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Abstract. We discuss the edge-coloring problem in a distributed model. We give
a self-stabilizing algorithm for coloring the edges of a graph G with 2A — 1 colors,
which runs in O(Am) moves, where m is the number of edges and A denotes the
maximum vertex degree of G. Our algorithm is based on Hsu-Huang’s algorithm for
maximal matching.
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1 Introduction

Edge-coloring of graphs is a classical problem in graph theory [15]. The primary
objective of edge-coloring is to assign colors to the edges of a graph in such a way
that no two neighboring edges obtain the same color. It is known that A + 1 colors
always suffice to color the edges of a graph [21] but finding an optimal coloring is NP-
hard even in a centralized model [13]. In a distributed setting the situation is more
difficult, though some approximation algorithms are known. The article [18] describes
a fast algorithm for (2A —1)-edge-coloring of arbitrary graphs, working in O(A log™ n)
rounds, where log™ denotes the iterated logarithm. In another paper on distributed
graph coloring, Grable and Panconesi [10] gave a distributed algorithm that computes
an edge-coloring in O(loglogn) rounds. The presented solution assumes that the
edges in a graph act as processors. Such an assumption can not be justified in the
standard case, where the edges in a graph model communication channels. The
excellent approximation ratio, obtained in the paper, should be rather seen as a
result for vertex coloring of an associated line graph. An experimental study of the
problem can be found in [16]. In the paper written by Panconesi and Srinivasan [19]
the authors describe an algorithm for (1.6A 4+ O(log' ™ n))-edge-coloring in O(logn)
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time. Another result has been achieved in [4], where the authors propose an algorithm
which obtains an O(A log n)-edge-coloring in O(log* n) time.

Self-stabilization, an interesting concept introduced in [6], can be seen as an ap-
proach for designing resilient distributed systems. A self-stabilizing system must
be able to achieve a legitimate global state starting from any possible global state.
There are several self-stabilizing algorithms for some graph-theoretical problems: ring
orientation [12], center and median of trees [3], spanning tree [1]. Also some graph
coloring algorithms have been described. In [20] an exact algorithm for coloring bipar-
tite graphs was shown. Ghost and Karaata [7] gave an algorithm for coloring planar
graphs with six colors. Their work has been extended in [9], where a generaliza-
tion of the problem has been discussed with performance analysis. In another recent
paper [11] two fast (A 4 1)-coloring algorithms for arbitrary graphs were presented.

However, all these results concern vertex-coloring of graphs. A natural question
arises about the existence of self-stabilizing algorithm for edge-coloring of graphs.
In [17] such an algorithm was introduced. However, in that paper the authors assumed
that the sequence of moves is scheduled by a weakly fair daemon. This implies that
every vertex appears in the schedule infinitely often. In this paper we provide an edge-
coloring algorithm which works in a different model, where the scheduling daemon
chooses any vertex from the set of active ones, without any assumptions on scheduling
fairness. In our approach we assign colors to the edges in a similar way as in Hsu-
Huang’s algorithm [14] edges are included into a matching. That is, a color is assigned
to an edge when one of the neighboring vertices proposes a color and the second one
accepts that proposal.

2 The algorithm

The edge-coloring problem is defined as follows. Let G = (V, E) be a simple graph
with a vertex set V and an edge set E. An assignment ¢ : £ — N is called an
edge-coloring of G if every two adjacent edges are colored by different colors.

In self-stabilizing algorithms each vertex maintains variables determining its local
state. The global state of the system is the union of all local states. Initially, all the
local states contain arbitrary values. A vertex can change its local state by making a
move. We follow the central daemon model [6, 7, 9, 11, 14, 20], where no two nodes
move at the same time. At first glance such a model can be seen as very strong,
however it is equivalent to one where only local mutual exclusion of neighboring
nodes is guaranteed. Moreover, there exist protocols to convert algorithms designed
for a central daemon model to weaker ones [2, 5].

The algorithm for each vertex v is defined by a set of rules of the form if p(v)
then A, where p(v) is a predicate over local states of v and its neighbors, and A is
an action changing the local state of v. We say that a rule is active at vertex v, if a
predicate p(v) associated to this rule is satisfied. Moreover, a vertex v is said to be
active when any rule is active at v, otherwise v is stable. In every move the central
daemon chooses an arbitrary vertex among active nodes and selects any rule which
made it active. Then, an action associated with this rule is performed and the next
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move follows. Please note that neither fairness guarantees, nor any node and rule
privileges are assumed. If all vertices in a graph are stable, we say that the system is
stable, i.e. no further moves are made and the solution can be determined when the
global state is known.

