
Received 13 January 2025, accepted 28 March 2025, date of publication 2 April 2025, date of current version 10 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3557331

Ship Magnetic Signature Classification Using
GRU-Based Recurrent Neural Networks
KAJETAN ZIELONACKI , JAROSŁAW TARNAWSKI , AND MIROSLAW WOLOSZYN
Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Jarosław Tarnawski (jartarna@pg.edu.pl)

This work was supported in part by Gdańsk University of Technology through the Radium–Excellence Initiative–Research University
Program under Grant 12/1/2023/IDUB/III.1a/Ra, and in part by the Technetium Talent Management under
Grant 39/1/2024/IDUB/III.4c/Tc.

ABSTRACT Magnetic signatures represent the magnetic field generated by a ship’s ferromagnetic
components and provide valuable information for identifying vessels not only in naval operations, but also
in civil passages. The topic of accurate modelling of these signatures is relevant to this day, but also the
complexity of the model necessary to accurately predict the ship’s magnetic field. This paper presents
the implementation of a deep, recurrent neural network (RNN) designed for classification of compliance
between the original magnetic signature of a ship and the one obtained from a model. Therefore, the quality
of the model can be analyzed using a classifier during the modeling process. The necessity to introduce a
tool for signature compliance classification arose during numerical modeling of a ship in Finite Element
Method (FEM) environment as well as during reverse modeling based on data coming from measurements.
Another application is the use of a shallow RNN for classifying ships by their size and type. A sufficient
amount of data is rarely available and therefore data augmentation solution is necessary. The process of
obtaining a large dataset of signals from a multi-dipole model and using an interpolation technique for
generating training, validation and test data is comprehensively described. Methods used for selecting the
best network structure and hyperparameter tuning using grid search and random search in order to achieve
a satisfactory classification accuracy are thoroughly explained. Features, advantages and limitations of
developed algorithms are derived strictly from the nature of neural networks.

INDEX TERMS Deep learning, gated recurrent unit, magnetic signature, signal processing.

I. INTRODUCTION
Magnetic signatures arise as a local disturbance of the Earth’s
natural magnetic field originating from a ferromagnetic
object. They characterize various objects, but in this article,
ships are taken into consideration. The signature can be
measured without the knowledge of the measurement on
the object being measured. Ships signatures can be used to
analyze entries and exits from ports and passages through
straits. By analyzing the magnetic signatures, one can infer
the size and nature of the ship. In military applications, the
magnetic signature of a ship is one of the criteria for mine
activation.

Measurement of signatures conducted in a polygon is
usually carried out under ideal technical, environmental
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and weather conditions. Therefore, these signatures are
determined with high accuracy. However, when measuring
devices are placed, for example, at the entrance to a port,
the measurement is exposed to a number of interfering
factors such as the ship’s changing course, passing by
magnetometers, the influence of other objects, large waves
due to poor weather conditions, etc. In such cases, the
determined signature is reproduced with high uncertainty.
Due to the impact of the hull on waves and possibly on the
quay during mooring, the permanent magnetization of the
ship changes, thus the signature changes over the object’s
usage time relative to the measured signature. Also during
mathematical modeling, certain simplifications of the object
relative to the original are made, which also affects the
shape of the signatures. Therefore, there is a need to assess
the compliance of the signature with the pattern and how
accurately the currently measured signature corresponds to
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the reference signature and to what extent it belongs to a
particular group of objects in the classification problem. For
this purpose, classical statistical indicators and metrics for
evaluating distances between curves are usually used.

In this paper, an alternative approach is proposed, namely
a deep neural network, which provides a wide variety of
applications in terms of signal processing, e.g. classifi-
cation or regression [1]. A characteristic feature of deep
neural network is the ability to capture abstractions, detect
higher-level features by analyzing complex patterns in large
amounts of input data. The definitional capabilities of deep
neural networks have significant potential in applications
for assessing the degree of compliance and membership in
the appropriate predefined group or for identifying groups
from the entire population. An approach of using them to
classify ships’ magnetic signatures is proposed, depicted
with an example application of a deep, recurrent neural
network with a GRU (Gated Recurrent Unit) layer for
classifying magnetic signatures of ships’ simplified models
based on their proximity to the original signal, and a shallow
one for classifying them by their size and type. Marine
objects are classified based on various physical fields, such
as magnetic, hydroacoustic, electric, hydrodynamic, and
thermal. While data fusion techniques are typically used to
enhance classification quality, this article focuses solely on
magnetic signatures. The approach described has universal
features that can be applied to other fields.

