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Abstract:  
Nowadays, extreme need for construction of buildings in rural area increased the 
floor number of buildings, in which, the soil under foundation can affect the 
performance of buildings. In this research, soil effects were investigated to show 
soil type effects on the performance levels of steel structures. To do this, the 2-, 
4-, 6-, and 8-story structures were modeled using ETABS software; then, the 

models were verified in Opensees software for collapse state analysis. Incremental 
Dynamic Analyses (IDAs) are employed using far field, near field records having 
pulse like and no pulse effects. The results of analysis provide informations 
regarding the influence of soil types of B, C, D, and E on the seismic performance 
level of steel structures. The results confirmed that the soil types have remarkable 
effect on performance levels and it should be considered in seismic design 
process. To consider the soil types effects, it is recommended to compare the 
results of analysis achieved in this study to find out the percentage of variations, 

and use them as a reference for seismic design process. In addition, it is possible 
to have modification factors for amending the performance levels. 
 
Keywords: Soil Effects, Incremental Dynamic Analyses, Seismic Performance 
Levels, Steel Structure. 

 
 

1. Introduction 

The seismic performance assessment of steel structures aimed at comprehensively evaluating their 

ability to withstand seismic forces and mitigate potential damage. Traditional assessment 

methodologies have predominantly focused on the structural characteristics of steel elements, often 

overlooking the significant influence of soil conditions on seismic response. However, recent 

advancements in structural engineering have underscored the importance of integrating soil effects 

into the assessment process to enhance the accuracy and reliability of predictions. This formal 

description involved in conducting seismic performance assessments of steel structures while 

accounting for soil effects [1-3]. 

The profile of soil can vary from area of construction in the rural area. Therefore, for each structure, 

the condition of soil under the foundation can influence the building behavior. Shakib and Homaei [4] 

used a probabilistic framework to evaluate the impact of soil on the lateral response of steel structures. 

They examined a collection of 10-story steel structures with various setback ratios while two 

orthogonal seismic excitation were acting simultaneously. Their results indicated that the interaction 

between soil and structures decreased the seismic capabilities and the life safety allowable limit.  

Bolisetti and Whittaker [5] utilized numerical simulations of steel structures and a 2-story structure 

having shear wall to investigate the soil impact in up to mid-rise buildings. They compared their results 

to observations from earlier research that examined information from a series of centrifuge 

experiments. With better soil consideration, the consequences of soil effects on the structures were 

https://eajse.tiu.edu.iq/submit/
https://doi.org/10.23918/eajse.v10i1p10
https://doi.org/10.23918/eajse.v10i1p10
mailto:farzin.kazemi@pg.edu.pl
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
https://orcid.org/0000-0002-2448-1465
https://orcid.org/0000-0002-0756-8438
https://orcid.org/0000-0002-6741-115X
https://orcid.org/0000-0002-3789-0006
https://creativecommons.org/


Eurasian J. Sci. Eng., 10(1) (2024), 113-122                                                                                                                   114 

 

 

studies by Cilsalar and Cadir [6]. The findings showed that columns upgrading lowers superstructure 

demand and frame collapse likelihood. The findings showed that improving columns lowers the 

demand on superstructures and the frame collapse risk. 

Kazemi et al. [7-9] introduced a machine learning-based procedure to approximately predict the 

behavior of structures considering the soil types effects. Their investigations showed that the soils may 

import some reductions on the performance assessments of structures, and recommended to improve 

the designing and modeling by considering the soil under the foundation. In addition, soil effect cannot 

be neglected due to its influence and structures should not be assumed as fixed base. 

In this research, nonlinear dynamic analysis is conducted to evaluate the structural response under 

various seismic scenarios, considering both elastic and inelastic behavior. The analysis accounts for 

the dynamic characteristics of the soil, including soil damping and frequency-dependent properties. 

Sensitivity analyses are performed to assess the influence of key parameters such as soil stiffness, 

ground motion characteristics, and structural configurations on the seismic performance of the steel 

structure. Finally, the results of the assessment are interpreted to derive meaningful insights into the 

structural vulnerabilities, potential failure modes, and recommendations for design enhancements or 

retrofitting measures. 

