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Abstract The modelling of a system containing implants used in ventral hernia repair and human tissue suffers
from many uncertainties. Thus, a probabilistic approach is needed. The goal of this study is to define an efficient
numerical method to solve non-linear biomechanical models supporting the surgeon in decisions about ventral
hernia repair. The model parameters are subject to substantial variability owing to, e.g., abdominal wall parameter
uncertainties. Moreover, the maximum junction force, the quantity of interest which is worthy of scrutiny due
to hernia recurrences, is non-smooth. A non-intrusive regression-based polynomial chaos expansion method is
employed. The choice of regression points is crucial in such methods, thus we study the influence of this choice
on the quantity of interest, and look for an efficient strategy. For this purpose, several aspects are studied : (i) we
study the quality of the quantity of interest, i.e. accuracy of the mean and standard deviation, (ii) we perform
a global sensitivity analysis using Sobol sensitivity indices. The influence of uncertainties of the chosen variables
is presented. This study leads to the definition of an efficient numerical simulation dedicated to our model of
implant.

Keywords Stochastic Finite Element · global sensitivity analysis · ventral hernia repair · optimal regression
points choice

1 Introduction

The background of this study is ventral hernia, a common medical problem. One of the treatment methods is
Laparoscopic Ventral Hernia Repair (LVHR), consisting of connecting an implant in the form of surgical mesh
to the abdominal wall, under a hernia defect. Despite many medical studies on this topic, recurrences and other
postoperative complications still occur [11]. There is no consensus on the material and method of fixation which
should be used in incisional hernia repair [9].

In order to address this issue, a few studies have been devoted to the mechanical approach to ventral her-
nia problems. Junge et al. [31] investigated abdominal wall elasticity and compared it with the properties of
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commercial implants. Some studies comparing mechanical behaviour of various implants were conducted by, e.g.
[18] and [38]. Since it was shown that the properties of the abdominal wall are crucial in this matter [31], some
studies on mechanics of the abdominal wall [55,43] or its components, e.g. linea alba [16], were also conducted.
Moreover, some physical models of the implant-abdominal wall system were performed and described in [54,37].
Computational models of the implant-human tissue system were also developed and used in simulations [26,35,
44].

Many uncertainties appear in modelling in ventral hernia repair context. One of the issues in mathematical
modelling and design, is the high variability of the mechanical properties of the abdominal wall tissues, e.g.
properties of linea alba [1] and imposed loads, e.g. the intra-abdominal pressure [15]. On the other hand, models
of the human abdominal wall are often based on studies on animal ex vivo samples [25] due to limited data. There
are only a few human studies of abdominal wall properties in vivo [47,56]. Identification of human abdominal wall
properties in vivo is challenging. In general, in the mathematical modelling of the implant-human tissue system
there are a lot of uncertainties. Therefore, a probabilistic approach is required to provide information about the
influence of these uncertainties on the behaviour of the implant-abdominal wall system and to include them in
the implant and fixation design. As recurrences of hernia are usually caused by abdominal wall tissue-implant
connection failure, the study is focused on finding for the maximum junction force, which should be minimised
[36]. The second quantity of interest is maximum deflection of the implant, which is related to the issue of
excessive mesh bulging. We are not only interested in distribution and statistics, but also in the sensitivity of
its value with regards to the model input. Global sensitivity analysis allows the model variables to be arranged
according to their impact on the variability of the output [48].

In order to solve the nonlinear Finite Element models of implant tissue systems [36], commercial software is
used. Thus, a non-intrusive probabilistic method is chosen. The Monte Carlo (MC) is a very popular method [22],
which allows ‘black-box’ models to be used. However, a large number of sampling points is required to obtain good
accuracy, which in the case of more complex models can be computationally intractable. One of the methods to
decrease the computational cost is polynomial chaos expansion (PC) [57]. PC is a method enabling approximation
of a computational model by a series of multivariate polynomials. Ghanem and Spanos [24] developed this method
in the mechanical field and proposed the spectral stochastic finite element method. Xiu and Karniadakis [59]
generalized it to non-gaussian probability measures showing that convergence can be improved by employing
polynomials from the Askey scheme orthogonal to the input distribution. The originally [24] proposed method of
calculating coefficients - Galerkin projection - belongs to the intrusive group of methods due to code modification
requirements. However, later some non-intrusive methods involving just a set of deterministic calculations without
model code modification were also developed. The key methods in this group are nonintrusive projection [33]
and regression method [30,4]. Polynomial chaos expansion can also be employed to calculate global sensitivity
Sobol indices [48,17] with the computational cost hardly exceeding the case of calculating polynomial coefficients.
PC can be useful in design under uncertainty in cases when a probability density function is required [34]. PC
meta-models were used in reliability based design optimisation (RBDO) in [21,49]. Moreover, the Kriging method
[19] widely-used in RBDO [19] was combined with PC to create a meta-modelling methodology combining the
advantages of both methods [42]. PC suffers the so-called curse of dimensionality. In order to reduce this problem
an adaptive method decreasing the number of coefficients has been proposed in the literature [7].

The accuracy of meta-models created by non-intrusive PC depends on the choice of regression point. The
most common approaches are to draw them randomly [14] or to choose the roots of a higher order polynomial
[48]. The comparison of some methods can be found in the literature: in the context of meta-modelling and
computer experiments in [13], for PC in [23] and the response surface method in [28,58]. Nevertheless, since the
efficiency of different methods is problem-dependent, it is necessary to choose carefully the regression points for
a given problem with a given quantity of interest.

In this paper we apply the PC method to hernia implant modelling. The aim of the study is to compare
different methods for choosing PC regression points. The goal is to find a methodology for quantification of the
uncertainty in the implant tissue system models which is computationally tractable. The chosen methodology will
be employed in the further study with the use of such models to optimize under uncertainty parameters of ventral
hernia repair. The target models are characterized by non-linearity, non-smoothness of quantity of interest and
quite a large variance of random variables.