The authors plan to use the developed signature com-
pliance classifier to assess model quality. Ship signature
models can be created using forward and reverse approaches.
In the forward approach, FEM class software is used
to input details about the ship’s structure, such as size,
shape, material, and magnetic properties, to create an
induced magnetization model. This model’s accuracy is
then compared to measurement data using the classifier to
improve its fidelity. The reverse approach involves recording
measurements and using them for machine learning model
training and validation, with validation performed using
cross-validation. The classifier also helps simplify FEM
models, balancing between model quality and computation
time by controlling the extent of simplification and assessing
any resulting degradation.

Goal of the paper - to develop a new alternative to
classical (based on statistical indicators) magnetic signature
compliance classifier and to present a classifier for ships
based on their type and size using their magnetic signatures.
The need arose from related works concerning FEM and
measurement-based modeling and simplification of the
magnetic signatures.

Original contribution - After examining the literature no
such application of classifying magnetic signatures based on
their conformity with the original was found, and to author’s
knowledge it is a novelty. Necessary steps to develop a neural
classifier were data collection and augmentation, finding
the right ANN structure as well as its hyperparameters and
reacting to arisen problems. M. Wołoszyn developed the ship

models in the FEM environment for use as reference data for
synthetic magnetic signatures, while methods for generating
large sets of magnetic signatures for training purposes and
finding the best neural network structure for the given task
were achieved by Zielonacki and Tarnawski.

The paper is organized as follows: Section II provides a
brief overview of the related works and the current knowledge
on the subject. Section III contains an description of a
multi-dipole model for predicting the magnetic signature,
describes the process of generating training data for the
learning process by modifying magnetic moments of the
dipoles, and also shows the process of finding the best
structure of the network for the task as well as the description
of how hyperparameters were tuned, along with the training
and test results. Section IV shows the process of generating
magnetic signatures of a given ship’s type in a given range of
its length using interpolation, which then were used as input
data for the classifier, whose structure and hyperparameters
were also optimized. Finally, section V concludes the paper.

II. STATE OF THE ART
Recurrent neural networks, a class of neural networks
designed for sequential data processing, have gained
widespread attention in various domains. One of the seminal
architectures in this category is the Long Short-TermMemory
(LSTM) network, developed in 1997 [2], and can be fre-
quently found in papers on classifying electroencephalogram
(EEG) signals [3], text [4] and images [5]. In [6] the reader
can find a comprehensive overview of the LSTM structure
and applications. Gated Recurrent Unit, first proposed in
2014 [7] was designed to address some of the limitations
of the LSTM architecture, such as computational complexity
and vanishing gradient issues, while still maintaining its abil-
ity to capture long-term dependencies in sequential data [8]
and has also been used in a wide range of applications,
e.g. time series forecasting [8], where it outperformed
LSTMs, machine health monitoring systems [9] and emotion
classification [10].
Machine learning has also been used in the means of

modelling the Earth’s magnetic field [11]. An interesting
example is the method described in [12], where a deep
neural network with ReLU layers was used for modeling
magnetic dipoles with very high accuracy. Other applications
include predicting magnetic signatures [13], [14], as well as
solving inverse-modeling problems [15], [16], [17], andmetal
detection tasks [18]. Another interesting application of neural
networks andmachine learning in combinationwithmagnetic
sensors is magnetic field-based indoor localization. The
article [16] addresses the issue of locating an object inside a
cube with sides of 2 m. The author compares the approaches
of the k-nearest neighbor algorithm (k-NN) and artificial
neural networks (ANNs) with modification for machine
learning. The ANN approach is characterized by excellent
achievements in the field of localization accuracy and is fast
enough (while the network training time is relatively long)
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that it can be used in real-time. Another application of ANN
and magnetic signals concerns hand gesture recognition [19].
The authors present a hand glove with 6 nodes equipped
with magnetic sensors. A Convolutional Neural Network
is applied to gesture recognition. The authors achieved a
correctness level of 93% among 26 gestures defined by
the American Sign Language alphabet. In [20], the authors
used a deep, residual, convolutional neural network for
detecting magnetic anomalies and reached a very high
accuracy despite high signal-to-noise ratio. In [21], authors
provide an in-depth analysis of ANNs and random forests
in maritime, offshore and oil and gas corrosion research
in the years 2018-2023. They critically evaluated machine
learning algorithms applied to maritime steel structures,
pipelines, and construction materials, offering a valuable
review for developing cost-effective maritime corrosion
maintenance strategies. This work provides concise corrosion
management expertise to empower both researchers and
industry experts. The article [22] addresses the problem of
minimizing the magnetic signature using Machine Learning
techniques. The values of ampere-turns of coils placed in two
variants inside and outside the simulated object with shapes
corresponding to a submarine are determined. To deal with
over determination and multicolinearity issues, the authors
use the L2 (Ridge) regularization approach. The presented
method is characterized by high degree signature silencing
and computational efficiency that allows it to be used in
real time. Similar issues related to the minimization of
magnetic signatures were also considered by the authors
of this article in [23] and [24] for arbitrary objects and
in [25] for ships. Article [13] explores a genetic neural
network approach, combining genetic algorithms with BP
neural networks, to accurately predict the induced magnetic
signature of ferromagnetic vessels, addressing limitations
of traditional geomagnetic simulation methods. Similarly,
Article [26] investigates the use of neural networks in
underwater recognition systems, specifically focusing on the
correlation between ship acoustic and magnetic fields. The
study introduces the concept of a ship M-S diagram and
demonstrates the effectiveness of a neural network model
in achieving high recognition accuracy across different ship
types. In [27] the authors further extend the application of
neural networks by developing a model that predicts the
external magnetic field in the closed-loop degaussing of
ships. To overcome challenges related to insufficient training
data, a data augmentation method is proposed, enhancing
both the speed and accuracy of the model. Collectively,
these studies underscore the potential of neural networks
in improving the accuracy and efficiency of ship magnetic
signature prediction and recognition systems. The issue of
modeling magnetic signatures using neural networks has
also already been addressed by the authors in [28], where a
neural network was used to predict the magnetic signature
depending on the measurement depth.

