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Abstract
Numerical FE investigations of size effects in problems of footings on sand were performed.
Micro-polar hypoplastic constitutive model was used to describe a mechanical behaviour
of a cohesionless granular material during a monotonic deformation path. The FE analyses
were carried out with three different footing widths. In deterministic calculations, a uniform
distribution of initial void ratio was used. In statistical calculations, initial void ratios took
the form of random spatial fields described by a truncated Gaussian random distribution. In
order to reduce the number of stochastic realizations without sacrificing the accuracy of the
calculations, a stratified sampling method was applied. The numerical results were compared
with corresponding laboratory tests by Tatsuoka et al (1997). The numerical results show
that the bearing capacity of footings decreases with increasing specimen size. If the initial
void ratio is stochastically distributed, the mean bearing capacity of footings may be larger
than the deterministic value. The statistical size effect is smaller than the deterministic one.

Key words: footing, micro-polar hypoplasticity, sand, shear localization, size effects, strat-
ified sampling, void ratio

1. Introduction

The size effect phenomenon (experimental results vary with the size of specimens)
is an inherent property of the behaviour of many engineering materials. In the
case of cohesionless granular bodies, shear resistance increases with decreasing
specimen size and increasing mean grain diameter during many experiments in-
cluding shear localization (Wernick 1978, Tatsuoka et al 1997, Tejchman 2004a).
Thus, results from laboratory tests which are scaled versions of the actual structures
cannot be directly transferred to them. Much as in quasi-brittle materials (Bazant
and Planas 1998), two main size effects can be distinguished: deterministic and
statistical. The first is caused by strain localization which cannot be appropriately
scaled in laboratory tests. The specimen strength increases with increasing ratio
lc/L (lc – characteristic length of microstructure influencing both the thickness and
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spacing of shear localization, L – specimen size). In addition, this feature is strongly
influenced by pressure level (Tatsuoka et al 1997) since friction ratio and dilatancy
decrease with increasing pressure. A statistical (or stochastic) effect is caused by the
spatial randomness of material properties. According to Weibull’s theory (Weibull
1951), this effect is caused by weak spots whose relative amount usually grows with
increasing specimen size. Thus, the strength diminishes with increasing specimen
size. Up to now, such size effects have not been taken into account in specifications
such as design codes for engineering structures. The physical understanding of size
effects is of major importance for civil engineers who are forced to extrapolate ex-
perimental outcomes at laboratory scale (large geosystems or structures are usually
beyond the range of testing in laboratories) to results which can be used in real
scale situations.

In the case of granular materials involving shear localization, empirical size
effect laws are not known (in contrast to geometrically similar brittle specimens)
(Bazant and Planas 1998) as the performance of laboratory tests with large speci-
mens is more complex than in the case of brittle solids. In addition, the effect of
pressure cannot be neglected.

The intention of the numerical simulations for this paper is to investigate a deter-
ministic and statistical size effect in problems of footings on cohesionless granular
material like sand under quasi-static conditions by considering the influence of shear
localization on shear resistance. A finite element method with a micro-polar hy-
poplastic constitutive model (Tejchman and Gudehus 2001, Tejchman and Niemunis
2006, Tejchman and Górski 2008) was used, which is able to describe the essential
properties of granular bodies during shear localization in a wide range of pressures
and densities during monotonic deformation paths. The calculations were performed
with three different footing widths. Deterministic calculations were performed with
a uniform distribution of the initial void ratio in dense sand. Statistical analyses were
carried out with spatially correlated homogeneous distributions of the initial void
ratio in dense sand, which were assumed to be random. Truncated Gaussian random
fields were generated using a conditional rejection method (Walukiewicz et al 1997)
for weakly correlated random fields. The approximated results were obtained using
a stratified sampling method belonging to a group of reduced Monte Carlo methods
(Hurtado and Barbat 1998). This approach enables a significant reduction of the
sample number without sacrificing the accuracy of calculations. The numerical re-
sults of load-displacement diagrams were compared with corresponding laboratory
tests performed by Tatsuoka et al (1997). The deterministic calculations for the
identical boundary value problem within micro-polar hypoplasticity had already
been performed by Tejchman and Herle (1999), Maier (2002), Nübel (2002) and
Nübel and Huang (2004). In the last paper, a non-correlated random field of the
initial void ratio was generated to promote shear localization. In turn, statistical
calculations for other strip footings on sand were carried out, among others, by
Fenton and Griffiths (2002) and Niemunis et al (2005). In the first case, the calcu-
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lations were carried out in an elastic region. In the second case, the Latin hypercube
sampling method was used for a generation of two-dimensional random fields (but
not for their classification).

This paper continues the research presented by Tejchman and Górski (2008a,
2008b). In the first paper, deterministic and statistical size effects were investigated
during quasi-static shearing of an infinite granular layer between two very rough
boundaries under constant vertical pressure using the direct Monte Carlo method and
two reduction approaches: stratified sampling and Latin hypercube sampling. These
two reduction methods, in contrary to the standard approaches (see e.g. Niemunis
et al 2005) were not used for the generation process but for classification of the
generated random fields. In turn, in the second paper, calculations with deterministic
and statistical size effect were performed in granular specimens subjected to plane
strain compression under constant lateral pressure. To estimate the statistical size
effect, only Latin hypercube sampling was used. Both calculations have shown
that the deterministic size effect was small. The shear resistance at peak and at
residual state decreased with increasing ratio of the specimen height ho and mean
grain diameter d50. However, the material ductility, defined as the ratio between
the energy consumed during shearing after and before the peak, increased with
decreasing ho/d50. The mean shear resistance at peak with random void ratios was
always smaller than this with the same initial mean void ratio. It diminished with
increasing ho/d50. The statistical size effect was always weaker than the deterministic
one. For a large standard deviation and weakly correlated fields in both directions,
the difference in the friction angle was pronounced: 5◦ (at peak) and 2◦ (at the
residual state).

The innovations presented in this paper concern the computation of size effects
by taking into consideration the effect of pressure which has a pronounced influence
on the shear resistance of granular materials. When the pressure level increases,
both the friction and dilatancy decrease. As a result, the material strength decreases.
Thus, the size effect becomes stronger. For the sake of simplicity, two assumptions
were made. First, the calculations were carried out for plane strain. Second, sym-
metric stochastic fields of initial void ratio were used (in reality they are slightly
non-symmetric, Sheppard et al 2006, Aste et al 2007).