The study is structured as follows: following the introduction, section 2 presents the surgical mesh models. In
section 3 polynomial chaos expansion and the global sensitivity framework are introduced and section 4 goes on
to describe different methods of choosing the regression points. We present the results of the study in section 5
which is divided into two parts: the first shows the results of the comparison of the methods for regression point
choice, while the second provides the results of the global sensitivity analysis.

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 1: Scheme of surgical mesh and abdominal wall

2 Models of the surgical mesh

We considered three models of the implant used in LVHR. The first is a simplified cable model whose results
we compare with conclusions drawn on the basis of local sensitivity [51]. We also apply two Finite Element
membrane models of implant (Fig. 1) with different boundary conditions. The first one is imposed on the forced
displacement of supports and the second one on the intra-abdominal pressure.

2.1 Model 1: Cable model of a surgical implant

Let us consider a cable (Fig. 2) with elastic supports and displacement of the cable edges simulating an implant
connected to the flexible edges of hernia [51]. The quantity of interest is the horizontal reaction H of the cable,
a root of the following equation:

H3(1 +
ls
L0

) +H2(−H0 +∆p
EA

L0
)− EA

L0

g2l3

24
= 0, (1)

where E is the Young’s modulus of the cable material, L0 is the initial length of the cable, H0 is the initial force
in the cable, ∆p the displacement of the cable edges resulting from the fascia elasticity, A the cross sectional area,
g the applied pressure, l the cable span and ls the implant overlap. The values of the constant model parameters
are shown in Table 1.

Szymczak et al. [51] performed a local sensitivity analysis on this model. The identical four random variables
are considered in our study X = [E,L0, H0,∆p]

>. The uniformly distributed random variables are assumed with
limits considered in [51]. The parameters of the distribution of the variables are presented in Table 2.

g
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Fig. 2: Cable model

2.2 Model 2: Implant subjected to the imposed displacement of supports

The second of the surgical mesh models considered (Figure 3) refers to the case when the implant is subjected to
an imposed displacement of the supports [36]. This simulates the displacement of the tacks during the deformation
of the abdominal wall during daily activities [52]. This model was proposed in [36].
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parameter unit value
A m2 1.35e-5
g N/m 148.8
l m 0.1
ls m 0.04

Table 1: Values of cable model parameters (1)

variable unit lower limit upper limit
E MPa 5.385 16.155
L0 m 0.0945 0.1155
H0 N 0 4
∆p m 0.0025 0.0075

Table 2: Values of cable model random variables (1)

support p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
mean [cm] 0.575 0.2 0.225 0.4 0.45 0.45 0.4 0.225 0.2 0.575

standard deviation [cm] 0.115 0.343 0.123 0.793 0.215 0.215 0.793 0.123 0.343 0.115

Table 3: Values of mean and standard deviation of normal random variables applied as supports displacement in
the implant membrane model 2

Let us consider a polygonal membrane with 10 cut corners, locating the supports where simulated fasteners
are situated (Fig. 3). It is assumed that the hernia orifice has a 5 cm diameter. The mesh overlap recommended
by surgeons is 4 cm. Therefore the span of the membrane is 13 cm. Fasteners are placed every 4 cm, which is the
maximum distance according to the surgeon recommendations. The material model of the implant is orthotropic,
piecewise linear elastic. The membrane is subjected to displacements of the supports, i.e., fastener displacement
caused by the abdominal wall deformation resulting from daily activities of the patient [52]. Due to the wide
variability and large uncertainty of the abdominal wall mechanical properties and consequently of the fasteners’
displacement, the displacement of the supports are assumed random. The hernia is assumed to be located in
the central part of the abdominal wall. The properties of one of the commercial implants (DynaMesh, properties
given in[36]) are taken. The stiffer direction of the implant is assumed to be orientated vertically (parallel to the
cranio-caudal axis, which is the orientation causing higher forces) for simulations done to compare methods. In
the next step, the orientation is changed from 0 to 90 degrees with 15 degree steps. The random variables are
assumed to be independent and normally distributed. The mean values and standard deviations are taken from
[52], post-processed as in [36] and presented in Table 3.

It can be seen that some of the variables are characterized by quite a large variance (e.g. p4).
The Finite Element system MSC Marc is used. The model is composed of 8-node quadrilateral membrane

elements. The analysis is geometrically and physically non-linear.
Due to the fact that recurrences of hernia are usually caused by connection failure, our study is focused on

the maximum connection force, which is also a reaction force in the model supports. The supports simulate the
connection between implant and fascia. The reaction forces are calculated in each support and then a maximum
of them is found in order to obtain the maximum connection force:

Rmax = max(Ri) for i = 1, . . . , nfas, (2)

where Ri is the reaction force in i-th model support, and nfas is the number of fasteners which is equal to
the number of model supports. In the presented example, nfas = 10. Calculating the maximum can lead to a
non-smooth problem, which can be challenging for a PC method. Therefore, two approaches are proposed and
compared:

Approach 1 - direct approach with one meta-model, where the quantity of interest approximated by PC is directly
Rmax:

Y = Rmax; (3)

Approach 2 - alternative approach is to firstly create a meta-model for each reaction separately:

Yi = Ri (4)

and then to find the maximum from the realisations of all meta-models at randomly chosen 105 sample points.

Y = max(Yi) for i = 1, . . . , nfas. (5)
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variable lower limit upper limit
pia [mmHg] 40 127
kf [kN/m] 0.6 15.5
kaw [kPa] 17 38.5

Table 4: Limit of unifrom distribution, model 3

The second approach can help in dealing with non-smoothness, but the results for the target quantity of
interest are not direct. Sensitivity in the second approach is calculated as in the MC method performed using a
set of meta-models.

Three cases with different numbers of random variables are considered:

– Example 2-3D three random variablesX = [pi]
>, i = 1, 2, 3 (other kinematic perturbations are deterministic).

This example is not physically meaningful. It has been considered because of smaller computational cost and
lack of the rank-deficiency problem, which appears in case of 10D problem. In this case, the calculation of
the sensitivity indices by MC is expensive, but still affordable.