A common application of magnetism-related neural net-
works is classification. For example, in [29] the authors used a

feedforward neural network to classify ship types. To achieve
shorter calculation times, reduction methods were used.
A comparison of backpropagation algorithms and genetic
algorithms for training a neural network was conducted.
In the article [30], a soft voting ensemble method using a
deep learning classifier (for STM, GRU, and VGG16) was
used, obtaining an f-score of over 90% for three classes of
road traffic objects. Other classification examples include
synchronous machines [31], mineral exploration [32] as well
as different magnetic structures recognition [33].
The most frequently found method of assessment of ship’s

magnetic signature compliance is mainly centered around
calculating the Root Mean Square Error (RMSE) or Mean
Absolute Error (MAE) [34], [35]. Based on the literature
analysis, the authors will propose a novel approach for
assessing the conformity of signatures using deep learning
with GRU layers, in the article.

Table 1 contains a comparison of other authors’ work
regarding the datasets ang algorithms they used, performance,
advantages and limitations of the model. It can be seen that
the datasets vary from application to another, but neural
networks prove to be a reliable tool in classification or
other problems, achieving high performance results. The
dataset, however, often needs to be highly populatedwithwell
diversified data.

III. SIGNATURE COMPLIANCE CLASSIFICATION
This section discusses the classification of ship magnetic
signatures based on their compliance with the reference.
It explores the process of creating training data, selecting
suitable network structure and adjusting settings for better
performance.

A. THE TRAINING DATA
1) MAGNETIC SIGNATURES AND MULTI-DIPOLE MODEL
Amagnetic signature is a mathematical description of a ship’s
disruption of the Earth’s magnetic field [36]. This description
can be approximated using a multi-dipole model [37], [38],
which describes the i-th dipole at an arbitrary position (x, y, z)
with a vector of magnetic flux density as follows [39], [40]:

B =

m+n∑
i=1

Bi(Mi,Ri) =

m+n∑
i=1

µ0

4π
· (RT

i MiRi ·
3

R5i
−

Mi

R2i
)

(1)

B =

BxBy
Bz

 ,Bi =

Bx,iBy,i
Bz,i

 ,Mi =

mx,imy,i
mz,i

 , (2)

Ri =

(x − xi)
(y− yi)
zi

 ,Ri = |Ri|, (3)

where B is the magnetic flux density vector, m is the number
of permanent dipoles, n is the number of induced dipoles,
Bi is the magnetic flux density vector of i-th magnetic dipole,
Mi is the vector of the magnetic moments of i-th dipole and
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TABLE 1. Comparison of other authors’ work.

Ri defines the distance between the i-th dipole and the
analyzed point.

A 25-permanent and 25-induced dipole model was devel-
oped in MATLAB using synthetic data from a ship model
constructed in Simulia Opera 3D [41] environment (detailed
description of which can be found in the appendix) and
an optimization method described in [34], which finds the
positions and moment values of each dipole in the model
that best fit the reference data in port (P), keel (K) and
starboard (S) lines (see figure 1).

