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Abstract

With increasing availability of remote sensing snow cover products we aim

to evaluate the skill of these datasets with regard to hydrological discharge

simulation. In this paper ten model variants using di�erent snow cover data

(MOD10A1, IMS, AMSR-E SWE, GLOBSNOW SWE and observed in situ snow

depth) and two di�erent model structures for snow accumulation and snowmelt

switching (based on snow cover data time series or temperature time series)

are calibrated with a global optimization algorithm. The simulated discharge is

subjected to �ve criteria for validation, while the GLUE methodology is used

for uncertainty analysis of the ten model variants. The skill of the datasets

is tested for the Biebrza River catchment, which has a hydrological regime

dominated by snowmelt. The discharge simulations are conducted with the dis-

tributed rainfall-runo� model WetSpa. MOD10A1 was the only data source

which improved the validation Nash-Sutcli�e (NS) scores in reference to a stan-

dard model. However, other evaluation measures indicate that the following

data sources performed better than the standard model: MOD10A1, observed

snow depth and GLOBSNOW for Kling-Gupta e�ciency and for high �ows;

IMS and MOD10A1 for bias; GLOBSNOW and MOD10A1 for coe�cient of de-

termination. MOD10A1 has the highest spatial resolution of all analysed data
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sources which might contribute to the high skill of this data. The use of the data-

based switching model structure generally narrowed the behavioural parameter

sets during the uncertainty analysis when compared to the temperature-based

switching. However, no clear relation was observed between the prediction con-

�dence interval and the two model structures. It is concluded that the skill of

the remote sensing snow cover data for the model is positive, although, strongly

varying with the data source used.

Keywords: remote sensing, snow products, snow, catchment hydrology,

calibration, uncertainty analysis

1. Introduction

With the increasing availability of remote sensing based snow cover prod-

ucts the number of studies using these data in hydrological models are growing.

Certainly the most popular remote sensing snow products are derived from the

Moderate Resolution Imaging Spectroradiometer (MODIS)\Terra and the Ad-5

vanced Microwave Scanning Radiometer for EOS (AMSR-E) sensors, but the

multi-sensor products like the Interactive Multisensor Snow and Ice Mapping

System (IMS) and the relatively new Global Snow Monitoring for Climate Re-

search (GLOBSNOW) are gaining interest. The quality of these data sources is

assessed against observations in meteorological stations (Parajka and Blöschl,10

2006; Chen et al., 2012; Byun and Choi, 2014). Some studies intercompare two

snow products with the ground truth (�orman et al., 2009; Gao et al., 2010a;

Hancock et al., 2013). However, a comparison of all available remote sensing

products at the same time is methodically di�cult, since they contain di�erent

variables e.g.: snow cover fraction (SCF), snow water equivalent (SWE) or snow15

cover extent.

Hydrological models, however, are �exible in using various quantitative snow

variables, because they use di�erent model concepts for simulating snow pro-

cesses. Most relevant studies use one particular snow cover dataset as input

data in a hydrological model (Yan et al., 2009; Butt and Bilal, 2011; Bavera20
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et al., 2012). More interesting results are, however, obtained when a remote

sensing snow product is compared in a hydrological model with other datasets

or with measurements from meteorological stations (Udnaes et al., 2007; �ensoy

and Uysal, 2012; Yatheendradas et al., 2012). These studies reveal the in�uence

of di�erent data sources on modelling results. Hydrological models are thus a25

good framework for quality assessment of remote sensing snow cover data.

Several studies show how remote sensing snow cover data can aid in hydro-

logical modelling. Molotch and Margulis (2008) used SCF data from various

sensors in order to simulate SWE with a spatially distributed snowmelt model.

Parajka and Blöschl (2008) used MODIS snow cover data in combination with30

discharge data for hydrological model calibration in a number of catchments in

Austria. The models calibrated with use of the MODIS data improved the sim-

ulation of snow cover, but slightly decreased e�ciency of discharge simulation

when compared to models calibrated with discharge data only. These �ndings

were in agreement with Udnaes et al. (2007) and �orman et al. (2009). An-35

other approach was presented by Shrestha et al. (2014) who used MODIS snow

cover data in order correct snowfall in a distributed hydrological model. The

model using the corrected snowfall improved discharge and snow cover simula-

tion when compared to models using uncorrected data. However, so far a study

performing a multi-data-source intercomparison with di�erent remote sensing40

snow products (obtained from microwave and optical sensors at di�erent spatial

resolutions) directly using the data as input for a hydrological model is still lack-

ing. It is important to mention that these experiments are indirect assessments,

i.e. the snow cover data quality is evaluated in regard to the skill to simulate

the discharge, and is not compared to the snow ground truth in meteorological45

stations.