– Example 2-10D (all kinematic perturbations are modelled by independent random variables) X = [pi]
>,

i = 1, . . . , 10
– Model with reduced number of variables based on sensitivity analysis outcome of 10D model.

Fig. 3: Scheme of model 2 - the implant subjected to displacement of supports

2.3 Model 3: implant subjected to intra-abdominal pressure

The third model (Figure 4) is also composed of membrane elements [35]. It is subjected to dynamic pressure pia
simulating intra-abdominal pressure during coughing [15]. In the overlap region of an implant with the abdominal
wall there is an elastic foundation zone with elasticity kaw simulating the elasticity of the abdominal wall layers.
In the location of tacks elastic springs are situated with elasticity kf relating to the fascia elasticity.

The most uncertain factors are modelled by uniformly distributed random variables (Table 4). The limits of
pia are based on the study of Cobb et al. [15]. Limits of elastic foundation stifness related to the abdominal wall
stiffness are based on in vivo study of Song et al [47] and of the spring stifness related to the fascia stiffness in
[53].

In this case there are two quantities of interest: the maximum reaction of all the supports Rmax and the
maximum deflection of the center of the implant umax. Since this is a dynamic analysis, the maximum over time
is also found.
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Fig. 4: Scheme of model 3

3 Polynomial chaos expansion for stochastic problems

LetM be the considered computational model. The modelM is a deterministic mapping:

y =M(x), (6)

where x = [x1, . . . , xM ]
>
∈ RM , with the number of variables M ≥ 1, is an input and y is an output — the

quantity of interest. Due to uncertainties, the input is represented by a random vector X(ω), ω ∈ Ω with joint
probability density function (PDF) fX, where Ω is the space of random events ω. Hence, the model response is
also a random variable:

Y (ω) =M(X(ω)). (7)

For simplicity of notation ω will be skipped in the following text.
In view of potential application to arbitrarily complex models, we will only consider non-intrusive methods.

In such methods, a random output is obtained by a series of deterministic calculations. Therefore, modelM can
be even discretized by the Finite Element (FE) method and the commercial FE ‘black-box’ system can be used
to solve the problem. This makes the presented methods easily applicable.

3.1 Global sensitivity

The global sensitivity can be used to quantify the global effect of uncertain input variables on the model response.
To derive Sobol sensitivity indices [46,6], the model (6) is decomposed as follows:

M(X) =M0 +
M∑
i=1

Mi(Xi) +
∑

1≤i<j≤M
Mij(Xi, Xj) + · · ·+M1,2...M (X). (8)

This is called ANOVA (ANalysis Of VAriance) decomposition and is unique if:∫
HXk

Mi1...is(Xi1 , . . . , Xis)fXk
(Xk)dXk = 0 for 1 ≤ i1 < · · · < is ≤M, k = i1, . . . , is (9)

M0 =

∫
HX

M(X)fX(X)dXi . . . dXM , (10)
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where HX is the support of random vector X and HXk
is the support of random variable Xk, fXk

is the marginal

PDF of random variable Xk. All the variables Xi, . . . , XM are independent, so fX(X) =
M∏
i=1

fXi
(Xi).

In order to obtain one-dimensional terms,Mi(Xi), the formula (8) is integrated with respect to the probability
measure over all variables except Xi over an associated domain HX\Xi

:∫
HX\Xi

M(X)
∏
k 6=i

fXk
dXk =M0 +Mi(Xi). (11)

In order to obtain two-dimensional terms,Mij(Xi, Xj), the formula (8) is integrated over all variables except
xi and xj over an associated domain HX\{Xi,Xj}:∫

HX\{Xi,Xj}

M(X)
∏
k 6=i,j

fXk
dXk =M0 +Mi(Xi) +Mj(Xj) +Mi,j(Xi, Xj) (12)

and so on, to obtain higher dimension summands.
The partial variances are:

Di1...is =

∫
HXi1

,...,Xis

M2
i1...is(Xi1 , . . . , Xis)fXi1,...,is

dXi1 . . . dXis (13)

and the total variance is:

D =

∫
HX

M(X)2fXdX1 . . . dXM −M2
0. (14)

The global sensitivity indices are:

Si1,...,is =
Di1,...,is

D
. (15)

The total global sensitivity index is the sum of all sensitivity indices including the mixed terms, which
correspond to the i-th variable:

SToti =
∑

i⊂{i1,...,is}

Si1,...,is . (16)

It can also be shown that:

SToti = 1− S∼i, (17)

where S∼i is a sum off all partial indices which do not include the i-th variable.

3.2 Monte Carlo method

The MC method [22] is based on evaluations of the deterministic model M done for NMC sampling points
generated with a given PDF. It is one of the most popular and widely used non-intrusive methods.

Let Xn = [X1n, X2n, . . . , XMn]
> be n-th sample point, n = 1, 2, . . . NMC . The meanM0 can be estimated

by:

M0 ≈MMC
0 =

1

NMC

NMC∑
n=1

M(Xn) (18)

and the variance D as

D ≈ DMC =
1

NMC

NMC∑
n=1

(
M(Xn)

)2 − (MMC
0 )2. (19)

TheMp% estimate percentile p%, when p% of NMC realisations gives the valueM(Xn) ≤Mp%.
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3.2.1 Calculating Sobol indices using the Monte Carlo method

Two sets of NMC points are independently drawn and denoted with superscripts (1) and (2). Let X̃
(1)
in =

[X
(1)
1n , X

(1)
2n , . . . , X

(1)
(i−1)n, X

(2)
in , X

(1)
(i+1)n, . . . , X

(1)
Mn]

> be sampling points from the set (1), where X(1)
in is replaced

by X(2)
in from the set (2) and let X̃(2)

in = [X
(2)
1n , X

(2)
2n , . . . , X

(2)
(i−1)n, X

(1)
in , X

(2)
(i+1)n, . . . , X

(2)
Mn]