The objective function for m permanent and n induced
dipoles given by:

min
�∈{�1,...,�n+m}

J

=

∑
l

∑
k

∑
d

300∑
j=−300

(Brefl,d (j, k) − Bmodell,d (j, k, �)2)

(4)

s.t. ∀i ∈ (1,m+ n) �min
i ≤ �i ≤ �max

i (5)

where

s.t. ∀i ∈ (1,m+ n) �i ∈ {mx,i,my,i,mz,i, xi, yi, zi}, (6)

l ∈ {x, y, z} (7)

k ∈ {P,K , S} (8)

d ∈ {0o, 90o, 180o, 270o} (9)

and�min
i �max

i define the optimization search space. Figure 2
is a visualization of the dipoles’ locations.

FIGURE 1. P, K and S lines locations.

Using this model, the magnetic flux density along the
keel path can be determined in each direction: north, west,
south and east, and for all cartesian directions (x, y and z),
resulting in graphs shown in figure 3, along with the reference
data.

The RMSE between the model and the reference data
is equal to 0.3446, which means a very good fit. This
model will now be taken as a reference for further
investigation.
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FIGURE 2. Locations and magnitudes of dipoles.

FIGURE 3. Keel path - model and reference.

2) GENERATING MODIFIED MAGNETIC SIGNATURES
In order to train a neural network, a large dataset is necessary
to obtain satisfactory results. To achieve that, magnetic
moments of the multi-dipole model were disturbed by
maximumof 1%with a step of 0.001%, creating a new dataset

of signatures differing from the reference one. Figure 4 shows
an example heatmap of 10000 signatures gathered by altering
the moments with a 0.5% normally distributed disturbance,
where yellow color indicates that most of the signatures were
following that path.
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FIGURE 4. Heatmaps of 10000 signatures generated by 0.5% magnetic moment disturbance.

FIGURE 5. RMSE distribution.

This method of generating different magnetic signatures
allows to obtain a sparse dataset with different error values,
which are necessary to assess their compliance. Figure 5
shows how the mean, maximum and minimum values of
RMSE between the reference signal y and the disturbed
signal yd given by (10) are distributed depending on the
disturbance magnitude.

RMSE =

√√√√ N∑
i=1

(y[i] − yd [i])2

N
(10)

Judging from the plot, the class of 0% compliance was
assigned to all signals with RMSE larger than 15, as this

was the mean value of RMSE for the biggest disturbance,
and this range is determined to be the working range of
applicability for the classifier. Then, subsequent classes
were assigned linearly with a 10% step, meaning that
RMSE ranging from 13.5 to 15 was a 10% compliance
class, 12 to 13.5 a 20% compliance class etc, resulting in
11 classes in total. This choice, however, comes only from
the fact that 1% disturbance of dipoles’ moments results
in approximately 15 nT RMSE in the data. The choice
here is arbitrary and the user can scale the compliance
intervals differently (it is a tuning parameter of the method).
The dataset consisting of 100000 sequences was partitioned
into 80% training data, 10% validation data and 10% test
data.

B. NETWORK STRUCTURE, TRAINING AND
HYPERPARAMETER TUNING
1) GRU ARCHITECTURE
The GRU represents a specialized architecture within RNNs,
devised to address the limitations of traditional neural
networks in modeling long-term dependencies in sequential
data. It contains gating mechanisms that regulate the flow of
information through the network, enabling adaptive memory
management and enhanced learning capabilities. The GRU
architecture consists of two main gates: the update gate and
the reset gate. The relationship between input and output at
time t can be described as follows:

z(t) = σ (Wzx(t) + Uzh(t − 1) + bz (11)

r(t) = σ (Wrx(t) + Urh(t − 1) + br (12)
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ĥ(t) = tanh(Whx(t) + Uh(r(t) ⊙ h(t − 1) + bh) (13)

h(t) = (1 − z(t)) ⊙ h(t − 1) + z(t) ⊙ ĥ(t) (14)

where x(t) is the input vector, z(t) is the update gate output,
r(t) is the reset gate output, ĥ(t) is the hidden state candidate,
h(t) is the output vector, Wz, Wr, Wh, Uz, Ur and Uh are
weight matrices, bz, br and bh are bias terms. σ denotes
the sigmoid operation and ⊙ is the piecewise multiplication
operator.

2) FINDING THE BEST STRUCTURE
For the classification task, the main performance indicator of
the neural network is classification accuracy, which is defined
as the ratio of the number of correct predictions made by the
model to the total number of predictions.