The outline of the present paper is as follows. First, after the introduction (Sec-
tion 1), the laboratory tests performed by Tatsuoka et al (1997) are described briefly
(Section 2). Then the employed micro-polar hypoplastic model is summarized (Sec-
tion 3). The simulation of discrete random fields is described in Section 4. Infor-
mation about the finite element discretisation and boundary conditions are given in
Section 5. The numerical results of the deterministic and statistical size effects are
discussed in Section 6. Conclusions are listed in Section 7.

A superposed circle indicates objective time derivation and a superposed dot
indicates material time derivation of a particular quantity. Compressive stress and
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shortening strain are taken as negative (thus, dilatancy is positive and contractancy
is negative).

2. Laboratory Tests

The comprehensive experiments with strip footings of a different width on dense
Silver Leighton Buzzard sand (SLB) were performed by Tatsuoka et al (1997). To
determine a size effect due to the pressure level and grain size, both the 1g and
centrifuge tests were performed. In the 1g tests, a sand box had the dimensions
24 × 60 × 30 cm3 (for model footings with a width of Bo = 5 mm, 10 mm and 25
mm) and 40 × 183 × 60 cm3 (for a model footing with a width of Bo = 100 mm).
In the centrifuge tests, a 10 × 50 cm ×30 cm3 sand box was used with Bo = 2 cm
and 3 cm, respectively. The footing base was made rough by gluing – on a sheet of
sand paper. The loading of footings was central. The initial void ratio of sand was
eo = 0.55 (initially dense sand).

Figs. 1a and 1b show the relationships between the normalized resultant ver-
tical force N = 2q/(γdBo) and normalized vertical displacement s/Bo from 1g and
centrifuge tests (q – average contact footing pressure). The progressive failure on
the basis of local shear strain contours is presented in Fig. 1c (Bo = 100 mm).
The result for Bo = 5 mm is erratic (probably due to a low ratio of Bo/d50). The
normalized maximum vertical force Nmax decreases with increasing Bo (Nmax = 350
for Bo = 1.0 cm, Nmax = 230 for Bo = 2.5 cm and Nmax = 180 for Bo = 5.0 cm). The
relationship is hyperbolic (see Fig. 16). The thickness of almost symmetric shear
zones beneath the footing is about 6 mm (10 × d50).

In addition, Fig. 2 shows the sand deformations from other experiments with
footings on sand (Tatsuoka et al 1991), obtained by means of colored layers. In this
case, a complex pattern of non-symmetric shear zones was obtained.

According to Steenfelt (1979), Bätcke (1982), Jarzombek (1989) and Tatsuoka
et al (1991, 1997), a deterministic size effect due to the particle size becomes signif-
icant for Bo/d50 < 100–500 (Tatsuoka et al 1991, 1997), Bo/d50 < 100 (Jarzombek
1989) and Bo/d50 < 33 (Steenfelt 1979), respectively.

3. Micro-Polar Hypoplastic Model

Despite the discrete nature of granular materials, the mechanical behaviour in
a quasi-static regime can be reasonably described by the principles of continuum
mechanics. Non-polar hypoplastic constitutive models have been developed at Karl-
sruhe University (Bauer 1996, Gudehus 1996, von Wolffersdorff 1996), where the
stress rate tensor is assured to depend on the stress tensor, strain rate tensor and the
void ratio via isotropic nonlinear tensorial functions based on the representation the-
orem (Wang 1970). The constitutive models were formulated by a heuristic process
considering the essential mechanical properties of granular materials undergoing
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Fig. 1. Evolution of normalised vertical force N = 2q/(γd Bo) versus normalised vertical
displacement S/Bo from 1g (A) and centrifuge model tests (B) on SLB sand (q – average
contact footing pressure, γd – initial unit weight, Bo – footing width) and evolution of local
shear strain contours from 1g test with footing of Bo = 10 cm (C) (Tatsuoka et al 1997)

homogeneous deformation. They describe the behaviour of so-called simple grain
skeletons which are characterised by the following properties:
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Fig. 2. Sand deformation under footing on sand obtained with colored layers (Tatsuoka et
al 1991)

• the state is fully defined through the skeleton pressure and the void ratio (inherent
anisotropy of contact forces between grains is not considered and vanishing
principal stresses are not allowed),

• deformation of the skeleton is due to grain rearrangements (e.g. small deforma-
tions < 10−5 due to an elastic behaviour of grain contacts are negligible),

• grains are permanent (abrasion and crushing are excluded in order to keep the
granulometric properties unchanged),

• three various void ratios decreasing exponentially with pressure are distinguished
(minimum, maximum and critical),

• the material manifests an asymptotic behaviour for monotonous and cyclic shear-
ing or SOM-states for proportional compression,

• rate effects are negligible,
• physico-chemical effects (capillary and osmotic pressure) and cementation of

grain contacts are not taken into account.

A striking feature of hypoplasticity is that the constitutive equation is incre-
mentally nonlinear in deformation rate. The hypoplastic models are capable of de-
scribing some salient properties of granular materials, e.g. non-linear stress-strain
relationship, dilatant and contractant volumetric change, stress level dependence,
density dependence and strain softening. A further feature of hypoplastic models
is the inclusion of the critical states, i.e. states in which a grain aggregate can
deform continuously at constant stress and volume (void ratio). Moreover, both the
coaxiality (understood as a coincidence of the directions of the principal stresses
and principal plastic strain increments) and stress-dilatancy rule are not defined
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(Tejchman and Wu 2008). In contrast to elasto-plastic models, a decomposition of
deformation into elastic and plastic parts, the formulation of a yield surface, plastic
potential, flow rules and hardening rules are not needed. An exhaustive review
of the development of hypoplasticity can be found in Wu and Kolymbas (2000),
Tamagnini et al (2000) and Tejchman (2008). The hypoplastic models were initially
proposed for cohesionless soil. To increase the application range, a hypoplastic
constitutive law has been extended for an elastic strain range (Niemunis and Herle
1997), anisotropy (Tejchman et al 2007) and for viscosity (Niemunis 2003, Gudehus
2006, Tejchman and Wu 2009). It can be also used for soils with low friction angles
(Herle and Kolymbas 2004) and clays (Masin, 2005, Huang et al 2006, Weifner and
Kolymbas 2008, Masin and Herle 2008). The hallmarks of these models are their
simple formulation and procedure for determining material parameters with standard
laboratory experiments. The material parameters can be related to the granulomet-
ric properties of granular materials, such as grain size distribution curve, shape,
angularity and hardness of grains (Herle and Gudehus 1999). A further advantage
lies in the fact that one single set of material parameters is valid for a wide range
of pressures and densities.