> be sampling points

from the set (2), where X(2)
in is replaced by X(1)

in from the set (1). The partial variance can be approximated by:

DMC
i =

1

NMC

NMC∑
n=1

M(X
(1)
n )M(X̃

(2)
in )− (MMC

0 )2. (20)

The partial Sobol index is:

SMC
i =

DMC
i

DMC
. (21)

In order to calculate the total Sobol index without the necessity of using all the required partial indices, one can
calculate:

DMC
∼i =

1

NMC

NMC∑
n=1

M(X
(1)
n )M(X̃

(1)
in )− (MMC

0 )2. (22)

Then, the calculation of the total Sobol index can be done by:

STot,MC
i = 1− DMC

∼i
DMC

. (23)

3.3 Polynomial Chaos expansion

3.3.1 Polynomial Chaos basic equations

The following description of PC is based on [48,5,6]. Let the input variables Xi in X of the model M (7) be
independent. Next, the output Y may be expanded via the polynomial chaos expansion as follows:

Y =M(X) =
∑

α∈NM

aαΦα(X), (24)

where aα are unknown coefficients to be computed, and Φα is multivariate polynomial basis, with multi-index α =
[α1, . . . , αM ]. Multivariate polynomials are constructed from univariate polynomials by multiplying univariate
polynomials φαi of order αi:

Φα1,...,αM (X) =
M∏
i=1

φ
(i)
αi (Xi). (25)

The employed polynomials are orthonormal:

〈φi, φj〉 =
∫
HX

φi(X)φj(X)fX(X)dX = δij , (26)

where δij is Kronecker symbol equals 1 if i = j and 0 otherwise.
Xiu and Karniadakis [59] proposed choosing the polynomials according to the type of distribution. It can be

shown that each subset of the orthogonal polynomials in the Askey scheme has a different weighting function in
the orthogonality relationship. For example, the Hermite polynomials are orthogonal with respect to Gaussian
measure and Legendre polynomials with respect to uniform probability measure.

The input random variables should be transformed into reduced variables, e.g. for normal distribution to
standard normal variables:

X = T (ξ). (27)

Next, the model response can be expressed as a function of the reduced variables

Y =M(X) =M◦ T (ξ) =
∑

α∈NM

aαΨα(ξ). (28)
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Since X(ξ), for simplicity of notation, we will write in the following textM(ξ).
In computational practice there is a need to truncate an infinite expansion. Let A be a truncation set, which

is a finite subset of NM . The classic method of truncation, applied in the paper, is to take all M -dimensional
polynomials of a degree equal to or smaller than the established maximum degree p:

AM,p = {α ∈ NM :
M∑
i=1

αi ≤ p}. (29)

Then, the cardinality of the set A and the required number of coefficients is P = |AM,p| = (M+p)!
M !p! . However,

this method can be computationally intractable in the case of high-dimensional problems. In order to reduce the
so-called curse of dimensionality problem one of adaptive sparse PC algorithms [5,27] can be used.

Finally, a meta-modelMPC is obtained and the response can be approximated as:

Y ≈ Y PC =MPC(ξ) =
∑
α∈A

aαΨα(ξ). (30)

3.3.2 Computation of the coefficients

The method of computing response coefficients first used in spectral stochastic Finite Element analysis [24]
requires implementation in the FE code. Hence, it can be classified as an intrusive method. In contrast, non-
intrusive methods allow the black-box models, e.g. FE commercial codes. In this work only non-intrusive methods
will be considered owing to the feasibility of their application to quite complex biomechanical models. However,
this method depends on the choice of sampling points used in the computation. The two main non-intrusive
methods for calculating coefficients are: non-intrusive spectral projection (NISP) [33] and regression approach
[4]. NISP is based on orthogonal projection. The Smolyak quadrature can be employed to reduce computational
cost. However, its accuracy depends on the function smoothness [17]. Huberts et al. [29] compared both approaches
and concluded that regression based approach generally yields better results when compared to NISP. One of the
indicated reasons was the limitations of the Smolyak quadrature. In this study we employ the regression-based
approach which is less sensitive to non-smoothness.

Let the response of the model be expressed as a sum of a truncated series and a residual:

Y =M(X) =
∑
α∈A

aαΨα(ξ) + ε. (31)

To conduct regression, a numerical experiment must be designed. N regression points are chosen in the space
of reduced variables (e.g. in the case of normal distribution standard normal space) Ξ = [ξ(1), . . . , ξ(N)] and
these constitute the so-called experimental design. The modelM is computed on N regression points after their
isoprobabilistic transformation to obtain a vector of exact solutions Yex = [M(X(1)), . . . ,M(X(N))]>. Let us
collect the coefficients aα into a vector a = [aα0 , . . . , aαP−1 ]

>, where P is cardinality of the truncation set:
P = |A|. Let Aij = Ψαj (ξ

(i)), i = 1, . . . , N ; j = 1, . . . , P . Coefficients a can be computed by solving the least
square problem minimizing ε:

a = (A>A)
−1

A>Yex. (32)

The matrix A>A can be called an information matrix and (A>A)−1 is a dispersion matrix, e.g. after [2]. The
elements on the main diagonal of the dispersion matrix represent variance and the others are their covariance.

3.3.3 Post-processing of coefficients and global sensitivity with PC

Applying (30) as a meta-model, the calculations even for a large number of sampling points can be conducted
with a negligible computational cost to obtain the sought values or to draw output histograms. However, some
values, e.g. the meanM0 and the variance D, can be approximated directly from the PC coefficient:

M0 ≈MPC
0 = a0, (33)

D ≈ DPC =
∑

α∈A\{0}

a2α. (34)

Sobol indices can be also calculated on the basis of PC coefficients as shown by [48,6,17]. Such postprocessing
of PC coefficients shows negligible computational costs, thus an entire method is very attractive when compared
to MC calculations.
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Let Ai1,...,is be a set of α-tuples, such that it corresponds to the polynomials Ψα which depend only on the
input parameters Xi1 , ..., Xis .