Because of this indirect evaluation of the snow cover data, the comparison

of di�erent snow products should be conducted with an appropriate hydrologi-

cal model. The model should allow using remote sensing input data, hence be

distributed and physically based, because only in this case both the spatial dis-50

tribution and the states of the snow variables may be evaluated. Of the available
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hydrological models ful�lling these criteria, the most popular are VIC, DHSVM,

WEB-DHM-S, MIKE SHE, SWAT or WetSpa. The GIS, grid-based structure

of the WetSpa model allows straightforward implementation of remote sensing

input data (Chorma«ski et al., 2008; Berezowski et al., 2012; Verbeiren et al.,55

2013). Moreover, WetSpa was proven to be sensitive to the spatial distribution

of snow cover in particular (Berezowski et al., 2014). An open question is the

comparison method for the simulation results of models using di�erent snow

products.

Verbeiren et al. (2013) compared WetSpa modelling scenarios using di�erent60

distributed data. In their study each model variant was calibrated with a lo-

cal method (PEST; Doherty, 2010) and the simulation results were compared in

terms of several evaluation criteria. This framework could be improved by using

a global optimization algorithm e.g. Shu�ed Complex Evolution (SCE; Duan

et al., 1992), which should give more reliable parameter estimates. Another65

improvement could be to subject the di�erent models to uncertainty analysis.

For this purpose Younger et al. (2009) used the Generalized Likelihood Uncer-

tainty Estimation (GLUE; Beven and Binley, 1992). GLUE was used in their

study to show how the rainfall data perturbed by di�erent factors in�uenced

the uncertainty in hydrological modelling scenarios.70

The aim of this paper is to assess the in�uence of di�erent snow cover data

on discharge simulations with a distributed hydrological model. The in�uence is

assessed by means of global calibration and uncertainty analysis of ten hydrolog-

ical model variants using di�erent snow cover data sources and di�erent model

structures. The paper also answers the question: Can remote sensing snow75

cover data be used as a direct driver for snow processes in order to improve

the discharge simulation in comparison to a standard model which uses only in

situ data? In the section Methods we describe the study area, data and the hy-

drological modelling experiment. The latter gives insight into the hydrological

model with its variants compared in the study and the methods of calibration80

and uncertainty analysis. In the Results and discussion a detailed description

is given of the performed analyses and comparison with other studies. In the
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Table 1:

Put Table 1 here.

Conclusions the most important �ndings of the study are presented.

2. Methods

2.1. Study area85

The study area is the Biebrza River catchment located in the north-eastern

part of Poland (Fig. 1). The catchment is of medium size (6845 km2) dominated

by agricultural land-use (54%) with a big share of forests (26%) and grasslands

(17%); a minor part is covered with water (2%) and buildings (1%). Despite the

majority of agricultural land-use, the catchment is considered as natural with90

very low human impact during last centuries. The indicators of the naturalness

are well preserved organic soils in the Biebrza valley, which cover 16% of the

whole catchment. The remaining parts of the catchment are covered with min-

eral soils, mostly: sand, loamy sand and sandy loam. The elevation ranges from

102 to 298 m ASL with low average slope of 1.03%. The Biebrza National Park95

(592 km2) covers most of the river valley and is one of Poland's most eminent

nature reserves. An important feature of the Biebrza River valley is its water

storage capability during the snowmelt-fed spring �oods (Grygoruk et al., 2013).

Biebrza River catchment was selected as a study area because the yearly

snow cover period is the longest among the medium size catchments in lowland100

Poland. The meteorological data, obtained from the Olecko station located

within the catchment borders is presented in Table 1. The cold winters are

characterized by a long period with snow cover. The spring �oods, with consid-

erable snowmelt (Chorma«ski et al., 2011), dominate the hydrological behaviour

of the Biebrza River and have produced a peak discharge at the catchment out-105

let of 517 m3/s (3rd April 1979). In the 1979 hydrological year (in Poland 1st

November to 31st October) the snow cover extent (Brodzik and Armstrong,

2013) and discharge at the catchment outlet are maximum observed for the pe-
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Put Figure 1 here.