Hypoplastic constitutive models without a characteristic length cannot describe
the scale effects associated with shear bands such as thickness and spacing of shear
bands. A characteristic length can be introduced into hypoplasticity by means of ei-
ther the micro-polar, or non-local or second-gradient theory (Maier 2002, Tejchman
2004b). In this paper, a micro-polar theory is adopted. A micro-polar model makes
use of rotations and couple stresses, which have clear physical meaning for granular
materials. First, the rotations and couple stresses can be observed during shear-
ing and remain negligible during homogeneous deformation (Oda 1993). Second,
Pasternak and Mühlhaus (2001) have demonstrated that the additional rotational
degree of freedom of a micro-polar continuum arises naturally by mathematical
homogenization of an originally discrete system of spherical grains with contact
forces and contact moments. In turn, Ehlers et al (2003) have shown that a particle
ensemble has the character of a micro-polar Cosserat continuum and the couple
stresses naturally result only from the eccentricities of normal contact forces.

A micro-polar continuum considers the deformation at two different levels, i.e.:
micro-rotation at the particle level and macro-deformation at the structural level
(Schäfer 1962, Mühlhaus 1990). Each material point has, for the case of plane strain,
three degrees of freedom: two translations ui and one independent rotation ωc. The
gradients of the rotation are related to the curvatures κi = ωc

,i which are associ-
ated with the couple stresses mi through constitutive equations. The displacements,
rotation, stresses and couple stresses in a plane strain micro-polar continuum are
shown in Fig. 3. The presence of the couple stresses gives rise to a non-symmetric
stress tensor and a characteristic length. Force and moment equilibrium (in static
problems, Fig. 3b) require that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


102 J. Tejchman, J. Górski

Fig. 3. Plane strain static Cosserat continuum (without body forces and body moment):
a) degrees of freedom (u1 – horizontal displacement, u2 – vertical displacement, ωc –

Cosserat rotation), b) stresses σi j and couple stresses mi at an element

σ11,1 + σ12,2 − f B
1 = 0, (1)

σ21,1 + σ22,2 − f B
2 = 0, (2)

m1,1 + m2,2 + σ21 − σ12 − mB = 0, (3)

where σi j is the stress tensor, mi denotes the couple stress vector, f B
i and mB are the

volume body forces and volume body moment, respectively. Eqs. 1–3 are equivalent
to the virtual work principle (Mühlhaus 1990, Tejchman and Wu 1993)

∫
B

(σi jδεi j + miδκi)dV =

=
∫
B

[
f B
i δui + mBδωc

]
dV +

∫
∂1B

tiδuidA +
∫
∂2B

mδωcdA, i, j = 1, 2,
(4)

wherein ti = σi jn j and m = mini. ti and m are prescribed boundary tractions and
moment on the boundary ∂1B and ∂2B with the normal vector ni. δεi j and δκi denote
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virtual deformations and curvatures, respectively, δui are virtual displacements, δωc

is the virtual Cosserat rotation, A is the surface and V denotes the volume. Virtual
displacements and Cosserat rotation vanish on those parts of the boundary where
kinematic boundary conditions are prescribed. The virtual work principle (Eq. 4) is
used to formulate the FE-equations of motion in a micro-polar continuum (Mühlhaus
1990).

The constitutive relationship between the stress rate, the couple stress rate, the
strain rate and the curvature rate can be generally expressed by the following two
equations for plane strain (Tejchman and Gudehus 2001):

◦
σi j = Fi j(e, σkl,mi, dc

kl, ki), (5)

◦
mi = Gi(e, σkl,mi, dc

kl, ki). (6)

The Jaumann stress rate tensor and Jaumann couple stress rate vector in the
above equations are defined by (Mühlhaus 1990)

◦
σi j =

•
σi j − wikσk j + σikwk j (7)

and

◦
mi =

•
mi −

1
2
wikmk +

1
2

mkwki. (8)

The functions Fi j and Gi in Eqs. (5) and (6) represent isotropic tensor-valued
functions of their arguments; σi j is the Cauchy stress tensor, mi is the couple stress
vector, e denotes the current void ratio, dc

kl is the polar strain rate and ki denotes
the rate of curvature vector with

dc
i j = di j + wi j − w

c
i j , and ki = w

c
,i. (9)

The rate of deformation tensor di j and the spin tensor wi j are related to the
deformation velocity vi as follows:

di j =
vi, j + v j,i

2
, wi j =

vi, j − v j,i

2
, with (),i =

∂()
∂xi
. (10)

The rate of Cosserat rotation wc is defined by

wc
21 = −w

c
12 = w

c and wc
kk = 0. (11)

For moderate stress levels, the grains of granular materials can be reasonably
assumed to be incompressible. In this case, the change of void ratio depends only
on the strain rate:
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•
e = (1 + e)dkk . (12)

For the numerical calculations, the following micro-polar hypoplastic constitu-
tive equations are considered (Tejchman and Gudehus 2001):

◦
σi j = fs

[
Li j

(
∧
σkl,

∧
mk , dc

kl, kkd50

)
+ fdNi j

(
∧
σi j

) √
dc

kld
c
kl + kkkkd2

50

]
(13)

and

◦
mi

d50
= fs

[
Lc

i

(
∧
σkl,

∧
mk , dc

kl, kkd50

)
+ fdNc

i

(
∧
mi

) √
dc

kld
c
kl + kkkkd2

50

]
, (14)

wherein the normalized stress tensor
∧
σi j is defined by

∧
σi j =

σi j

σkk
, (15)

and the normalized couple stress vector
∧
mi is defined by

∧
mi =

mi

σkkd50
, (16)

wherein d50 is the mean grain diameter of sand. The scalar factors fs = fs(e, σkk)
and fd = fd(e, σkk) in Eqs. (13) and (14) describe the influence of density and stress
level on the incremental stiffness. The factor fs depends on the granulate hardness
hs, the mean stress σkk , the maximum void ratio ei and the current void ratio e
through the following relationship (Bauer 1996)

fs =
hs

nhi

(
1 + ei

ei

) (ei

e

)β (
−
σkk

hs

)1−n

, (17)

with

hi =
1
c2

1

+
1
3
−

(
ei0 − ed0

ec0 − ed0

)α 1

c1
√

3
. (18)

In the above equations, the granulate hardness hs represents a reference pressure
similar to the atmospheric pressure, the coefficients α and β express dependence
on density and stress level respectively, and n denotes the compression coefficient.
The multiplier fd represents the dependence on the relative density:

fd =
(

e − ed

ec − ed

)α
. (19)
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Fig. 4. Relationship between void ratios ei , ec and ed and mean pressure ps in a logarithmic
(a) and linear (b) scale (grey zones denote inadmissible states)