Ai1,..,is = {α ∈ A : αk = 0⇔ k 6∈ {i1, . . . , is}}. (35)

Next, the truncated polynomial chaos expansion can be represented as:

MPC(ξ) = a0 +
M∑
i=1

∑
α∈Ai

aαΨα(ξi) +
∑

1≤i1<i2≤M

∑
α∈Ai1,i2

aαΨα(ξi1 , ξi2) + ..+

+
∑

1≤i1<...<is≤M

∑
α∈Ai1,...,is

aαΨα(ξi1 , ..., ξis) + ...+
∑

α∈A1,...,M

aαΨα(ξ).

(36)

When the employed PC basis is orthonormal, the properties (9) and (10) are fulfilled. Hence, the summands in
(36) can be identified as summands in (8):

Mi1,..,is(ξi1 , ..., ξis) =
∑

α∈Ai1,...,is

aαΨα(ξis , ..., ξis). (37)

Next, the sensitivity indices SPCi1,..,is can be calculated as:

SPCi1,..,is =
1

DPC

∑
α∈Ai1,...,is

a2α. (38)

Let us define the set AToti which contains all α-tuples containing the non-zero i-th index:

AToti = {α ∈ A : αi > 0}. (39)

Then, the total sensitivity indices can be calculated as:

STot,PCi =
1

DPC

∑
α∈ATot

i

a2α. (40)

4 Choice of regression points for PC coefficients calculation

The key problem of applying the non-intrusive polynomial chaos expansion method is the choice of points used
to calculate PC coefficients. A right balance between accuracy of the quantity of interest and affordable compu-
tational cost is not easy to achieve. Many approaches have been proposed in the literature. This study focuses on
two common families of methods: on the one hand random and on the other hand quasi-random methods, and
deterministic methods based on optimality criteria.

4.1 Random and quasi-random choice

A widely-used method is to choose regression points through the use of random or quasi-random methods.

– Pure random sampling - a simple and widely-used method to randomly draw points with respect to the
distribution.

– Latin Hypercube Sampling (LHS) [39] - also a widely-used method of choosing sampling points in the PC
applications, e.g. [14]. Sample points drawn by the Latin Hypercube Sampling method are better distributed
in the sample space compared to the pure random method. The method is to firstly divide PDF into NLHS
disjoint intervals of equal probability and then to randomly draw from each subset one value. Next the samples
are permuted to obtain points in M -th space.

– Low discrepancy sequences - [40] try to maximize the uniformity of sample points. Halton and Sobol sequences
are a popular choice in the literature, and are thus considered in the paper. The quasi-random methods were
used in PC application in [8] and [23].
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4.2 Experiment Design based on optimality criteria

Isukapalli [30] proposed the construction of the polynomial chaos numerical experiment on the roots of orthogonal
polynomials. In a one dimensional case, Hermite polynomial roots fulfil D-optimal criteria taken from the theory
of optimum experiment design [20]. Although problems of physical experiment design differ from computational
experiments since observations are subjected to random errors, e.g. due to measurement accuracy, the same
criteria have been used in the choice of PC regression points. The criterion which is the most commonly used in
PC is D-optimality, e.g. [60], which is also used in response surface methodology [41]. However, as mentioned in
[32], other criteria like A, E or G-optimality, may be considered in the PC application.

The D-optimal criterion was originally proposed by Smith [45]. D-optimal experimental design points Ξ∗ =
[ξ(1)∗, . . . , ξ(N)∗] leads to the minimisation of dispersion matrix (A>A)−1 determinants, which is equivalent to
the maximisation of the information matrix A>A determinant.

det(A∗>A∗) = max
Ξ

((det(A>A)), (41)

where A∗ij = Ψαj (ξ
(i)∗), i = 1, . . . , N ; j = 1, . . . , P .

According to [2], the higher the determinant of the information matrix, the closer to orthogonality in the
dispersion matrix. Orthogonality implies mutual independence of coefficients, which is beneficial when studying
the significance of model coefficients.

It should be mentioned that the roots of a higher order polynomial (p+ 1) are D-optimal in the case of 1D
Hermite polynomials when a weight function in the form of w = exp(−x2) is applied. Thus, the final information
matrix is in the form A>WA, where W is a diagonal matrix, whose elements are w [3].

4.2.1 Multi variable experimental design

Berveiller et al. [4] used a method based on the approach proposed by Isukapalli [30] to obtain an M -dimensional
input comprising combinations of Hermite polynomial roots of order p + 1. However, the number of (p + 1)M

regression points is usually computationally intractable in engineering practice. Moreover, acceptable accuracy can
usually be achieved for a much smaller number of points. Therefore, in the method mentioned, a smaller number
of points is used in calculations. These points are the closest to the origin (Fig. 5a). Different recommendations
about the sufficient number of points can be found in the literature, e.g. P (M − 1) points [4] or 2(P +1) points
[30]. The main drawback of this approach compared to random-based approaches is that we can easily obtain
rank-deficient information matrix [48] which requires adding more regression points.

Although the cited approach is based on the D-optimal concept, the obtained solutions are not precisely
D-optimal. The D-optimal set chosen from the initial candidate set of points constructed from combinations of
polynomial roots of order p+1 is shown in Fig.5, in contrast to the classic (points closest to the origin) approach.
The D-optimal design with Hermite roots as the candidates set in the context of PC was proposed by [60]. The
difference between D-optimal design including weight is visible (Figs. 5b and 5c). However, if we enlarge the
candidate set we may not obtain Hermite roots, e.g. Fig. 6.

Applying sets of roots of polynomials of p + 1 order has also been used with uniform distribution, and in
that case the Legendre polynomials are used [48]. However, in the 1D case the D-optimal solution for Legendre
polynomials is the roots of (1− x2)L′p(x) [3], where Lp is Legendre polynomial of order p.