2. Modeling of Buildings 

In this section, the modeling of structures are defined. The 2-, 4-, 6-, and 8-story structures were 

modeled using ETABS software. To model structures, ASCE/SEI 7-16 [10] was used for seismic code 

and four soil types are selected for conditions of stiff to flexible soils, respectively. In soil B, the seismic 

parameters of SDS and SD1 are considered equal to 1.31 and 0.46, respectively, and for soil type C, are 

selected as 1.57 and 0.65, respectively. For soil D and E, the values of 1.57 and 0.65, and 1.62 and 

0.66, respectively, are used according to Kazemi et al. [7, 9] and Kazemi and Jankowski [11, 12]. It 

should be added that the soil effects were considered in modeling process and determining lateral 

loads. Figures 1 and 2 present the three-dimensional view of four and eight story buildings.  

 

Figure 1: Four-story building designed in ETABS software. 

According to Figures 1 and 2, the orange color frames were modeled as Special Moment-Resisting 

Frames to resist the lateral loads in each directions, and other connections assumed as pin connection. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Eurasian J. Sci. Eng., 10(1) (2024), 113-122                                                                                                                   115 

 

 

Therefore, it is possible to use two-dimensional model instead of three-dimensional having same 

structural behavior. To model two-dimensional structures in Opensees [14] software based on the three-

dimensional, the procedures used by Mohebi et al. [15, 16], and Kazemi et al. [17-20] were used. 

According to their procedure, two-dimensional models were models using the loads and structural 

elements of outer frames, and the effects of other columns and gravity loads were modeled using 

leaning column [21-23]. Leaning column can models the rest of structure and facilitate the modeling 

process while the two-dimensional model can be verified by three-dimensional model [24-26]. 

 

Figure 2: Eight-story building designed in ETABS software. 

3. Incremental Dynamic Analysis 

Incremental Dynamic Analysis (IDA) was selected for performing collapse state analysis, in which, 

the total collapse of structure is occurred. The collapse state is a condition in which the structure 

failures during lateral loads and no further resisting observes. To perform IDAs, the far-field, near-

field records having and neglecting the pulse like effects were selected (for details of records see [10, 

12, 24]), which have the important seismic excitations occurred during the past years. In addition, the 

hunt & fill method was developed in the OpenSees [14] software to increase the efficiency of program 

for IDAs and reduce the time of analysis [27, 28]. Figures 3, 4, 5, and 6 present the IDA curves of 2-, 

4-, 6-, and 8-story structures assuming soil D subjected to near fault pulse like records. As shown, all 

structures after 8% interstory drift ratio reached their collapse state and the IDA curves were flatted.  
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Figure 3: IDA curve of the 2-story struture having soil D including near field pulse like records. 
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Figure 4: IDA curve of the 4-story struture having soil D including near field pulse like records. 
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Figure 5: IDA curve of the 6-story struture having soil D including near field pulse like records. 
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Figure 6: IDA curve of the 8-story struture having soil D including near field pulse like records. 

4. Results and Discussions 

In this section, soil types effects on the performance levels of structures are discussed. For comparison, 

four seismic performance levels of Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention 

(CP) and Total Collapse (TC) were assumed based on the interstory drift ratio of 0.7%, 2.5%, 5%, and 

10% [11, 12, 29-31]. Then, in each record subset, the Median of IDA curves (MedIDA) for all 

aforementioned structures were determined and compared.  

Figure 7 presents the MedIDA of the 2-story structure having soil D including three record subsets. It 

can be seen that the near field pulse like records have the lowest values of Sa(T1) compare to other 

record subsets. In addition, the near field no pulse records have the highest values Sa(T1) compare to 

other record subsets. In allowable performance levels of LS, CP, and TC, the Sa(T1) values of 1.148, 

1.967, and 2.574 were determined for the near field pulse like records, respectively, and the Sa(T1) 

values of 1.305, 2.292, and 3.335 were determined for the near field no pulse records, respectively. It 

could be concluded that the the near field pulse like records have higher effects on the MedIDA of the 

2-story structure rather than other records. Therefore, the pulse like effects cannot be neglected during 

the analysis.  
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Figure 7: MedIDA of the 2-story structure having soil D including three record subsets. 