The relative density in the above expression involves the void ratio in critical
state ec, the minimum void ratio ed (the densest packing) and the maximum void
ratio ei (the loosest packing). In a critical state, granular material experiences con-
tinuous deformation while the stress and void ratio remain unchanged. The current
void ratio e is bounded by the two extreme void ratios ei and ed (Fig. 4). Based on
experimental observations, the void ratios ei, ed and ec are assumed to depend on
the stress level σkk through the following affine relationships (Bauer 1996):

ei = ei0 exp
[
−

(
−
σkk

hs

)n]
, (20)

ed = ed0 exp
[
−

(
−
σkk

hs

)n]
, (21)

ec = ec0 exp
[
−

(
−
σkk

hs

)n]
, (22)

wherein ei0, ed0 and ec0 are the values of ei, ed and ec at σkk = 0, respectively.
For the functions Li j , Ni j , Lc

i and Nc
i in the constitutive Eqs. (13) and (14), the

following specific expressions are used (Tejchman and Gudehus 2001):

Li j = a2
1d

c
i j +

∧
σi j

(
∧
σkldc

kl +
∧
mkkkd50

)
, (23)

Lc
i = a2

1kid50 + a2
1
∧
mi

(
∧
σkldc

kl +
∧
mkkkd50

)
, (24)

Ni j = a1

(
∧
σi j +

∧

σ∗i j

)
, (25)
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Nc
i = a2

1ac
∧
mi, (26)

where

a−1
1 = c1 + c2

√
∧

σ∗kl

∧

σ∗lk [1 + cos(3θ)] , (27)

cos(3θ) = −

√
6[

∧

σ∗pq

∧

σ∗pq

]1.5

(
∧

σ∗kl

∧

σ∗lm
∧

σ∗mk

)
, (28)

with

c1 =

√
3
8

(3 − sin φc)
sin φc

, c2 =
3
8

(3 + sin φc)
sin φc

. (29)

The material constant φc is the friction angle in critical state and the stress
function θ denotes the Lode angle in the deviatoric plane at

∧
σii = 1 (calculated

with a symmetric stress tensor), and
∧

σ∗i j denotes the deviatoric part of
∧
σi j . The

micro-polar parameter ac in Eq. (26) can be correlated with the grain rough-
ness. This correlation can be established by studying the shearing of a narrow
granular strip between two rough boundaries (Tejchman and Gudehus 2001). It
can be represented by a constant, ac = 1 ÷ 5, or connected to the parameter a−1

1 ,
ac = (0.5 ÷ 1.5) × a−1

1 . The parameter a−1
1 (Eq. 27) lies in the range of 3.0–4.3 for

the usual range of critical friction angle.
In general, the above constitutive model requires the following ten material

parameters: ei0, ed0, ec0, φc, hs, β, n, α, ac and d50 (nine material parameters if ac =

f (a1)). They were calibrated for a pressure range of 1 kPa< ps = −σkk/3 < 1000
kPa. Below it, additional capillary forces due to the air humidity and van der Waals
forces may become important, and above it, grains are crushing. The calibration
procedure for non-polar material parameters in the case of different sands (0.1
mm ≤ d50 ≤ 2.0 mm, 1.4 ≤ Cu ≤ 7.2, Cu – coefficient of uniformity) was given in
detail by Bauer (1996), Herle and Gudehus (1999) and Rondon et al (2007). The
parameters hs and n can be estimated from a single oedometric compression test with
an initially loose specimen (hs reflects the slope of the curve in a semi-logarithmic
representation, and n its curvature). The parameters α and β can be determined
from a triaxial or plane strain test with a dense specimen. The critical friction
angle φc can be determined from the angle of repose or measured in a triaxial test
with a loose specimen. The parameters of ei0, ed0, ec0 and d50 are obtained from
conventional index tests (ec0 ≈ emax, ed0 ≈ emin, ei0 ≈ (1.1 − 1.5)emax).

The FE-analyses were carried out with the following material constants for SLB
sand: ei0 = 0.86, ed0 = 0.51, ec0 = 0.79, φc = 29◦, hs = 300 MPa, β = 1, n = 0.40,
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α = 0.16, ac = a−1
1 and d50 = 0.60 mm (Tejchman and Herle 1999). It should be

noted that the calibration of the material parameters was not performed by following
the standard procedure described above. First, the required laboratory calibration
tests were performed, and second, the material parameters were found by fitting
element test calculations with results of plane strain compression tests without
taking into account shear localization.

The capability of a micro-polar hypoplastic constitutive model of solving differ-
ent boundary value problems including shear localization was verified, among oth-
ers, by Tejchman and Bauer (1996), Tejchman and Gudehus (2001), Tejchman and
Niemunis (2006), Tejchman and Wu (2009), Tejchman and Górski (2008), Gudehus
and Nübel (2004), Nübel and Huang (2004), and Tejchman (2008). A satisfactory
agreement between numerical and experimental results was achieved in particular
for monotonic and cyclic symmetric deformation (Tejchman 2008). However, the
model shows evident shortcomings for deformation with small amplitudes since an
excessive accumulation of deformation (called ratchetting) occurs. To avoid it, the
model has to be extended by including intergranular strain (Niemunis and Herle
1997).

4. FE-Input Data

4.1. Deterministic Calculations

The FE-calculations of a footing on sand (assuming a uniform distribution of the
initial void ratio eo) were performed with 3 different footing widths (Bo = 1.0 cm,
2.5 cm and 5.0 cm) for a granular specimen of bo × ho = 60 × 24 cm2 (bo – ini-
tial width, ho – initial height). The specimen depth was equal to l=1.0 m due to
plane strain conditions. In all cases, quadrilateral finite elements divided into 6212
triangular elements were used (Fig. 5). Quadrilateral elements composed of four
diagonally crossed triangles were used to avoid volumetric locking due to dilatancy
effects (Groen 1997). Linear shape functions were used for displacements and for
the Cosserat rotation. The integration was performed with one sampling point placed
in the middle of each element. To properly capture shear localization inside of the
granular specimen, the size of the triangular finite elements se was not larger than
five mean grain diameters d50 (Tejchman and Bauer 1996). This condition was
fulfilled close to the footing in the area ‘A’ of 6 × 12 cm2, where se = 2.5 mm =
4.2 × d50 (Fig. 5). As mentioned earlier, during calculations, the effect of pressure
was taken into account in the micro-polar hypoplastic model.