Shallow neural network did poorly with the task at hand,
achieving maximum accuracy of 40 %. After a few tests, the
best initial results were obtained with a network that had five
hidden layers. The network structure chosen for the task and
written in MATLAB using the Deep Learning Toolbox [42]
consists of 7 layers:

• the feature input layer, where each of the 12 paths
with 501 data points is passed through, resulting in
6012 neurons,

• five hidden layers,
• and a classification layer.

Also, for regularization purposes, batch normalization layers
after each activation layer and two dropout layers were added.

In order to find the best structure for the hidden lay-
ers, a method of hyperparameter optimization called grid
search [43] was used. An algorithm was developed, where
each of 32 possible structures was represented in binary code,
e.g. 00101 is represented with a number 5 and means the
first and the third layers are GRU and the second, fourth
and fifth is ReLU (Rectified Linear Unit). The number
of neurons in each layer was randomly selected from the
set {8, 16, 32, . . . , 1024}, and the model was trained using
Adam optimization algorithm with 0.001 learning rate and
a mini-batch size of 256, with maximum number of epochs
equal to 100 and the validation patience of 10, allowing
epochs not to be of concern. Also, the returned network for
each training was the one with the lowest validation loss.
Gradient threshold was set to 1 to ensure stability. The test
was repeated five times for each variant. Figure 6 shows the
results of the search, with the variants on the x-axis and the
test accuracy on the y-axis.

Interestingly, every second variant showed good results,
while other were very inaccurate. This suggests that GRU
cannot be the first layer, since in each of these variants it was.
The best structure, whichwas variant 8 with the set of neurons
of {64, 1024, 64, 32, 32} was selected for further tuning.

Next, using the same grid search method, the best
optimization algorithm, learning rate and batch size was
selected. Three algorithms were considered: Adam, SGDM
and RMSprop. The learning rate was selected from the
set {0.1, 0.01, 0.001, 0.0001}, and the batch size from the

TABLE 2. Results of the algorithm and learning rate grid search.

TABLE 3. Results for different number of classes.

set {64, 128, 256, 512, 1024}. The number of epochs and
validation patience remained the same. Table 2 shows the
results of the search, where the accuracy is given for each
hyperparameter configuration, with the best result marked in
bold.

Finally, the best number of neurons in each layer was
found. Because the configuration space in this case is large,
the method of random search was used. The values were
selected from the set {8, 16, 32, . . . , 4096} randomly for
30 iterations, and the resulting numbers of neurons were
as follows: {1024, 2048, 128, 128, 128, 4096} for each layer
respectively. Figure 7 shows the learning curves of the net.
It had the test accuracy of 0.9173.

After examining the plot, it was decided to increase the
maximum number of epochs to 200 since the last validation
performance was the best and also use a piecewise learn rate
schedule, where learning rate was multiplied by 0.5 every
20 epochs. The final achieved test accuracy was 0.953.
Figure 8 shows the confusion matrix of the trained network.
The network has demonstrated satisfactory performance,

achieving a high level of accuracy. Moreover, when it
assessed the compliance of a magnetic signature incorrectly,
it was only off by one degree. The net was also tested when
it was attempted to classify more compliance classes. The
tested error steps were 10%, 5%, 4%. 2% and 1%. Table 3
shows the results of that experiment for different numbers of
classes. As expected, the increase of the number of classes
causes test accuracy to deteriorate. However, even in the last
case, the classifier was off by a maximum of three classes.
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FIGURE 6. Results of the structure grid search.

FIGURE 7. Learning curves of the network.

C. VERIFICATION
The classifier was verified using signatures coming from a
different kind of disturbance - a new induced dipole with
uniformly-distributed random moments values, that ranged
from the minimum value of the reference model’s moments
to the maximum, multiplied by a scaling factor, was added
to the multi-dipole model, causing anomalies in the plots.
In order to remain in the 0-15 range of RMSE, the scaling
factor of the extra dipole was set to be in range 0.001-0.1,
which was confirmed experimentally. Figure 9 shows how
the mean RMSE values were distributed across the set of
100000 signatures.

Figure 10 shows example signatures, where the scaling
factor is equal to 0.05. As can be seen in the figure, the
disturbance mostly alters the signatures in the By component

FIGURE 8. Test confusion matrix.

in north and south directions. This method allowed to create
a new test set of signatures of a kind that the classifier had not
seen before.

The verification set was then inputted to the classifier.
Figure 11 shows the confusion matrix for the new test data.

As expected, the network properly classified signatures,
where the compliance was one hundred percent. However,
it poorly recognized all the other data, where the RMSE was
higher than 1.5. Poor performance is most likely caused by
disturbances coming from a different source, causing them
not to be recognized by the classifier.
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FIGURE 9. Mean RMSE distribution of signatures coming from
multi-dipole models with an additional disturbance induced dipole.