Let D(u,v) = deg(u) + deg(v) — 1 for every pair of adjacent vertices v and v. A
state of any vertex v in our algorithm is an array S,[] consisting of D(v) elements,
where D(v) = max{D(u,v) : v € N(v)} and N(v) denotes the set of vertices adjacent
to v. Each element of S,[] is a pointer, which points to null or to one of the neighbors
of v.

The interpretation of a state is as follows. If S,[i] = u then vertex v suggests a
color i for edge {u,v}. Observe that the proposed color i satisfies ¢ < D(v) < 2A —1,
therefore no more than 2A — 1 colors can be used. The algorithm at vertex v is given
by the following six rules.

RO: if HigD(v)HueN(v)Sv [i] =uAi>D(u,v)
then for £k =1 to D(v) do

if S,[k] = u then S,[k] = null

R1: if 3uEN('u)Elz'<j§D(u,v)Sv [Z] =uANS, [J] =u
then for £ =1 to D(v) do

if S,[k] = u then S,[k] = null

R2: if EueN(v)3i<j§D(u,v)SU [i] =unSu[j] =v
then for £ =1 to D(v) do

if S,[k] = u then S,[k] = null

R3: if HueN(v)HigD(u,v)Sv [ =uASuli]=wAw#v
then for £ =1 to D(v) do

if S,[k] = u then S,[k] = null

Ra: if Juen(wIicnae (Sulil = v A S)li] = null A (F<pguu Suli] # v)) A

J#i
(Vj<D(o)Suli] # U))
then S,[i| =u

R5: if EquN('u) ((VJSD(u,U)Su[j] 7& U) A (ijD(v)SU [.]] 7& u) A (EIiSD(u,v) (SU [Z] =
null A S, [i] = null A Vo (o) Suli] # v)))
then S,[i]| =u
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To get a proper coloring some conditions must hold. Consider a pair of adjacent
vertices u and v. First, colors proposed by u and v to edge {u,v} must agree, i.e.
Sy[i] = w must imply S, [i] = v. Secondly, the condition S,[i] = v and S, [i] = v must
be satisfied for exactly one ¢ < D(u,v). To achieve this a vertex v must not:

1. propose a color to {u,v} which is illegal for u (rule RO),
2. propose more than one color to {u,v} (rule R1),
3. propose a color different from u for the edge connecting them (rule R2),

4. propose a color to {u,v}, which is used by u for another edge incident to u (rule
R3).

In short, rules RO—R3 are necessary to remove potential conflicts. The next two rules
are used to assign a color to an edge. Rule R5 proposes a feasible color if there has not
been any color proposed yet, while rule R4 accepts the color proposed by a neighbor.
In the following sections we show in detail that a proper coloring can be associated
with every stable state, which is obtained in at most O(mA) moves, regardless of the
initial state.

3 Example

In Fig. 1 an example for cycle C5 is shown. Each of the pictures illustrates the states
of the vertices in the consecutive moves. Stable vertices are marked as empty circles,
while the remaining ones are marked as solid. A vertex which is likely to make the
next move is marked by an additional circle followed by the name of rule which makes
it active. The state is given in brackets close to each vertex.

4 Correctness of the algorithm

According to the informal interpretation given in the previous section, a coloring is
given by the following formula:

c({u,v}) =i <= (Spli] = u A Syli] = v). (1)

First, we prove that in every stable state condition (1) provides a legal coloring of the
edges. We divide our reasoning into several lemmas.

Lemma 1. In every stable state, every vertex has at most one color assigned to each
incident edge, i.e. condition Sy[i] = Sy[j] = v must not hold for any pair of adjacent
vertices u, v and i # j.

Proof. Suppose that there exists a vertex v with more than one color assigned to an
incident edge {u, v}, i.e. there exist i < j such that S,[i] = v and S,[j] = u. Then
either v is active according to rule R1 if j < D(u,v), or v is active according to R0 if
j > D(u,v). This contradicts the assumption that the state is stable. O
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Figure 1: An example for the system graph Cj.
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Corollary 1. In every stable state, every vertex v has at most deg(v) different colors
assigned in table S,[]. The other values in S,[] are set to null.

The next lemma follows directly from the definition of rule RO.

Lemma 2. In every stable state, every color proposed by each vertex v to vertex u is
also a proper color for u, i.e. if Sy[i] = u then i < D(u,v).

In the following lemma we argue that in a stable state an edge {u,v} is proposed
the same color by both u and v.