A quasi-static deformation in sand was imposed through a constant vertical
displacement increment ∆u prescribed at nodes along the very rough footing. To
simulate this roughness, the horizontal displacement and Cosserat rotation along
the footing were assumed to be equal to zero. For this reason, the edges of the
box containing sand were very smooth. The vertical displacement increments were
chosen as ∆u/Bo = 0.000025–0.000050. About 20000–30000 steps were performed.
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108 J. Tejchman, J. Górski

Fig. 5. FE-mesh used for plane strain calculations

As an initial stress state, a K0-state with σ22 = γdx2 and σ11 = K0γdx2 was
assumed in the specimen; x2 is the vertical coordinate measured from the top of
the specimen, γd = 17.0 kN/m3 denotes the initial volumetric weight and K0 = 0.50
is the earth pressure coefficient at rest (σ11 – horizontal normal stress, σ22 – vertical
normal stress). The initial void ratio was eo = 0.55.

For the solution of a non-linear equation system, a modified Newton-Raphson
scheme with line search was used. The global stiffness matrix was calculated with
only linear terms of the constitutive equations (Eqs. 23 and 24). In order to acceler-
ate the convergence in the softening regime, the initial increments of displacements
and Cosserat rotations in each calculation step were assumed to be equal to the
final increments in the previous step. The procedure was found to yield sufficiently
accurate solutions with a fast convergence. Due to non-linear terms in deformation
rate and material softening, this procedure turned out to be more efficient than a full
Newton-Raphson method (Tejchman 2008). The iteration steps were performed us-
ing translational and rotational convergence criteria. For the time integration of
stresses in finite elements, a one-step Euler forward scheme was applied. The cal-
culations were carried out with large deformations and curvatures using a so-called
“Updated Lagrangian” formulation by taking into account the Jaumann stress rate
and Jaumann couple stress rate and the actual shape and area of finite elements.

4.2. Statistical Calculations

To generate the random fields, a conditional-rejection method was applied (Walu-
kiewicz et al 1997). The method makes it possible to simulate any homogeneous
fields for which the expected value and variance are constant (Knabe et al 1998,
Vanmarcke 1983) or non-homogeneous truncated Gaussian random fields described
on a regular or irregular two dimensional spatial mesh. The input data of the
method are: a correlation function K (x, y), mean values, standard deviations, and
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in the case of a truncated field – the truncation parameter. Using the correlation
function K (x, y), the covariance matrix K defined in discrete points of the mesh is
calculated. First, several random points are generated with the help of a standard
unconditional generation method (Walukiewicz et al 1997). Then, the conditional
version of the algorithm is used, which allows for a generation of the next group
of random values. The method is of a sequential type. A “base scheme” is defined
which covers a limited mesh area (hundred points), and only these points are used
in the calculations of the next random values. The base scheme is appropriately
shifted to cover all the field nodes. The proposed approach allows for a generation
of practically unlimited random fields (thousands of discrete points). Here, only
a short description of the conditional version of the method is provided. Using this
algorithm, a single random vector, described on the defined base scheme, can be
generated:

1. Determination of the local covariance matrix K, the unknown Xu and known
part of the random vector Xk and the expected values vector X:

X =
{

Xu
Xk

}
, K =

[
K11 K12
K21 K22

]
, X =

{
Xu

Xk

}
. (30)

2. Determination of the conditional variance matrix Kc and the conditional mean
vector Xc:

Kc = K11 −K12K−1
22 K21, (31)

Xc = Xu +K12K−1
22

(
Xk − Xk

)
. (32)

3. Determination of the maximal value of the density function fmax

fmax = (1 − t)−n/2(det Kc)−n/2(2π)−n/2 × (2erf(s))−n , (33)

t =
s × exp

(
− s2

2

)
√

2π erf(s)
, s ≥ 0 and erf(s) =

1
2π

s∫
0

exp
(
−

x2

2

)
dx, (34)

where t and s are the truncation parameters.
4. Generation of the vector of unknown values Xu:

Xi = ai + (bi − ai) ui i = 1, . . . , n, (35)

where ui is a random variable uniformly distributed in the interval [0,1]. The
intervals (ai, bi) are defined for all points of the mesh and establish an envelope
of the random field. The envelope specifies the characteristic features of the field
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under consideration, for example, their maximal and minimal values. It can be
given in the form of a function or by an experimental discrete data.

5. Calculation of the conditional density function f (Xu):

f (Xu) = fmax exp (−0.5J (Xu)) , (36)

where

J (Xu) =
1

2(1 − t)

(
Xu − Xc

)T
K−1

c

(
Xu − Xc

)
. (37)

6. Generation of the independent random variable un+1 from the interval [0, 1] and
checking the condition

fmaxun+1 ≤ f (Xu) . (38)

7. If this condition holds, the random value Xu is accepted; if not, the calculation
returns to the point 4.

To describe the discrepancies between the theoretical and generated fields, the
following global Ger and local Ver (variance) errors are calculated (Walukiewicz et
al 1997):

Ger

(
K, K̂

)
=

∣∣∣‖K‖ − ∥∥∥K̂∥∥∥∣∣∣
‖K‖

× 100%, (39)

Ver

(
kii, k̂ii

)
=

m∑
i=1

(
kii − k̂ii

)(
kii

) × 100%, (40)

where K̂ is the estimator of the covariance matrix K calculated with the help of
the generated fields

K̂ =
1

NR − 1

NR∑
i=1

(
X̂i − X̂

) (
X̂i − X̂

)T
, X̂ =

1
NR

NR∑
i=1

X̂i. (41)

The parameter X̂ is the estimator of the random vector X, and X̂ is the estimator
of its mean value, NR denotes the number of realizations, ‖K‖ =

√
tr (K)2 is the

matrix norm, kii and k̂ii denote the diagonal element of the covariance matrix K
and its estimators K̂, respectively.

In the work, the Monte Carlo method is applied. The following steps are re-
quired:
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– simulation of random variables or fields describing the problem under consid-
eration, for example, variability of material parameters, initial imperfections in
structure geometrics and others,

– solution of the problem for each simulated realization and creation of a set of
results,

– statistical description of the obtained set of results.

Contrary to stochastic finite element codes, the Monte Carlo method does not
impose any restriction onto the solved random problems. Linear or nonlinear prob-
lems can be analysed using standard commercial deterministic programs without
any improvements or modifications. The only limitation of the method is calculation
time. For example, to reproduce exactly the input random data of shell initial geo-
metric imperfections, at least 2000 random samples should be used (Bielewicz and
Górski 2002). Any nonlinear calculations for such a number of initial data are, how-
ever, impossible due to excessive computation times. To determine a minimal but
sufficient number of samples which allows one to estimate the results with a desired
accuracy, a convergence analysis of the results has been proposed (Górski 2006). It
has been estimated that in the case of the shell initial geometric imperfections only
about 50 realizations need be considered. A further decrease of sample numbers
can be obtained using Monte Carlo reduction methods. In the paper by Tejchman
and Górski (2008), two methods were considered: a stratified and a Latin sampling
method. These methods were not used for the generation of two-dimensional random
fields, but for their classification. For that reason, a single realization was generated
according to the initial data, i.e. the mean value and the covariance matrices were
exactly reproduced. The calculations have shown (Tejchman and Górski 2008a)
that using these reduction methods, the results can be properly estimated by several
realizations (e.g. 12–15).