In [60], combinations of 1D optimal points are chosen to be the candidate set of points to the D-optimality
procedure. Burnaev et al. [10] propose a uniform grid and LHS sampling in the case of the normal distribution
in their method. The paper studies the influence of the choice of the initial candidate set of points from which
an optimum experiment design is sought. One of the proposed methods is to choose the D-optimal set from a
purely random set drawn from the distribution or from LHS sampling. Including the weight by maximizing the
determinant of A>WA or not including it by maximizing the determinant of A>A, influences the optimisation
outcome in the case of non-uniform distribution in D-optimality procedure. Therefore, the influence of including
weight has been investigated. Figure 7 shows the difference in the optimisation outcome in these two approaches,
when the candidate set of points was drawn by the LHS method. The subsequent approach is to draw at random
points from a set of combinations of the 1D D-optimal points, which is similar to the classic approach but helps
to avoid the rank-deficiency problem.

To sum up, the following methods are compared within this article:

S1 - Sobol sequence [8];
S2 - Halton sequence [8];
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(a) Points chosen by method M1
proposed by [4]
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(b) points chosen by method M2a
- D-Optimal choice from candi-
date points set composed of the
combination of polynomial roots
of order p+ 1 without weight

ξ1

-4

-3

-2

-1

1

2

3

4

ξ 2

(c) points chosen by method M2a
- D-Optimal choice from candi-
date points set composed of the
combination of polynomial roots
of order p+ 1 with weight

Fig. 5: Choice of points in the case of Hermite basis,M = 2, p = 7, black points - chosen points from combinations
of polynomial roots of order p+ 1

M1 - combination of roots of polynomial of order p + 1- the closest to the origin points, classic method [48];
However, in the case of Legendre polynomials these points are not D-optimal. That is why method M1b with
combination of D-optimal points in the case of uniform distribution is also investigated;

M2 - D-optimal roots from Hermite polynomial (1D - D-optimal points). In the case of normal distribution in
variants:
– without weight - M2a [60];
– with weight - M2b;

M3 - randomly drawn subset of 1D - D-optimal points;
M4 - D-optimal design with a random candidate set of points. In the case of normal distribution in variants:

– without weight - M4a ;
– with weight - M4b;

M5 - D-optimal design with a candidate set sample by LHS method. In the case of normal distribution in variants:
– without weight - M5a [10];
– with weight - M5b.

In order to find the D-optimal set in the case of methods M2, M4 and M5 the row-exchange algorithm of
function candexch build in Statistics and Machine Learning Toolbox in MATLAB 2016a is used .

5 Results

5.1 Comparison of regression point methods

The accuracy of PC for different choices of design of experiment was investigated. The methods to choose the
points described in section 4 were compared on models described in section 2. The comparison of the methods
is focused on the closeness of the approximated by PC meta-model solution V PC to the reference value V ref ,
which may be the mean, standard deviation, 95th percentile or sensitivity indices. The reference error Err% can
be defined as:

Err% =
|V ref − V PC |
|V ref |

· 100. (42)

In order to compare globally the sensitivity analysis accuracy, Errs is defined as follows:

Errs =

√√√√ M∑
i=1

(STot,refi − STot,PCi )2, (43)

where STot,refi is a reference value of i-th random variable, obtained by MC.
It is important to remark that we only study the error due to the PC approximation. The error due to the

FE approximation in example 2 is fixed and is not studied here. See, e.g. [12] for more explanations on splitting
goal-oriented error estimates.
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The V ref is obtained by MC conducted with the use of at least 105 sampling points. However, performing
MC for each problem is often intractable computationally. The goal of comparison of methods on model 2 is
to establish a methodology which can be applied to similar models without the necessity of performing MC
simulations. Since model 3 is more computationally expensive than model 2, a full MC was not performed in this
case.

As a substitute for the reference solution, error estimation techniques can be used, see for example [12]. A
leave-one-out method, already employed in the adaptive regression-based PC [7], can also be considered.

5.1.1 Cable model

Figure 8 shows the value of Errs for all methods employed in model 1. It should be noted that the distance is
calculated to the value already approximated by MC STot,Refi = STot,MC

i . Taking a combination of roots of
polynomial order p+1 as the candidate set to D-optimisation gives a better result than the combination of 1D-D
optimal points. The Halton sequence gives better results than the Sobol sequence.

5.1.2 Membrane model subjected to the displacement of supports -3D case

Firstly, the same methods are compared on the membrane example with 3 random variables (example 2-3D). The
total sensitivity index STot3 was omitted due to its very small (0.0009) value when compared to STot1 and STot2 .

The method M1, popular in the literature, has been tested for different orders. Figure 9 presents Err% of
the mean, standard deviation and 95th percentile of Rmax obtained by: approach 1 (4) and approach 2 (5). The
difference between these two approaches is not important in this example. A higher difference can be seen in the
case of Errs (Fig. 10), where for some low orders the approach 1 gives more accurate results than the approach 2.
In further simulations of other examples, only approach 1 (4) is employed. Both figures represent the case when
all combinations of Hermite roots of order p+1 are taken into account, which is more than the number of points
(M − 1)P recommended in the literature [4] .

Figures 11 and 12 show the results obtained by method S2 for different orders and numbers of points c · P
proportional to size of PC basis P . It can be noted that in the case of the S2 method, an increasing order may
lead to an increase in error. What is more, the order which minimizes error is different for different quantities
(mean, standard deviation, 95th percentile). Higher orders are more accurate for calculating the 95th percentile.
As already observed in the literature, starting from a certain level, a further increase of the number of points
does not significantly improve the accuracy [4] in the case of mean, standard deviation and 95th percentile. The
same can be also observed in the case of Errs for low orders of PC, but when the higher-orders are applied, the
situation is less stable. These results show that it is not simple to master PC. Increasing the order of the PC
is not a systematic solution for having good results. First, the computational cost increases, and the choice of
points appears. Moreover, the quality of the solution may deteriorate numerically.