Lemma 3. Assume that a state of G is stable and {u,v} is one of the edges of G.
Then there exists i such that S,[i] = u and Sy[i] = v.

Proof. Consider a stable state and suppose that there exists an edge {u,v} not ful-
filling the thesis of the lemma. There are three possibilities. In the first case neither
u nor v proposes a color for edge {u,v}. Then, according to Lemma 1, vertex u has
at most deg(u) — 1 colors used in S,[]. In the same way v has at most deg(v) — 1
colors used. Therefore, there must exist a color 4 such that 1 < ¢ < D(u,v) and
Syli] = Sy[i] = null. This yields that both w and v are active according to rule R5, a
contradiction.

The second possibility occurs if only one vertex among u, v has a color for {u, v}
assigned in its table S. Suppose that S,[i] = v for some i < D(u,v) and S,[j] # u
for any j < D(u,v). Then, either S,[i] = null or S,[i] = w, where w # u. In the first
case, by Lemma 1, S,[j] = v for no j # i, therefore v is active according to R4. In
the second case vertex u is activated by rule R3.

Finally, if vertices u and v have different colors for edge {u, v}, say S,[i] = v and
Sy[j] = u for i # j, then both u and v are active according to R2. O

The lemmas we have just proved imply the following theorem.
Theorem 1. Every stable state corresponds to a proper edge-coloring of the graph.

Proof. According to Lemmas 1 and 3 formula (1) provides a correct definition of an
assignment ¢. Moreover, ¢ is a proper edge-coloring, since the identity c({u,v}) =
c¢({v,w}) = i for a pair of adjacent edges {u,v}, {v,w} and a color ¢ would imply
Syli] = wand S,[i] = w. O

Now, we show that our algorithm finds a solution in a finite number of moves.
The following observation is straightforward.

Lemma 4. All the rules except R4 and R5 set values to null. Whenever rule R4 or
R5 is applied to a vertex v, it changes S,[i] from null to a pointer to some vertex u.

From now on we say that a state of edge {u, v} is stable, whenever S,[i] = u and
Syli] = v for some ¢ < D(u,v) and S,[j] # u, Su[j] # v for any j # i. Moreover, we
say that a move is performed on edge {u,v}, if it sets S,[i] to u or S,[i] to v or if
it changes S,[i] from u to null or Sy, [i] from v to null. From now on we bound the
number of rules that are performed on a fixed edge {u,v}. It is easy to observe that
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whenever a state of edge {u,v} becomes stable, no move is going to be performed on
this edge any more. Moreover, after the rule R4 sets S,[i] = u then {u,v} becomes
stable, unless S, [j] = v for some j > D(u,v), which may happen if the state of u has
not been cleared by RO yet. Therefore, the following lemma holds.

Lemma 5. If a value S,[i] = u was set by rule R4 and Sy[j] # v for all j > D(u,v),
then the state of edge {u,v} is stable and no more moves will be performed on this
edge.

Now we describe possible sequences of moves performed on a given edge.

Lemma 6. Let u and v be a pair of adjacent vertices. If a value S,[i] = u was set by
rule R5 or if it was set by R4 while S,[j] = v for some j > D(u,v), then only rule
R3 can be applied to set this value back to null.

Proof. First, notice that just after rule R5 or R4 has been used by v none of rules
RO0-R3 involving color i is active at v. Thus, rule R4 must be performed on {u,v}
by u or R5 must set S,[i] to w # v before S,[i] is set to null by any of rules R0O-R3.
However, the former cannot happen as long as S,[i] = u. Therefore, neither R1 nor
R2 can be used to change S, [i] to null. Moreover, since 4 is bounded by D(u,v), rule
RO cannot be applied to set S,[i] to null, either. This implies that only rule R3 can
set S, [i] = null, preceded by setting S,[i] = w # v by R5. O

Observe that rules R0-R2 clear all the fields of S,[] equal to u if some conflicts
on an edge {u,v} are detected. Therefore, combining this observation with Lemma 6
we obtain that rules RO-R2 can be performed only twice on a given edge {u, v} (once
for u and once for v). Thus, the following upper bound holds.

Proposition 1. The total number of uses of rules RO—-R2 does not exceed 2m.

Proposition 1 together with Lemmas 5 and 6 yield that R4 can be performed only
twice on a given edge {u,v} — once before RO clears pointers beyond D(u,v) in S, ]
and S,[] and once after that. This provides the following proposition.

Proposition 2. The total number of performances of rule R4 does not exceed 2m.