Various properties of granular bodies may be considered as randomly dis-
tributed: e.g. initial stresses (Niemunis et al 2005), mean grain diameter (Górski
et al 2008), initial void ratio (Gudehus and Nübel 2004). In the present work,
only fluctuations of void ratio were taken into account (as proposed by Gudehus
and Nübel 2004). Randomness of the initial void ratio eo should be described by
a correlation function. For lack of the appropriate data, the correlation function is
usually chosen arbitrarily. It is obvious that the fluctuation of any material param-
eters should be described by a homogeneous function. Furthermore, the function
should confirm that the correlation between random material variables vanishes
when the random point distance increases. Any non-homogeneous correlation func-
tion, e.g. Wiener or Brown function (Vanmarcke 1983) defines strong correlation
between every point of the field, and such description of material parameters is
unrealistic. The simplest choice is a standard first order anisotropic correlation
function K(∆x1,∆x2) = e−λx1∆x1e−λx2∆x2 . Here, the following, more general, second
order, homogeneous correlation function was adopted (Bielewicz and Górski 2002):

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


112 J. Tejchman, J. Górski

K(∆x1,∆x2) = s2
eo
× e−λx1∆x1(1 + λx1∆x1)e−λx2∆x2(1 + λx2∆x2), (42)

where ∆x1 and ∆x2 are the distances between two field points along the horizontal
axis x1 and vertical axis x2, λx1 and λx2 are the decay coefficients (damping param-
eters) characterizing a spatial variability of the specimen properties (i.e. describe
the correlation between the random field points), while the standard deviation seo

represents the field scattering.
It is possible to compare the two homogeneous functions using the scale of

fluctuation θ (average length of the correlation distance, Vanmarcke (1983)). For
the normalized function (Eq. 42) θ = 4/λ (with ∆x → 0) and the parameter is twice
as big as the fluctuation scale of a standard first order correlation function (Van-
marcke 1983). Thus, by using appropriate decay coefficients λ, in this case, the
second order correlation function can be approximated by the first order one. The
second order homogeneous function (Eq. 42) proved to be very useful when the
conditional-rejection method of generation was applied (Knabe et al 1998).

In finite element methods, continuous correlation function (Eq. 42) must be
represented by the appropriate covariance matrix (Eq. 30). For this purpose, the
procedure of local averages of the random fields proposed by Vanmarcke (1983)
was adopted. After an appropriate integration of the function (Eq. 42), the following
expressions describing the variances Dw and covariances Kw were obtained (Knabe
et al 1998):

Dw (∆x1,∆x2) =
2

λx1∆x1
s2
eo

[
2 + e−λx1∆x1 −

3
λx1∆x1

(
1 − e−λx1∆x1

)]
×

×
2

λx2∆x2

[
2 + e−λx2∆x2 −

3
λx2∆x2

(
1 − e−λx2∆x2

)]
,

(43)

Kw (∆x1,∆x2) =
eλx1∆x1(
λx1∆x1

)2 s2
eo

{[
cos

(
λx1∆x1

)
−sin

(
λx1∆x1

)]
+2λx1∆x1−1

}
×

×
eλx2∆x2(
λx2∆x2

)2 s
{[

cos
(
λx2∆x2

)
−sin

(
λx2∆x2

)]
+2λx2∆x2−1

}
.

(44)

In our stochastic calculations, a mean initial void ratio of e0 = 0.55 was as-
sumed. We took into account a weak correlation of the initial void ratio eo in both
directions (λx1 = 3 and λx2 = 3 in Eqs. 43 and 44) and its high standard deviation
equal to seo = 0.10. The range of significant correlation was approximately 40 mm.
The following constant intervals of the mesh points were applied: ai = bi = 0.09
(Eq. 35). In this way, the initial void ratio changed between 0.44 and 0.64. The
dimension of the random field was the same as the finite element mesh in the area
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Fig. 6. Stratified sampling method for footings on sand

Fig. 7. Stochastic distribution of initial void ratio close to the footing (area ‘A’ of Fig. 5) in
one granular specimen

‘A’ (Fig. 5). Only 24 × 48 = 1152 initial random void ratios were generated, one
value for one quadrilateral finite element. The same random values were assumed
in 4 neighbouring triangular elements. Using the algorithm described above in Sec-
tion 3, 2000 field realizations of the initial void ratio were generated. The global
Ger and local (variance) Ver errors of the generation were calculated (Eqs. 39 and
40): Ger = 2.34%, Ver = 0.14%.
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According to the stratified sampling method, the realizations of the random
field were chosen in a strictly defined manner. First, the generated samples were
classified and arranged in increasing order according to the chosen parameter (e.g.
their mean values). Then, the variable domain was divided into 12 intervals of equal
probability. On this basis, their distributions were specified in the form of histogram
(Fig. 6). From each interval, only one realization close to the centre of the subfield
was used as the input data to the FEM calculations. In this way, the results of 12
realizations were analyzed.

Fig. 7 shows a stochastic distribution of the initial void ratio in one granular
specimen in the area ‘A’ of Fig. 5. The initial void ratio changes in the entire region
between 0.44 and 0.64. Due to the fact that the initial void ratio scattering in the
specimen is limited by the pressure dependent void ratios ei0 = 0.86 (upper bound,
Eq. 21) and ed0 = 0.51 (lower bound, Eq. 22), the initial values of eo below 0.51
were simply cut off at the beginning of calculations. For comparison, the statistical
calculations were also performed with ed0 = 0.44 (only for Bo = 2.5 cm). In this
case, initial void ratios were not cut off below ed0.

5. FE-Results

5.1. Deterministic Size Effect

Fig. 8 shows the evolution of the calculated normalized vertical force N = 2q/(γdBo)
= 2P/(γdB2

o) (q – average contact footing pressure) for three different footing widths
Bo: 10 mm, 25 mm and 50 mm on initially dense SLB sand with a uniform distri-
bution of initial void ratio with eo = 0.55. In addition, a distribution of void ratio e

Fig. 8. Evolution of normalised vertical force N = 2q/(γd Bo) versus normalised vertical
displacement s/Bo from FE-calculations with uniform distribution of eo = 0.55 (q – average
contact footing pressure, γd – initial unit weight, Bo – footing width): a) Bo = 1 cm, b) Bo =

2.5 cm, c) Bo = 5 cm
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Fig. 9. Distribution of void ratio close to the footing from FE calculations with uniform
distribution of eo = 0.55: a) Bo = 1.0 cm, b) Bo = 2.5 cm, c) Bo = 5.0 cm

at residual state is shown close to footings (Fig. 9) (the darker the color, the higher
the void ratio). The vertical force was calculated as the total sum of vertical forces
at the nodes along the footing.