Figure 1:

Put Figure 2 here.

Figure 2:

riod 1966-2012. Each year the spring �oods cover 12 to 140 km2 of the lower

Biebrza basin (Ignar et al., 2011), this large �ooded zone has an important im-110

pact on the landscape and environmental processes (Chorma«ski et al., 2009;

Fig. 2). In contrast, the minimum observed discharge is only 4.33 m3/s (11th

July 1969). The mean discharge (1951-2012) is 34.9 m3/s, while the winter and

summer discharge is respectively 43.9 m3/s, and 26.0 m3/s.

2.2. Data115

2.2.1. Hydrometeorological data

The meteorological data was provided by the Polish Institute of Meteorology

and Water Management - National Research Institute (IMGW). Precipitation

time series were available for 25 stations, but daily temperature and snow depth

(SD [cm]) were available for only 5 stations (Fig. 1). The potential evapotran-120

spiration (PET) time series were approximated by mean monthly evaporation

from free water surface (Stachý, 1987). The monthly values were uniformly dis-

aggregated into daily values and used as input data. The PET data was not

crucial in this study as it is focused on snow related processes, for which PET

is not highly in�uential. Daily Biebrza River discharge was obtained from the125

Burzyn gauging station which is located near the Biebrza River con�uence with

the Narew River (Fig. 1).

2.2.2. Spatial data

The land-use, soil and elevation data are the three main inputs for calculating

distributed parameters in WetSpa. The land-use map was obtained from the130

Corine Land Cover 2006 Project. The source for soil data was the Soil Map of
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Table 2:

Put Table 2 here

Poland in scales 1:50 000 for agricultural areas and 1:500 000 for the other land-

use classes. These data sources have missing data in the part of the catchment

located in Belarus (<1% of the study area) where sand soil and agricultural land-

use were assigned. The elevation data was obtained from the Digital Elevation135

Model of Poland (1:26 000), contours of the Topographic Map of Poland (1:25

000) and geodetic �eld survey in the river valley, where the lowest slopes occurs.

All of these data were used to construct a digital elevation model using TOPO

to Raster algorithm in the ArcGIS 10 system with a spatial resolution of 20 m.

2.2.3. Remote sensing data140

In this study, the distributed snow time series were obtained from four

satellite remote sensing snow products: AE_DySno (AMSR-E/Aqua Daily L3

Global SnowWater Equivalent EASE-Grids; Tedesco et al., 2004), GLOBSNOW

(GLOBSNOW Snow Water Equivalent; Takala et al., 2011); IMS (Interactive

Multisensor Snow and Ice Mapping System - Daily Northern Hemisphere Snow145

and Ice Analysis at 4 km; Helfrich et al., 2007; National Ice Center, 2008); and

MOD10A1 (MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 5;

Hall et al., 2002, 2006).The products may be divided into three groups for the

scope of data used in the algorithms: passive microwave, visual/near infra-red

and a combination of both.150

The products that use passive microwave data for retrieving snow informa-

tion do not have missing data due to cloud cover, as the atmospheric e�ect

on microwave radiation is assumed to be insigni�cant. However, it should be

noted, that Wang and Tedesco (2007) identi�ed an impact of cloud absorption

on AMSR-E SWE retrievals. The snow pack characteristics from microwave155

data are obtained from di�erences in brightness temperature registered at dif-

ferent frequencies. Chang et al. (1987) presented an early example of such an
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approach for SD mapping:

SD = 1.59 (18GHz− 37GHz) (1)

where 18GHz and 37GHz are brightness temperatures at these frequencies at

horizontal polarization. The AE_DySno data extend the Chang et al. (1987)160

approach by dynamically modelling snow density and grain size with additional

quality assessment steps (Kelly et al., 2003). The SWE retrieval algorithm for

GLOBSNOW uses a di�erent model which includes a data assimilation tech-

nique (Pulliainen, 2006; Takala et al., 2011). However, the brightness temper-

ature input data for GLOBSNOW is obtained at similar frequencies as in the165

AE_DySno data.