The methods M2, M4 and M5 were applied in two variants: not-including weight (a) and including w =
1√
2π
e−ξ

2/2. The calculations were performed for the same initial candidate set of points for M2a and M2b, M4a
and M4b, M5a and M5b. Table 5 shows a comparison between the results obtained for both approaches for PC
order 3. In the method M1, only the error of the 95th percentile is smaller in the variant without weight. Methods
M4 and M5 from the point of view of the mean from repeated performance are better in the variant with weight.
Moreover, in the majority of cases, including the weight leads to higher accuracy. This is also true in the case of
a single pair of calculations taken from the same set performed for the same candidate set. Nevertheless, cases
when some of the Err% are lower without the weight can be found for some random draws and quantities.

Figures 13, 14, 15 show the error obtained using methods M2 and M5, respectively, also for higher orders.
The relation between variants with and without weight can differ with the order of PC. Including the weight
seems to be a better choice, when a low PC order is applied.

A comparison of all methods for example 2-3D is presented in Table 5. The sensitivity of variable number 2 is
already small (0.144) so the value of the relative error seems to be high. The Halton sequence (S2) out-performs
Sobol sequence (S1) in the case of all investigated quantities as observed in previous examples. To sum up, in
the case of example 2-3D, method M1 is the least convenient due to rank deficiency problem (requires a larger
number of regression points). The D-optimal choice seems to work in both variants, but is generally better when
weight is included. That is why in the example with 10 random variables (example 2-10D) the variants without
weight in method M4 and M5 were excluded due to the size of the problem. Variability of results in case of
methods involving random sampling was low, especially in the case of M3.
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Err% Errs

Mean Standard deviation 95th percentile STot
1 STot

2

S1 0.63 30.21 3.1 9.09 82.53 0.1416
S2 0.09 20.36 0.93 7.62 49.02 0.1037
M1 4.14 11.19 0.19 5.68 75.07 0.1208
M2a 1.36 16.55 3.84 2.22 49.31 0.0742
M2b 0.96 13.19 3.29 0.21 24.65 0.0357
M3 1.43 17.82 3.96 1.59 42.42 0.0636
M4a 6.42 12.84 5.58 41.12 174.26 0.47
M4b 0.23 1.66 2.17 2.07 25.09 0.04
M5a 1.49 8.08 3.84 18.16 67.24 0.2
M5b 0.16 2.39 2.14 1.4 30 0.05

Table 5: Errors example 2-3D, p = 3, 40 points (2P ). Calculations for method M1 due to rank deficiency problem
were done for 49 points

.

order 1 2 3 4
P 11 66 296 1001

(M − 1)P 99 594 2574 9009
number of points 258 147 7674 12693

Table 6: Number of regression points chosen by method M1 for M = 10 and Hermite basis which leads to
non-rank-deficient problem compared to PC basis size P and recommended number of points (M − 1)P

method Mean Standard deviation 95th percentile STot
4

S1 1.36 6.41 0.35 1.13
S2 0.87 7.41 0.96 1.24
M3 3.36 2.31 1.67 2.58
M4b 2.15 6.92 1.94 3.79
M5b 4.51 33.78 6.84 24.12

Table 7: Err% for methods for example 2-10D

5.1.3 Membrane model subjected to the displacement of supports -10D case

For 10 variables, the computational cost is higher not only due to the larger size of P but also due to the higher
cost of a single simulation caused by the higher complexity of the problem. When the classic method M1 is
applied to 10 variables, the rank deficient problems force the use of a higher number of variables (M − 1) · P
than suggested, which makes this method more computationally expensive for more variables compared to other
methods. Table 6 shows the number of points which had to be taken to obtain the full rank matrix in comparison
with PC basis size P and recommended [4] size (M − 1) · P . For order 3 errors of the mean, standard deviation
and 95th percentile equal to 3.57%, 8.05%, 0.29%, respectively. Error of the sensitivity index of random variable
4, which together with variable 7 is much higher than the rest of the sensitivity indices, is equal to 2.09%. For
the rest of the considered methods a rank deficiency problem does not appear in the cases considered.

Figure 16 shows the results for quasi random sequences (S1 and S2), when 2P or (M − 1)P points are taken
into account. Also in this example S2 outperforms S1 with the exception of the sensitivity index STot4 when only
2P are taken into account.

The general comparison presented in Table 7, is made with a small number of points equal to 2P . The
method M1 is not presented in this table, because it requires a much higher computational cost due to the rank
deficiency problem as mentioned before. The methods combining random and criteria-based approaches as well as
the use of quasi-random sequences enable calculations for 10 variables with a much smaller number of points when
compared to classic method M1. The quasi random sequences and especially Halton sequence (S2) outperform
other methods, thus seem to be a good choice in this example.

5.2 Global sensitivity outcomes

The sensitivity analysis outcomes were analysed in the case of each model to study the influence of uncertainties
of given values on the chosen quantities of interest.
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variable E L0 H0 ∆p

STot 0.6460 0.0059 0.0942 0.2746

Table 8: Total sensitivity indices STot in cable model - values obtained by MC

method Mean Standard deviation 95th percentile
S1 4.51 49.99 10.73
S2 9.09 26.97 0.79

M1 (25 points) 7.75 3.17 4.91
M5b 2.67 2.85 0.62

Table 9: Err% between solution reduced to 2D and MC 10D solution, p = 4, 2P = 30 regression points

Quantity of interest Rmax umax

pia 0.9503 0.9222
kf 0.0514 0.0781
kaw 0.0013 0.0011

Table 10: STot in model 3

5.2.1 Cable model

In local sensitivity analysis small changes around the base points are investigated. As shown in [51], in this model
the order of importance of variables changes with changes in the base point of ∆p. When ∆p is in the range
from 0.0065 m to 0.01 m, ∆p is the dominant value. Whereas for ∆p near lower limit is almost irrelevant. It
also influences values of the coefficients of E and L0. Therefore, it is interesting to perform on this example
global sensitivity analysis to get knowledge of global influence. Table 8 presents total sensitivity indices for each
variable. The results confirm that although the variability of H0 is high when compared to other variables, its
contribution to the output variance is very small. However, the smallest is STot of L0, which locally has high
sensitivity when ∆p is small, but its variability was small. Globally, E is the most significant. Despite the small
local coefficients for some base points, ∆p is the second most important parameter. It confirms that abdominal
wall behaviour is important to properly predict forces in the fasteners

5.2.2 Membrane model subjected to displacement of supports - Reduction of the 10D model

The sensitivity index values change with orientation of the implant (Fig. 17). However, variables 4 and 7 (with
the highest variability) together or individually are always dominant. These variables correspond to the strains
of the abdominal wall in the oblique direction. Sensitivity indices of all other variables are in each case lower
than 0.03 (sum of all other total sensitivity indices lower than 0.05). Therefore, 10D model can be reduced to 2D
problem.