The resultant normalized vertical force on the footing at first increases, shows
a pronounced peak and later drops, then reaching approximately its residual value.
Its maximum value increases with decreasing footing width. As compared to ex-
periments, the calculated vertical force Nmax is too high, in particular for Bo = 1.0
cm (Nmax = 750 for Bo = 1.0 cm, Nmax = 360 for Bo = 2.5 cm and Nmax = 254 for
Bo = 5 cm). The normalized vertical footing displacement corresponding to the
peak grows with decreasing specimen size (from 10% up to 40%). According to
(Nübel and Huang 2004), a significant decrease of the maximum vertical force on
the footing can be achieved by decreasing wall friction between sand and footing.
However, our calculations have shown that the maximum vertical force diminishes
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for a smooth footing by only 20%. A more accurate calibration procedure of material
parameters is needed.

The calculated deformation field close to the footing (Fig. 9) is in good accor-
dance with the experiment (Fig. 1). During the footing displacement, first, a stiff
wedge of sand is created beneath the point at which the material undergoes slight
densification. Below the edge, two symmetric parabolic shear zones occur, which
are manifested by significant dilatancy, i.e. increase of void ratio.

The deterministic size effect could be approximately taken into account by
a change of initial void ratio, i.e. the higher the pressure level, the higher should
be the initial void ratio. The behaviour of initially dense sand at high pressures
corresponds to the behaviour of initially medium sand at low pressures. The scaling
law for the initial void ratio could be determined with several comparative numerical
simulations with different Bo and eo.

5.2. Statistical Size Effect

The evolutions of the normalized vertical force N versus normalized vertical dis-
placement s/Bo are shown in Fig. 10 for 3 different footing widths Bo. The distribu-
tion of void ratio close to the footing for six arbitrarily selected distributions of the
initial void ratio (cases No. ‘2’, ‘3’, ‘6’, ‘7’, ‘11’ and ‘12’ of Fig. 6) are shown in Fig.
11 at the residual state (Bo = 2.5 cm, s/Bo = 0.4–0.6). In turn, Fig. 12 demonstrates
the distribution of the Cosserat rotation close to the footing (indicated by circles)
at the residual state (s/Bo = 0.6) for one granular specimen (case No. ‘2’ of Fig.
6). In addition, for this last case, the distribution of void ratio is depicted for two
different footing displacements s/Bo (Fig. 13).

The effect of the distribution of the initial void ratio is significant. The mean
normalized vertical force Nmax decreases obviously with decreasing footing width
Bo. For Bo = 1 cm, it is higher (Nmax = 775) than the deterministic value (Nmax =

750). If Bo = 2.5 cm, it is similar (Nmax = 360). However, for Bo = 5 cm, it is
smaller (Nmax = 238) than the deterministic value (Nmax = 254). The deformation
field can be strongly non-symmetric including several curved and straight shear
zones (Figs. 11 and 12). Shear localization is characterized by the presence of
Cosserat rotation and an increase of the void ratio. The thickness of the curved
shear zone under the footing on the basis of the deformed mesh is about 12 × d50
(it includes 3 elements subjected to shear deformation) (Fig. 12). Outside the area
‘A’ (Fig. 8), the thickness of shear zones becomes wider due to overly large mesh
elements. The void ratio approaches, in shear zones, its pressure-dependent residual
value (Eq. 22). The number, shape and placement of shear zones are very sensitive
to the distribution of eo. The curved shear zones develop after the peak (s/Bo = 0.2),
and they are well noticeable at s/Bo = 0.3 (Fig. 13). The deformation fields of Fig.
11 are qualitatively similar to the experimental one (Fig. 2).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Size Effects in Problems of Footings on Sand within Micro-Polar Hypoplasticity 117

Fig. 10. Evolution of normalised vertical force N = 2q/(γd Bo) versus normalised vertical
displacement s/Bo from FE-calculations with uniform (thick solid line) and random distri-
bution of eo (dotted lines): a) Bo = 1.0 cm, b) Bo = 2.5 cm, c) Bo = 5.0 cm (q – average

contact footing pressure, γd – initial unit weight, Bo – footing width)
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Fig. 11. Distributions of void ratio at residual state (s/Bo = 0.5–0.6) close to the footing
from FE calculations with random distribution of eo for six different cases (Bo = 2.5 cm)
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Fig. 12. Distributions of Cossearat rotation at residual state close to the footing from
FE-calculations with random distribution of eo for the case ‘2’ of Fig. 8b (Bo = 2.5 cm)

Fig. 13. Distributions of void ratio close to the footing from FE calculations with random
distribution of eo for the case ‘2’ of Fig. 8b (Bo = 2.5 cm): a) s/Bo = 0.2, b) s/Bo = 0.3

The evolution of the normalized vertical force is shown in Fig. 14 when ed0 =

0.44 and Bo = 2.5 cm (in this case, the generated random field of eo was not cut
off below ed). The distributions of eo close to the footing for three different cases
(cases No. ‘1’, ‘2’ and ‘7’ of Fig. 6) are shown in Fig. 15 at the residual state for
Bo = 2.5 cm.

In the case of the uniform initial void ratio, the maximum normalized vertical
force Nmax is with ed0 = 0.44 (Nmax = 244) 40% smaller than in the case with ed0 =

0.51 (Nmax = 360) and is in satisfactory agreement with laboratory tests (Nmax =
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Fig. 14. Evolution of normalised vertical force N = 2q/(γd Bo) versus normalised vertical
displacement s/Bo from FE-calculations with uniform (thick solid line) and random distri-
bution of eo (dotted lines) with Bo = 2.5 cm and ed0 = 0.44 (q – average contact footing

pressure, γd – initial unit weight, Bo – footing width)

Fig. 15. Distributions of void ratio at residual state close to the footing from FE-calculations
with random distribution of eo for 3 different cases (Bo = 2.5 cm, ed0 = 0.44)

230) (Fig. 1). On the other hand, the rate of softening is too small. In the case
of a random distribution of eo, the mean normalized vertical force Nmax = 248 is
again higher than the deterministic value (Nmax = 244) as in the case of a small size
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Fig. 16. Normalised vertical force N = 2q/(γd Bo) versus ratio Bo/d50 from: a) experiments
(Tatsuoka et al 1997), b) deterministic FE calculations with ed0 = 0.51, c) statistical FE
calculations with ed0 = 0.51 (q – average contact footing pressure, γd – initial unit weight,

Bo – footing width, d50 – mean grain diameter)

footing with ed0 = 0.51. The pattern of shear zones can be again non-symmetric as
in the case with ed0 = 0.51 (the differences between two cases are negligible).