Figure 8 presents the MedIDA of the 6-story structure having soil B including three record subsets. 

Similarly, it can be observed that the near field pulse like records have the lowest values of Sa(T1) and 

the near field no pulse records have the highest values Sa(T1). For the near field pulse like records, the 

Sa(T1) values of 0.281, 0.47, and 0.562 were achieved for LS, CP, and TC performances, respectively. 

For the far field records, the Sa(T1) values of 0.288, 0.502, and 0.595 were determined for LS, CP, and 

TC performances, respectively. For the near field no pulse records, the Sa(T1) values of 0.309, 0.517, 
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and 0.645 were calculated for performance levels of LS, CP, and TC, respectively. In general 

conclusion, the near field pulse like records have higher effects on the MedIDA of the structures rather 

than other records. For brevity only the results of 2-story and 6-story structures were presented while 

similar results were observed from other structures. 
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Figure 8: MedIDA of the 6-story structure having soil B including three record subsets. 

Figure 9 illustrates the MedIDA of the 4-story structure having all soil types including near field no 

pulse records. Figure 9 shows the soil type influences on the performance levels of 4-story structure. 
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Figure 9: MedIDA of the 4-story structure having all soil types including near field no pulse records. 

For instance, in CP performance, the Sa(T1) values of 1.049, 0.987, 0.851, and 0.879, were determined 

for B, C, D, and E soil types, respectively. In addition, for TC performance, the Sa(T1) values of 1.52, 

1.285, 1.192, and 1.162, respectively. It can be seen that by increasing the flexibility of soil type (i.e. 

from soil B to E), the Sa(T1) values significantly decreased and soil E has the lowest value. By 

changing soil type from B to E, the CP and TC performances decreased by 16.2% and 23.55%, 

respectively. Moreover, it is observed that the CP performance has the most percentages of reduction 

compared to other performance levels. 

Figure 10 illustrates the MedIDA of the 8-story structure having all soil types including near field pulse 

like record subsets. Similarly, as observed, the flexibility of soil can affect the performances of 8-story 

structure. For CP performance, the Sa(T1) values of 0.589, 0.556, 0.535, and 0.504, were determined 

for B, C, D, and E soil types, respectively. While in TC performance level, the Sa(T1) values of 0.798, 

0.730, 0.711, and 0.621, were determined for B, C, D, and E soil types, respectively. Therefore, soil 

type C, D, and E decreased the CP performance of 8-story structure by 5.6%, 9.16%, and 14.43%, 

respectively, and the TC performance of 8-story structure by 8.52%, 10.9%, and 22.18% compared to 

soil type B. 
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Figure 10: MedIDA of the 8-story structure having all soil types including near field pulse like 

records. 

5. Conclusions 

In this study, the soil type effects on the performance levels of the 2-, 4-, 6-, and 8-story structures 

were investigated. To evaluate the soil effects, the MedIDA of structures were plotted based on IDA 

curves achieved by far field, near field records having and neglecting pulse like effects. The result of 

study showed that the near field pulse like records had the lowest values of Sa(T1). In addition, it can 

be observed that the flexibility of soil can considerably reduce the seismic performance level of 

structures. For instance, in the CP performance of 8-story structure in soil type C, D and E decreased 

by 5.6%, 9.16%, and 14.43%, respectively, and in TC performance, the seismic performance level of 

8-story structure in soil type C, D, and E decreased by 8.52%, 10.9%, and 22.18% compared to soil 

type B. Therefore, it can be recommended to consider the soil effects in lateral response assessment of 

structures. In addition, comparing the IDA curves of models can provide informations regarding the 

effects of soil types and engineers can use them as reference for design process. 
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