Contrary to the previous products the MOD10A1 data estimate SCF based

on visible and near-infrared radiation, which is vulnerable to atmospheric con-

ditions. In order to overcome the cloud contamination problem in the MODIS

snow products, a blending methodology with microwave-based snow cover data170

can be used (e.g. Liang et al., 2008; Gao et al., 2010b). In this study, however,

the MOD10A1 data is used as it is provided by the producer. In MOD10A1,

the SCF is estimated based on Normalized Di�erence Snow Index (Hall et al.,

1995):

NDSI =
ρvis − ρnir
ρvis + ρnir

(2)

where ρvis and ρnir are re�ectance at visible and near-infrared wavelengths,175

which for the MOD10A1 data are 0.545 - 0.565 µm and 1.628 - 1.652 µm re-

spectively. In the MOD10A1 algorithm a pixel with NDSI > 0.4 is assumed

to be snow covered, however, it also has to pass other tests involving MODIS

bands at di�erent wavelengths (Hall et al., 2002) and be corrected in forested

areas (Klein et al., 1998).180

The IMS product bene�ts from both visible/near-infrared and microwave

data. In this case, the snow and ice extent output maps are manually derived

by analysts; such a process may take from 1 to 5 hours depending on a season

(Helfrich et al., 2007). In this approach a �rst guess of snow extent is obtained

from the previous day map; next an analyst interprets the visible bands and185
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microwave data, but may also rely on automated snow products e.g. for cloud

cover areas.

2.3. The snow products comparison with the observed snow depth

The snow products were compared with the daily SD records form the three

meteorological stations located in the catchment: Olecko, Biebrza-Pie«czykówek190

and Ró»anystok (Fig. 1). The SD from the stations was compared with the

values of the remote sensing snow products in the grid cells containing the

station. For this analysis, the available snow datasets (remote sensing snow

products and the SD in the stations) were reclassi�ed to binary, dimensionless

values, representing snow presence and absence, according to:195 0 if Sv = 0

1 if Sv > 0

(3)

where Sv is the value of an analysed snow dataset in the units of the datasets

(e.g. %, cm or mm). The data after reclassi�cation was further cross-tabulated

and used as input for the Receiver Operating Characteristic (ROC) curve plots

(Brown and Davis, 2006). The ROC curves are able to compare the perfor-

mance of di�erent binary models with respect to true positive signal rate and200

false positive signal rate; both rates ranges between 0 and 1. The ROC curves

are obtained by plotting the true positive rate against false positive rate with

additional points at (0,0) and (1,1). The higher the integral value of a ROC

curve, the better the model performs; a random guess case on a ROC plot would

be a 1:1 line with the integral equal to 0.5. For an ideal case the true positive205

rate would be 1 and the false positive rate would be 0 giving the integral equal

to 1.

2.4. Snow products preprocessing

A simple preprocessing methodology was setup, because the idea of this

study was to compare the datasets in the state as provided by the producer210
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without using any data assimilation or missing-data simulation algorithms (ex-

cept linear interpolation). Despite the variability of used snow products in this

study, all data were preprocessed in the same way:

1. Identi�cation of the snow product grid cells within the study area. The

original extents of the grid cells were further used as a snow �eld map in215

the model.

2. Extraction of time series from the grid cells identi�ed at point 1 into a

tabular format.

3. Linear interpolation of the snow products over time for removing missing

data and to achieve a constant 1 day temporal resolution.220

4. Assignment of no snow from May to September since no snow cover is

observed in that period in lowland Poland (see Tab. 1).

In order to decrease the WetSpa computation time the MOD10A1 data was

aggregated from 500 m to 4 km grid in the �rst step of the preprocessing. The

aggregated data allowed decreasing by 64 times the number of SCF values which225

has to be read at each time step of the model in reference to the data in the

original resolution. The observed SD data was provided as point measurements

which were interpolated with the Thiessen polygon method in order to obtain

a distribution of SD over whole study area.