The methods were compared on the reduced to 2D example. Results (for M5b mean) are presented in Table
9. Methods M1, M2, M3 are not considered because the number of combinations of p+ 1 roots is smaller than
2P . Therefore, all points are taken into account. The change in variance obtained by the quasi random method
(S1, S2) is higher than one could expect from sensitivity indices. Method M5b results in the highest accuracy.
Reduction to 2D problems significantly reduces computational costs.

5.3 Model 3 - imposed pressure

The coefficient of variation of Rmax is equal to 0.22 and of umax 0.1026. In Table 10 total sensitivities are
presented. It can be seen that great majority of both output variance is due to uncertainty of the pressure.
Elasticity of the foundations could not be treated as a random variable due to its small sensitivity index. The
influence of fascia elasticity is also relatively small. These outcomes imply that more detailed studies on intra-
abdominal pressure should be conducted.

Although neither abdominal wall nor fascia elasticity uncertainty are important in this model, their influence
is high in model 2, where the coefficient of variance is equal to 0.53 and all random variables are related to the
abdominal wall mechanics. In future optimisation procedures the number of variables can be reduced in both
models according to presented sensitivity index values.
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6 Conclusions

We applied the PC method to the implant models used in ventral hernia repair. In these examples we compared
different methods of choosing regression points within polynomial chaos expansion. Although the final problem
is non-linear, and non-smooth with a high random variable variation, it was possible to obtain sufficient accuracy
by the polynomial chaos regression based method.

The best method for choosing the set of points used in the numerical method in our 10D model seems to be
a random subset of Hermite roots. However, in examples with a lower number of variables including the reduced
model, the method based on a D-optimal choice from a random candidate set drawn by LHS is the most accurate.

The relation between errors and choice of points is highly dependent on the problem studied. In such a case
the application of the adaptive method seems to be very reasonable. However, the question is how to choose a
criterion which will be effective in our problem. Nevertheless, the presented study can be useful in terms of a
decision about the initial set of candidate points for adaptive methods, e.g. error oriented algorithms for design
of experiments.

The presented methodology will be used for conducting further studies with the use of implant models in
order to draw clinically important conclusions. It will be applied to implants with different mechanical properties
and different hernia locations. Also, the methodology will be applied to the much more computationally expensive
model of the whole abdominal wall with hernia implant,where the MC model would be computationally infeasable.
These types of models in the context of hernia repair are described in [25].

Based on the results obtained so far, employing a probabilistic framework in hernia repair modelling seems to
be necessary, e.g. due to underestimation of junction forces by single deterministic calculations performed for the
mean values. However, the obstacle is the lack of proper knowledge about the distribution of the random variables
and their correlation which is currently based on an insufficiently large number of experiments. The obtained
global sensitivity results indicate where priorities in further experimental research should be established.

In model 1 ( the cable model) the uncertainty of Young’s modulus has the strongest influence on the uncer-
tainty of the horizontal reaction.

In the case of model 2, the uncertainty of the displacement of the supports referring to the strains in oblique
direction in the lower part are the most significant. High variability of the strains in the oblique directions results
in their having a large influence on the variance of the output. A high variation of abdominal wall elasticity
means that the approach taken to ventral hernia repair needs to be patient-specific. A step in this direction can
be taken with the use of the non-invasive method of in vivo characterization of abdominal wall properties [56].
Nevertheless in the latter methodology variation between sessions with the same subjects was noticed. Therefore,
the proposed PC method can be useful also in development of patient-specific methodology.

In the model 3 (subjected to pressure) the sensitivity of the uncertainty to the pressure is much higher
than it is to the elasticity of abdominal wall and fascia. Therefore, the studies on intraabdominal pressure in
humans during crucial actions like coughing should be enlarged in order to get more detailed information about
its distribution.

Future two-criteria [50] optimisation under uncertainty of implant choice due to minimisation of forces and
mesh bulging can be performed on reduced models: model subjected to displacement with 2 random variables,
model 3 subjected to intra-abdominal pressure with 1 random variable, which will reduce computational cost.
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Fig. 6: D-optimal points compared to the classic design, Hermite basis (M = 2, p = 1), black points - chosen
points, empty points - classic choice (method M1) 19
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Fig. 7: Example of D-optimal set of points from the candidate set drawn by LHS method when D-optimality is
conducted without (M5a) and with weight (M5b), Hermite basis, M = 2, p = 2
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Fig. 9: Err% of the mean, standard deviation and 95th percentile of the maximum reaction using method M1
using approach 1 (4) and 2 (5)
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Fig. 10: ErrS obtained by approach 1 (4) and 2 (5) in example 2-3D
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Fig. 11: Error obtained by method S2 for different orders and a different number of regression points equals
N = c · P , example 2-3D
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Fig. 12: Errs obtained by method S2 for different orders and a different number of regression points equals
N = c · P , example 3-3D
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Fig. 13: Errs, when method M2 was applied in variants without (a) and with (b) weight for different orders,
example 2-3D)
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Fig. 14: Errs obtained by method M2 , example 2-3D
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Fig. 15: Errs, when method M5 was applied in variant without (a) and with (b) weight for different orders (mean
result from a couple of drawn LHS candidate sets of points, example 2-3D)
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Fig. 16: Err%, when method S1 and S2 is applied, example 2-10D
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Fig. 17: STot obtained for different orientations of implant, example 2-10D
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