A summary of the calculated vertical normalized forces Nmax (ed0 = 0.51) as
compared to the experimental results by Tatsuoka et al (1997) is shown in Fig. 16.

6. Conclusions

The following conclusions can be drawn from our non-linear FE-investigations of
deterministic and statistical size effects in plane strain footings on sand:

The well known deterministic size effect (decrease of the bearing capacity with
increasing specimen size) is reproduced by FE modeling. It is caused by both shear
localization and pressure level unless the initial void ratio is appropriately scaled.

The statistical size effect is significantly weaker than the deterministic one. The
bearing capacity obtained from random sampling can be larger than a determin-
istic one in small-size and medium size model footings, in contrast to large-size
model footings, which rather obey the weakest link model. The difference between
a deterministic material strength and a mean statistical strength grows with increas-
ing footing width. Such behaviour is also typical for quasi-brittle materials during
uniaxial extension and bending.

The number, shape and placement of shear zones are all very sensitive to the
distribution of initial void ratio.

The numerical calculations of size effects in granular bodies will be continued.
More realistic, i.e. non-symmetric random fields of the distribution of the initial void
ratio will be produced (Tejchman and Gorski 2009) on the basis of X-ray Computed
Tomography with an assembly of spheres and real sand grains (Sheppard et al 2006,
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Aste et al 2007). In addition, the FE analyses will be carried out with a stochastic
distribution of initial stresses (Niemunis et al 2005) and grain diameter (Gorski et
al 2008).
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Schäfer H. (1962) Versuch einer Elastizitätstheorie des zweidimensionalen ebenen
Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, Festschrift Tolmien W.,
Berlin, Akademie-Verlag.

Sheppard A., Knackstedtr M., Senden T. and Saadatfar M. (2006) Analysis of granular materials using
X-ray micro-CT, Proc. 20th Canberra International Summer School and Workshop on Granular
Material, 53–53.

Steenfelt J. S. (1979) Scale effect on bearing capacity factor, Report of the Danish Geotechnical
Institute, Copenhagen.

Tamagnini C., Viggiani C. and Chambon R. (2000) A review of two different approaches to hy-
poplasticity. In: Constitutive Modeling of Granular Materials (D. Kolymbas, ed.), Heidelberg,
Springer, 107–145.

Tatsuoka F., Okahara M., Tanaka T., Tani K., Morimoto T. and Siddiquee M. S. A. (1991) Progres-
sive failure and particle size effect in bearing capacity of footing on sand, Proc. of the ASCE
Geotechnical Engineering Congress, 27 (2), 788–802.

Tatsuoka F., Goto S., Tanaka T., Tani K. and Kimura Y. (1997) Particle size effects on bearing capacity
of footing on granular material. In: Deformation and Progressive Failure in Geomechanics (eds.:
A. Asaoka, T. Adachi and F. Oka), Pergamon, 133–138.

Tejchman J. and Wu W. (1993) Numerical study on shear band patterning in a Cosserat continuum,
Acta Mechanica, 99, 61–74.

Tejchman J. and Bauer E. (1996) Numerical simulation of shear band formation with a polar hy-
poplastic model, Computers and Geotechnics, 19 (3), 221–244.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


124 J. Tejchman, J. Górski

Tejchman J. and Herle I. (1999) A “class A” prediction of the bearing capacity of plane strain footings
on granular material, Soils and Foundations, 39 (5), 47–60.

Tejchman J. and Gudehus G. (2001) Shearing of a narrow granular strip with polar quantities, J.
Num. and Anal. Methods in Geomechanics, 25, 1–18.

Tejchman J. (2004a) FE-simulations of a direct wall shear box test, Soils and Foundations, 44 (4),
67–81.

Tejchman J. (2004b) Influence of a characteristic length on shear zone formation in hypoplasticity
with different enhancements, Computers and Geotechnics, 31 (8), 595–611.

Tejchman J. and Niemunis A. (2006) FE-studies on shear localization in an anisotropic micro-polar
hypoplastic granular material, Granular Matter, 8 (3–4), 205–220.

Tejchman J., Bauer E. and Wu W. (2007) Effect of texturial anisotropy on shear localization in sand
during plane strain compression, Acta Mechanica, 189 (1–4), 23–51.

Tejchman J. and Wu W. (2009) FE-investigations of non-coaxiality and stress-dilatancy rule in dilatant
granular bodies within micro-polar hypoplasticity, Int. Journal for Numerical and Analytical
Methods in Geomechanics, 33 (1), 117–142.

Tejchman J. and Górski J. (2008a) Deterministic and statistical size effect during shearing of granular
layer within a micro-polar hypoplasticity, Int. Journal for Numerical and Analytical Methods in
Geomechanics, 32 (1), 81–107.

Tejchman J. and Górski J. (2008b) Computations of size effects in granular bodies within micro-polar
hypoplasticity during plane strain compression, Int. J. for Solids and Structures, 45 (6),
1546–1569.

Tejchman J. and Wu W. (2009) FE-investigations of shear localization in granular bodies under high
shear rate, Granular Matter, doi:10.1007/s10035-009-0128-4.

Tejchman J. (2008) FE modeling of shear localization in granular bodies with micro-polar hypoplas-
ticity, Springer (eds.: Borja R. and Wu W.).

Tejchman J. and Gorski J. (2009) Modeling of bearing capacity of footings on sand within stochastic
micro-polar hypoplasticity, Intern. Journal for Numerical and Analytical Methods in Geome-
chanics, 2009 (submitted).

Walukiewicz H., Bielewicz E. and Górski J. (1997) Simulation of nonhomogeneous random fields
for structural applications, Computers and Structures, 64 (1–4), 491–498.

Wang C. C. (1970) A new representation theorem for isotropic functions, J. Rat. Mech. Anal., 36,
166–223.

Vanmarcke E.-H. (1983) Random Fields: Analysis and Synthesis, Cambridge, MIT Press.
Weibull W. (1951) A statistical theory of the strength of materials, Journal of Applied Mechanics,

18 (9), 293–297.
Weifner T. and Kolymbas D. (2008) Review of two hypoplastic equations for clay considering ax-

isymmetric element deformations, Comp. Geotech., doi:10.1016/j.compgeo.2007.12.001.
Wernick E. (1978) Tragfähigkeit zylindrischer Anker in Sand unter besonderer Berücksichtigung des
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