TABLE 4. Results for different number of classes.

D. IMPROVING THE CLASSIFIER
Poor test performance was addressed by adding the data
coming frommodels with additional dipole to the training set.
Options for the training and the network structure remained
equivalent to the ones used previously. Table 4 shows the
test results for different numbers of classes, while Figure 12
depicts the confusionmatrix for 11 classes. It can be seen, that
although with a slightly lower accuracy, the classifier is able
to return accurate information about signatures’ degradation
proportionally to its deformation. Even in the last case for
101 classes, where the accuracywas lower than 50%, the error
was not larger than 5 degrees of compliance. Nevertheless,
the case where each class is one percent, the regression task
would be more appropriate.

E. CLASSIFIER BASED ON MAE
Another way of assessing the compliance of a signal is with
MAE, given by (15). A training dataset was generated using
the same methods described previously, with MAE indicators
being assigned to them as target values. Figure 13 shows the
distributions of the errors for disturbances of dipoles’ models,
while figure 14 shows the mean distributions of the errors
for models with an additional disturbance induced dipole.
Lowest class of compliance was assigned to signatures with
MAE higher than 5, and the rest was assigned linearly, in the
same fashion as the previous classes.

MAE =

N∑
i=1

|y[i] − yd [i]|
N

(15)

As previously, the dataset was divided into 80% training,
10% validation and 10% test data. For 11 classes, the
accuracy was equal to 88.9%. The working principle of the
network is the same as previously, so the accuracy is also
high in this case. Figure 15 shows the confusion matrix for
11 classes based on MAE and table 5 shows the results for
different number of classes.

TABLE 5. Results for different number of classes based on MAE.

F. INFLUENCE OF DATASET SIZE ON PERFORMANCE AND
TRAINING TIME
A dataset size of 100 000 samples was chosen arbitrarily
and it was decided to analyse the influence of the number of
samples in the training set on the performance of the network.
It is well known that the dataset size can significantly
influence the training time and its computational burden [44],
[45]. The training process was repeated for different numbers
of signatures and each time the set was divided the same way
as before, into 80%, 10% and 10% of training, validation
and test data respectively. Figure 16 shows the results of
the experiments, where the accuracy and training time was
depicted. Each time the network was trained for the RMSE
case with 11 classes.

The plot illustrates the relationship between the number
of training samples, model accuracy, and training time.
As the number of training samples increases, model accuracy
generally improves, particularly in the early stages, where
significant gains are seen up to around 30,000 samples.
Beyond this point, accuracy continues to rise but at a
slower and more fluctuating rate, indicating diminishing
returns as the dataset size grows. Training time, on the other
hand, increases nearly linearly with the number of training
samples, reflecting the higher computational demand. This
relationship highlights a trade-off: while larger datasets
enhance accuracy, they also significantly increase training
time. Notably, after a certain threshold (around 50,000
samples), the accuracy gains become minimal. When it
comes to performing a single classification, on average it
took 132 µs.

IV. SHIP SIZE AND TYPE CLASSIFICATION
This section focuses on classifying ship size and type
based on their magnetic signatures. The training data is
prepared using numerical ship models and interpolation
method. A single hidden layer GRU neural network is
fine-tuned through grid search to achieve satisfactory
results.
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FIGURE 10. Magnetic flux of reference multi-dipole model and disturbed one with additional induced dipole.

FIGURE 11. Verification confusion matrix.

A. THE TRAINING DATA
1) PREPARING THE MODEL
In the FEM Simulia Opera 3D software, two numerical
models of ships with a length of 42 meters have been
prepared, but with different sizes and shapes. The shape of the
corvette is shown in figure 17a, and its magnetic signature at
the measurement depth of 5meters is shown in figure 18. This
is the samemodel that was used for compliance classification.
The shape of the tugboat is shown in figure 17b, and its
magnetic signature at the measurement depth of 5 meters is
shown in figure 19. The details on the FEM simulation of the
tugboat are also included in the appendix.

FIGURE 12. Verification confusion matrix after including the second test
data.

Creating a numerical model of a ship is time-consuming,
and it is difficult to assemble the entire fleet (provide so
many different versions of ships) for the purpose of training
neural networks and verifying the classifier. Therefore, it was
decided to demonstrate the classification capabilities of these
two types of vessels, but in different sizes. The FEM software
allows for scaling of the developed object, thus several
size versions of each of the two presented types of ships
were created. Then, a scaling code for these signatures was
developed for the desired size of the ship within a certain
range. This way, any number of signatures for different ship
sizes can be provided for the training dataset.
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FIGURE 13. MAE distribution.

