averaged between datasets. As the 
problem involved binary classification and the number of models was 
odd, there were no ties in the voting. 

4.2.3. BI-RADS classification 
During the BI-RADS classification, the classifiers predicted classes 

labelled from 2 to 5 on the UCC dataset and from 3 to 5 on the OASBUD 
dataset. Classes 0 and 1 were not included because of insufficient data 
(see Table 5). 

The soft voting approach was employed because the majority voting 
method was unfeasible. The outcomes of all networks were aggregated 
on a per-class basis, and the final predicted class was based on the 
highest value in the list of aggregated scores. 

A noteworthy increase in the weighted F1 score was observed, 
amounting to 3.3 % for the OASBUD and 1.6 % for the UCC datasets, 
compared to the best results achieved by individual models. This 
improvement in classification quality is comparable to the findings 
presented in Section 4.2.1 and may indicate the proposed method’s 
generalisability. 

The ACC reached values similar to FIC for both datasets. Aggregating 
both metrics indicated better model performance in underrepresented 
classes. 

5. Conclusion 

The proposed new classification approach, based on an ensemble of 
selected segmentation and classification approaches, proved more 

Table 2 
Segmentation results for different architectures. Modified from B. Shareef et al. 
(2022) [15], with additional results for UNet, PraNet, CaraNet and FCBFormer 
architectures.  

Dataset Architecture IoU DSC 

BUS Dataset B AlexNet 0.47  0.61 
SegNet 0.60  0.71 
UNet 0.65  0.75 
CE-Net 0.61  0.71 
MultiResUNet 0.66  0.75 
RDAU-NET 0.67  0.77 
SCAN 0.65  0.74 
DenseU-Net 0.60  0.69 
STAN 0.70  0.78 
ESTAN 0.74  0.82 
PraNet 0.79  0.87 
CaraNet 0.79  0.86 
FCBFormer 0.81  0.89  

BUSI AlexNet 0.55  0.68 
SegNet 0.62  0.72 
UNet 0.63  0.73 
CE-Net 0.64  0.73 
MultiResUNet 0.67  0.75 
RDAU-NET 0.68  0.73 
SCAN 0.63  0.72 
DenseU-Net 0.64  0.72 
STAN 0.66  0.75 
ESTAN 0.70  0.78 
SK-Unet ND  0.70 
PraNet 0.74  0.82 
CaraNet 0.73  0.81 
FCBFormer 0.80  0.87  

OASBUD SK-Unet ND  0.72 
PraNet 0.64  0.74 
CaraNet 0.65  0.76 
FCBFormer 0.73  0.82  
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accurate than most published results for binary and multi-class BI-RADS 
classifications. The MIC was designed to improve the evaluation of 
breast lesions by enhancing the focus on their shape and boundaries, 

prioritising these critical features by modifying the semantic mask to 
exclude the tumour’s centre and normalising the pixel values. However, 
considering its sensitivity to segmenter errors, it should be utilised as 
part of a more comprehensive approach, as proposed in the paper. 
Borders of the breast lesions add crucial information, although too-large 
margins introduce unnecessary noise and irrelevant information to the 
input of the BBC. By focusing on the informative region within the 
bounding box, the BBC can effectively capture and analyse the key 
features associated with the lesion. This classifier plays a crucial role in 
our overall methodology, providing valuable insights into breast lesion 
classifications. 

Further research that eliminates our study limitations, involving 
larger multi-institutional datasets containing BIRADS 0 and 1 scans with 
external validation and assessments of added benefit, is needed to 
evaluate the proposed methodology before it can be used in clinical 
practice. The proposed methodology is currently being utilised as a 
method for active learning during the annotation of ground truth 
datasets to expand the UCC dataset. 
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Fig. 2. Comparison of the exemplary segmentation outcomes among the different models.  

Table 3 
Ablation study conducted on the combined datasets.  

Used classifiers Ensemble method ACC F1 

Cancer vs. no cancer classification 
FIC − 0.888  0.871 
BBC − 0.870  0.848 
MIC − 0.827  0.794 
FIC + MIC Max  0.898  0.880 
FIC + BBC Max  0.907  0.890 
FIC + BBC + MIC Max  0.907  0.890 
FIC + MIC Soft majority  0.8695  0.877 
FIC + BBC Soft majority  0.904  0.887 
FIC + BBC + MIC Soft majority  0.910  0.895 
FIC + BBC + MIC Dense  0.901  0.887 
FIC + BBC + MIC Majority voting  0.919  0.907  

BI-RADS classification 
FIC − 0.504  0.431 
BBC − 0.516  0.380 
MIC − 0.446  0.356 
FIC + BBC + MIC Max  0.537  0.393 
FIC + BBC + MIC Soft majority  0.553  0.455 
FIC + BBC + MIC Dense  0.528  0.441 
FIC + BBC + MIC Majority voting +

max  
0.520  0.370 

FIC + BBC + MIC Majority voting +
soft majority  

0.537  0.435 

Note: a) BUSI, BUS B, OASBUD and a subset of UCC for cancer vs. no cancer 
classification; b) OASBUD and a subset of UCC for BI-RADS classification. The 
results indicate that hard voting is most effective for binary classification, while 
soft voting excels in multi-class scenarios. 
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