In the proof of Lemma 6 we have already remarked that after S,[i] is set to u
by rule R5, it can be set back to null only by rule R3. However, S, [i] needs to be
altered to activate R3 in vertex v. As long as S,[i] = u, rule R5 cannot change S, [7].
Therefore, the only way to activate R3 in vertex v is to perform R4 in vertex u. This
yields the following lemma.

Proposition 3. Assume that S,[i] was set to u by rule RS and afterwards it was
back set to null by R3. Then, rule R4 must have been performed on some edge {u,w}
adjacent to {u,v} between uses of R5 and R3.

Now we are ready to bound the number of moves performed according to rules
R5 and R3, which together with Propositions 1 and 2 gives the following theorem. It
states that at most O(mA) moves are performed before a stable state occurs.
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Theorem 2. Starting from any state, the algorithm obtains a stable state after at
most m(4A + 4) moves.

Proof. First, we bound the number of moves performed according to rules R5 and R3.
Proposition 3 implies that between assignment S, [i] = u by rule R5 and S,[i] = null
by R3 a move of u according to R4 is performed. However, one use of R4 by vertex u
can be involved in at most deg(u) — 1 sequences of moves R5, R3 of vertices adjacent
to u. Therefore, since the number of moves R4 is bounded by 2m, the number of
moves R5 does not exceed 2mA, including final moves R5 performed on each edge.
In the same way the number of uses of R3 is bounded by 2mA.

Moreover, the total number of moves performed according to rules RO-R2 and
R3 does not exceed 4m by Propositions 1 and 2. Therefore, the number of moves is
bounded by m(4A + 4). O

5 The number of colors

We have already remarked in Section 2 that the number of colors used by the algorithm
does not exceed 2A — 1. Below we provide some examples of graph classes for which
this bound is tight.

Proposition 4. The number of colors used by the algorithm on some caterpillars is
equal to 2A — 1 in the worst case.

Proof. A caterpillar is such a tree, that each vertex of degree at least 3 is adjacent
to at most two vertices of degree 2 or greater. Intuitively, a caterpillar is a graph
obtained by attaching pendant edges to a path.

Consider a caterpillar of degree A and length 2A, with all vertex degrees A or
1. Then, for every pair of adjacent vertices u, v of degree A we have D(u,v) =
2A — 1. Therefore, the algorithm can color such an edge with any color from range
[1,...,2A — 1]. However, there are 2A — 1 such edges, thus 2A — 1 colors must be
used. O

In a similar way we prove the following proposition.

Proposition 5. If graph G is regular, then the number of colors used by the algorithm
can be equal to 2A — 1 in the worst case.

In particular, if A = 2, then the number of colors used by the algorithm does not
exceed 3 < x/ + 1.

Corollary 2. The number of colors used by the algorithm for even cycles and paths
does not exceed X' + 1. The algorithm gives an optimal coloring for odd cycles.

Below we prove that the number of colors is close to x’ for stars and double stars,
where a double star is a tree with n — 2 leaves.

Proposition 6. Stars are colored with X' = A colors. Double stars are colored with
at most X' +2 = A + 2 colors.
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Proof. The number of edges of a star is equal to A and every two edges are adjacent.
Therefore, exactly A colors are used. For every pendant edge {u, v} we have D(u,v) <
A 4+ 1. Thus, all pendant edges are colored with colors from the range [1,...,A].
Moreover, there is only one not pendant edge which uses at most one additional
color. O

6 Concluding remarks

In practical implementations it is often desirable for the stabilization time to be
dependent on the severity of the faults which appeared in the system, i.e. a mi-
nor perturbation ought to result in quicker stabilization. This is the motivation to
consider another aspect of performance of self-stabilizing algorithms, namely fault-
containment, proposed by Ghosh, Gupta, Herman and Pemmaraju [8]. Let a k-faulty
state be a state obtained from a legitimate state by perturbing local states of k nodes.
The fault gap is one of the measures of fault-containment introduced in [8]. Tt is de-
fined as the worst case time needed to transform a 1-faulty state into a legitimate
state. The fault gap is preffered to be O(1), which implies that perturbing a single
node causes a constant number of moves. However, it is often difficult or impossible
to obtain such performance.

As we remarked in Section 4, if an edge is stable, no move is going to be performed
on this edge by the algorithm. Therefore, starting from a 1-faulty state, all the moves
will be performed on the edges incident to the faulty vertex only. Moreover, in the
same way as in proofs presented in Section 4, we can show that each such edge will
be involved in O(1) moves. It follows that the fault gap of the proposed algorithm
is O(A). More quantitative results concerning fault-containment of self-stabilizing
edge-coloring can be the goal of future study.
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