FIGURE 14. Mean MAE distribution of signatures coming from
multi-dipole models with an additional disturbance induced dipole.

FIGURE 15. Test confusion matrix of MAE classifier.

2) A SIGNATURE GENERATOR FOR A GIVEN SHIP SIZE
At a measurement depth of 5 meters, the magnetic signatures
presented in figures 18 and 19 still have irregular shapes.

FIGURE 16. Compliance classification results for different dataset sizes.

FIGURE 17. Ships’ models.

FIGURE 18. The corvette signature at a measurement depth of −5 meters.

FIGURE 19. The tugboat signature at a measurement depth of −5 meters.

Moving away from the measurement devices to 10 meters
results in the signatures having regular shapes, i.e., they do
not differ in character depending on the size of the ship, and
characteristic points can be identified in them. In figure 20,
a family of signatures from ameasurement depth of 10meters
is shown for corvettes of different lengths (42 m, 38 m,
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FIGURE 20. A family of signatures for the corvette ship with various lengths and marked key
interpolation nodes.

FIGURE 21. The generated signature for the corvette ship with a length of 30 meters.

FIGURE 22. Grid search results. FIGURE 23. Test confusion matrix for classification of type and size.
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FIGURE 24. Reference signatures of the corvette and the tugboat.

FIGURE 25. Scaled signatures of the corvette and the tugboat.

35 m, 26.25 m, 17.5 m). On the signature of a ship with
a length of 42 m, characteristic points are marked: 1) local
maximum, 2) first zero crossing, 3) minimum, 4) second
zero crossing, 5) maximum. These points will serve as
interpolation nodes, but they also allow dividing the Bx
signature into 6 intervals, in which subsequent nodes are
found, representing, for example, 1

2 ,
1
4 , etc., of the maximum

or minimum values. In total, each signature is described using
41 points.

Having the values of reference points of signatures
for known ship lengths, interpolation of nodes can be
performed for the signature of a virtual ship with a length
ranging from 17.5 m to 42 m. After another interpolation,
connecting the reference points, the entire signature can
be obtained. The effect of this generator can be seen in
figure 21 in the form of a created signature describing a
corvette with a length of 30 m - not present in the FEM
dataset.

The correctness of generating signatures of the specified
lengthwas verified using the LeaveOneOut Cross-Validation
method by interpolating data for four lengths and finding
the interpolated value of the signature for the ship length for
which FEM data were available, e.g., interpolation data came
from ships with lengths of 42 m, 38 m, 35 m, 17.5 m, and
were verified using a size of 26.25 m. The proposed method
was verified with high accuracy. The described approach was
also applied to create Bz signatures of magnetic flux density
and for a tugboat type ship.

An inevitable element of introducing an augmented
approach by using interpolation in the process of creating a
training dataset for a neural network is a potential bias that
could affect the classification process. In order to assess its
real impact, calculations using ideal data and interpolated
data should be contrasted. This would require having either
FEM or actual measured data from any available depth which
is virtually impossible with real data. With this knowledge
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TABLE 6. Summary of the classifiers’ aspects.

that measured data will only be available from a few depths,
interpolation techniques have been proposed to augment the
data for neural analyses. The impact of the interpolation is
essentially the opening of another research issue and is not
the direct purpose of this article The quality of the model
created by the interpolation techniques usedwas good enough
and verified with reference data that the errors from the
interpolation used can be considered as either negligible or
acceptable.

B. THE CLASSIFIER
Again in Matlab, a program was written for classifying the
size and type of a ship based on its magnetic signature, using a
generated dataset of 10000 signals. As before, this dataset was
divided into 80% training data, 10% validation data, and 10%
test data. After initial tests, it turned out that there was no need
to use a deep neural network for this task, as a single hidden
layer GRU already showed good results. In fact, these results
were even better than when additional layers were added.
To minimize the program, a grid search was conducted, the
results of which are shown in figure 22. It can be noticed
that already for 22 neurons, an accuracy higher than 99%
was achieved. However, it can be observed that stable results
were obtained above 52 neurons, mainly due to the use of the
stochastic optimizer Adam, and for this value it was decided
to create a classifier, whose final test accuracy reached 99.6%.
Figure 23 shows the confusion matrix on the test set.