2.5. Hydrological modelling230

2.5.1. The WetSpa model

The hydrological simulations were performed with the WetSpa model, which

is an acronym for Water and Energy Transfer between Soil, Plants and Atmo-

sphere (Wang et al., 1996; De Smedt et al., 2000; Liu et al., 2003). WetSpa is a

distributed model, which divides an investigated catchment into a regular grid235

of computational cells. In each grid cell the water balance is calculated based

on physical and empirical equations. The computations are based on two types

of input data: (1) the time series of precipitation, temperature and PET dis-

tributed over the modelled area with Thiessen polygons for the meteorological
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stations; (2) maps of physical parameters calculated at the preprocessing stage240

from soil, land-use and elevation data.

A simulation time step begins with processing the precipitation, which can

be either stored as interception or as depression storage. From both storages

the water can evaporate, but it can in�ltrate in the soil from the depression

storage. surplus of depression storage is transformed into surface runo�. Based245

on the porosity and in�ltration the soil moisture is calculated. Part of the

water in the soil moisture can be taken up by roots and be transpired while the

remaining part will move laterally as inter�ow runo� or �ow vertically further

to the transition zone. However, if the root zone is fully saturated the surplus of

the water will be transformed to inter�ow runo�. The water in transition zone250

recharges the saturated zone where it is stored and transformed to groundwater

runo�. WetSpa does not consider soil freezing and thawing, these processes are

not expected to have a considerable impact on the discharge simulation at the

catchment outlet of our study area.

The surface runo� is routed along �ow paths from each a cell to the catch-255

ment outlet with the instantaneous geomorphological unit hydrograph (IUH).

The IUH is an analytical solution of the di�usive wave approximation proposed

by Liu et al. (2003):

U (τ) =
1√

2πσ2τ3
/τ3

0

exp

[
− (τ − τ0)

2

2σ2τ/τ0

]
(4)

where: U (τ) [T−1] is the response function of the �ow path at time τ [T], τ0

[T] is the mean �ow time from a grid cell to the catchment outlet, and σ [T] is260

the variation of the �ow time. In the standard WetSpa the inter�ow runo� is

routed the same as surface runo�. However, in this study the inter�ow runo�

is calculated in the same way as the groundwater runo�, i.e. it is integrated

on a sub-catchment level and transported to the river using the linear reservoir

method, next, through the river it is transported to the catchment outlet with265

the IUH. This manipulation was made to delay the inter�ow response in the

catchment, which is conceptually more appropriate for this lowland, non urban-

ized catchment. For this reason an additional recession coe�cient (ki2 [m2/s])
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was introduced to WetSpa as a global parameter.

In this study the model was set up for 250 m grid cells and a daily time270

step. Based on previous WetSpa experiences these values are appropriate for a

medium sized catchment with slow response time. As a result the model has

467 × 458 cells and a mean travel time from the grid cells to the catchment

outlet of 122 h.

2.5.2. Snow in the WetSpa model275

In the standard WetSpa version snow accumulation and snowmelt are calcu-

lated based on snow pack modelling. The precipitation (vpre [mm]) is considered

to be snowfall if the temperature in a grid cell (t [◦C]) is below or equal to the

threshold temperature (t0). Snowfall is accumulated in the cell's snow pack (s

[mm]) as a water equivalent which will be released as snowmelt when t > t0,280

i.e. snowmelt / snow accumulation switching is based on t0, further referred to

as temperature-based switching. The snowmelt amount in a cell (vsm [mm]) is

calculated with the degree-day and the rainfall degree-day methods:


ksnow(t− t0) + krainvpre(t− t0) if t > t0 ∧ s > vsm

s if t > t0 ∧ s < vsm

0 if t 6 t0

(5)

where: ksnow [mm/◦C/day] is the degree-day coe�cient (amount of snowmelt

caused by 1◦C temperature rise above t0) and krain [mm/mm/◦C/day] is the285

rainfall-degree-day coe�cient (amount of snowmelt caused by 1 mm of rainfall

varied by the t rise above t0). However, in this study, next to the standard

model, other models of calculating snowmelt are tested as well. These models

involve using the remote sensing snow products and the observed SD in the

meteorological stations as input time series in WetSpa.290

In these non-standard models, the snow accumulation in s is not calculated,

because the distribution or amount of snow in the study area is obtained directly

from the datasets. Moreover, modelling the snowmelt from the datasets time

series allows using the time series itself instead of temperature to function as
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Table 3:

Put Table 3 here

the governing variable for snowmelt / snow accumulation switching, which is295

further referred to as data-based switching. For the data-based switching, vsm

is generated only if Sv (de�nition in Sect. 2.3) value at time step i is smaller

than at time step i− 1. Both temperature-based and data-based switching are

tested in this study, if possible for a given snow product. A summary of the

changes in the WetSpa model for di�erent snow products is listed in Table 3.300

In total ten model variants were tested, i.e.: four with both temperature

and data-based switching and two with temperature-based switching only (Tab.