C. SCALING THE SIGNATURES
The results obtained in the previous subsection were excep-
tionally high, which was caused by the fact, that the tugboat’s
signatures weremuch bigger inmagnitude than the corvette’s,
which is visualized in figure 24, where one can see how big
the difference is. The decision was made to try giving the
classifier a harder task, by artificially scaling the signatures to
the same range, the result of which is shown in figure 25. This
way, a new training dataset consisting of 10000 signatures
in similar value range was created, and the classifier was
tested again. Figure 26 shows the confusionmatrix of the final
test.

It can be seen, that despite scaling the signatures, a single-
layer GRU network is more than capable of classifying
ships by their size and type, achieving a remarkable 99,8%
accuracy.

FIGURE 26. Test confusion matrix after scaling the signatures.

FIGURE 27. Size and type classification results for different dataset sizes.

D. INFLUENCE OF DATASET SIZE ON PERFORMANCE AND
TRAINING TIME
Again, the choice of 10 000 samples as the size for the dataset
was arbitrary and it was decided to analyze its influence on
classification accuracy. As previously, the training process
was repeated for different numbers of signatures and each
time the set was divided the same way as before, into
80%, 10% and 10% of training, validation and test data
respectively. Figure 27 shows the results of the experiments,
where the accuracy and training time was depicted.
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The number of 10,000 data assumed the first time
proved to be redundant to sufficiently achieve satisfactory
classification quality. Inferring from the graph, already
with 1,300 samples, an almost 100 per cent efficiency
can be achieved, while above 3,000 samples it is achieved
steadily. As expected, the training time increases lin-
early with dataset size, although a slight increase in its
slope can be noticed at 4000 samples threshold. When it
comes to performing a single classification, on average it
took 64 µs.

V. DISCUSSION AND CONCLUSION
In this paper, a novel approach of utilizing deep learn-
ing techniques for classifying ships’ magnetic signatures
and predicting their size and type was presented. The
methodology involved the development and training of
RNNs, specifically using GRUs, to handle sequential data
effectively.

For the classification of compliance between original
and modified magnetic signatures, a multi-dipole model
was utilized to generate a diverse dataset. A deep RNN
architecture with GRU layers was designed and optimized
using grid search and random search methods for selecting
the best network structure and hyperparameters. After
including a disturbance of different type which shown to be
impactful on the network’s performance, the trained classifier
demonstrated high accuracy in assessing the compliance of
signatures.

Furthermore, a classifier was developed to recognize the
size and type of ships based on their magnetic signatures.
A signature generator was developed to create synthetic data
for different ship sizes, enabling the training of the classifier.
The GRU-based classifier achieved exceptional accuracy in
classifying ship size and type.

After examining the performance of the classifiers, one
can deduce what the advantages and limitations of the
algorithm are. In case of advantages, the most prominent one
is the accuracy of classification in both developed networks.
Thanks to a wide range of training data, the networks have
good generalizing abilities. It was shown that the network can
work for different quality indices’ type and therefore could
be developed with any other type of conformity assessment.
Potentially, GRU-based, deep neural networks capture pat-
terns in provided data, so if it were trained on real-world data,
the applicability is there. Despite these advantages, validating
the performance of the proposed model on actual ship
magnetic signatures is critical for assessing its generalization
capability. When it comes to limitations, these can be listed
as:

• A large (50 000 samples in the first case) dataset
necessary to train the network well

• Need for data augmentation, which possibly introduces
bias, that is not present in real data

• Long training time, especially when compared to
statistical compliance indicators

• The increase of the number of classes corresponds
to worse performance of the network, therefore the
resolution of classification is restricted.

• Still based on statistical indicators (RMSE etc.)
• The optimal structure of the network needs to be
experimentally found

• The lowest compliance level and width of the classes is
chosen arbitrarily

Despite these disadvantages, the developed classifier may
be treated as a very useful tool for models’ compliance
verification. Table 6 summarises analogous features to those
in table 1 of the authors’ solutions.
In conclusion, the use of deep learning techniques, particu-

larly RNNs with GRU layers, showed promising results in the
classification of ships’ magnetic signatures and classification
of ship attributes. These methods have the potential to
significantly enhance naval operations, particularly in mine
detection, as well as in vessel identification. Future work
could involve further refinement of the models, exploring
additional features, and testing them on real-world datasets
for practical deployment.

Using the developed method, in addition to assessing the
quality of the compatibility of the developed model with
the original, one can also estimate the compatibility of the
acquired object information with the available resources in
the object database. The information on the size of ships and
their types can be used in general for analysis for maritime
transport, in economic and safety aspects and for detailed
issues of analysis of traffic through straits, entrances and exits
of ports.

APPENDIX
DETAILS OF THE FEM SIMULATION
The FEM environment setup of both the corvette and tugboat
are described in table 7.

TABLE 7. FEM simulation details.
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