3). The data-based switching was obviously not possible to implement in the

standard model, which does not use any Sv variable. For the IMS model,

the data-based switching was not implemented because the IMS data has only305

discrete values of snow presence and absence (Tab. 3). Hence, snowmelt would

occur in a time step when snow cover completely disappears in an IMS grid cell.

The model variants presented in Table 3 use di�erent equations for snowmelt

calculation. The SD and SWE models bene�t from physical values in the time

series and thus have relatively direct calculations which introduced two new310

parameters: ρ [mm water/cm] is the snow density factor for calculating water

equivalent from SD; kcor [-] is the correction factor for the SWE data sources.

The IMS and MOD10A1 model variants (Tab. 3) use Liston (1999) approach

for calculating vsm, which provides a link between a dimensionless SCF and

snowmelt depth expressed in physical units. The link is achieved by weighting315

the potential snowmelt (i.e. maximum that could occur under given meteoro-

logical conditions) with the value of SCF in a cell. As a result vsm is generated

on a sub-grid-cell level with the potential snowmelt simply estimated with the

degree-day methods (as in the standard WetSpa).
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2.5.3. Calibration and validation320

Global calibration and independent validation were used to test the perfor-

mance of the WetSpa model using various data sources and model structures

(switching methods) for snow processes simulation (listed in Tab. 3). The ten

model variants were calibrated using a same procedure with the SCE algorithm

(Duan et al., 1992). SCE performs a search in the de�ned parameter space in325

several complexes that shu�e information between each other after each itera-

tion. This strategy allows to �nd the global optimum in a complex parameter

space. However, the SCE calibration may not always succeed in �nding the

optimum. In order to increase the probability of �nding the global optimum

the calibration was repeated three times with a di�erent set of initial parameter330

values; the number of complexes in the SCE algorithm was set to 5. The cali-

bration period of three hydrological years was from 1st November 2004 to 31st

October 2007, preceded by a two month warm-up; validation was performed in

the subsequent three hydrological years: 1st November 2007 to 31st October

2010. The objective function was to maximize the Nash-Sutcli�e e�ciency [-]335

(Nash and Sutcli�e, 1970):

NS = 1−

N∑
n=1

(
Qn − Q̂n

)2
N∑
n=1

(
Qn − Q̄

)2 (6)

where: Qn and Q̂n are observed and simulated discharges at time n, Q̄ is the

mean observed discharge, N is the number of time steps. The parameter space

is de�ned in Table 4.

The model e�ciency was additionally evaluated with the logarithmic version340

of Nash-Sutcli�e e�ciency [-] (Smakhtin et al., 1998):

NSlow = 1−

N∑
n=1

(
ln (Qn)− ln

(
Q̂n

))2
N∑
n=1

(
ln (Qn)− ln (Q)

)2 (7)

which put emphasis on the low discharge simulation; the ln (Q) is the mean

of natural logarithms:
N∑

n=1
(ln(Qn))/N. Another adapted version of Nash-Sutcli�e
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Table 4:

Put Table 4 here.

e�ciency [-] was used for high discharge evaluation (Liu and De Smedt, 2004):

NShigh = 1−

N∑
n=1

(
Qn + Q̄

) (
Q̂n −Qn

)2
N∑
n=1

(
Qn + Q̄

) (
Qn − Q̄

)2 (8)

The model bias, or the mean error [m3/s] of the simulation was calculated as:345

ME =

N∑
n=1

(
Q̂n −Qn

)
N

(9)

and was used to indicate weather a simulation was over or underestimating

the observed discharge. Another measure of accuracy was the coe�cient of

determination, de�ned as a square of the Pearson's correlation coe�cient [-]:

r2 =

 ∑n
i=1(Qi − Q̄)(Q̂i − Q̃)√∑n

i=1(Qi − Q̄)2
√∑n

i=1(Q̂i − Q̃)2


2

(10)

where Q̃ is the mean simulated discharge. The r2 is sensitive to the collinearity

of the variables (Legates and McCabe, 1999), thus gives an idea about timing350

and behaviour of the simulated discharge in reference to the observed discharge.

The model performance was also quanti�ed with Kling-Gupta e�ciency (KG,

Gupta et al., 2009) [-], which calculates euclidean distance from the optimal

point using: ME (Eq. 9), r (Eq. 10) and variability (α). Thus is considered a

better overall of e�ciency measure than NS.355

KG = 1−
√

(r − 1)
2

+ (α− 1)
2

+ (ME − 1)
2 (11)

where α = σs/σo, σs and σo are standard deviations of simulated and observed

discharge.

2.5.4. Uncertainty analysis

The performance of the WetSpa model variants presented in Table 3 was also

evaluated in the scope of uncertainty analysis (UA). For each model variant a360
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Put Figure 3 here.

Figure 3:

discharge simulation uncertainty was estimated with the GLUE method (Beven

and Binley, 1992). GLUE assumes model equi�nality, what means that a model

does not have a single optimal combination of parameter values, but a set of

parameter combinations exists with equally good model performance. Such pa-

rameter sets are called behavioural, i.e. they properly represent the modelled365

system. The population of behavioural parameters sets is found by running

the model many times with randomly sampled parameters values. Next, the

simulations corresponding to the random parameters are quanti�ed with formal

or informal likelihood functions. Finally, a threshold for the likelihood func-

tion is de�ned above which the given simulations and corresponding to them370

parameters ranges are called behavioural.

In this study the UA was performed for the ten models listed in Table 3 for

one hydrological year (1st November 2008 to 31st October 2009) with a four

months warm-up period. The random 100,000 set of parameters were generated

with the latin-hypercube algorithm (McKay et al., 1979), which is used in GLUE375

for sampling the whole parameter space with a minimum correlation (Beven and

Freer, 2001). The parameter space is de�ned in Table 4. The used likelihood

function was NS (Eq. 6), which is one of the suggested by Smith et al. (2008);

the threshold for behavioural simulations was NS > 0.60.

3. Results and discussion380

3.1. Snow product comparison with observed snow depth

All remote sensing snow products have satisfying accuracy with respect to

the observed SD data before the preprocessing described in Section 2.4. The

ROC curves, presented in Fig. 3, have the following integral values: GLOB-

SNOW = 0.71, AE_DySno = 0.85, IMS = 0.95, MOD10A1 = 0.97. The highest385

accuracy was obtained, based on these results, for the MOD10A1 data and the
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worst for GLOBSNOW. The presented integral values depict also a clear di�er-

ence between SCF data (MOD10A1 and IMS) and SWE data (AE_DySno and

GLOBSNOW). The SWE data have lower true positive rates than SCF data.

This can be explained by the di�erence in spatial resolution that is higher for390

SCF data and thus represents better the local measurements of the meteorolog-

ical stations. Also, the sources of uncertainty in SWE data are related to other

factors, such as topographic characteristics (forests, complex terrain) and snow

properties (grain size, density) (Byun and Choi, 2014).

Despite the di�erences in true positive rates between the snow products, the395

false negative rate is at similar level for each dataset. Hence, all the investigated

remote sensing datasets performed well when no snow cover was observed.

The good accuracy of the MODIS data (Fig. 3) is also con�rmed in other

studies, which compared MOD10A1 with meteorological stations readings in

the Rio Grande Basin, USA, (Klein and Barnett, 2003), Austria (Parajka and400

Blöschl, 2006) and in Turkey (�orman et al., 2007). A comparison of MOD10A1

and AE_DySno was conducted by Gao et al. (2010a) in Alaska. Their results

showed, similarly like in this paper, higher accuracy of MOD10A1 data than

AE_DySno due to the di�erences in spatial resolution.

The IMS accuracy was evaluated by Chen et al. (2012) for continental USA405

but the authors claim that the results are also representative for the mid-latitude

region of Eurasia. They reported an accuracy of 80% to 100% varying by season,

what despite the di�erent measure of accuracy, agrees with the good accuracy

observed in this study (Fig. 3).

The GLOBSNOW product was compared with AE_DySno by Hancock et al.410

(2013) in terms of timing, seasonal patterns and peak SWE accumulations. The

timing analysis showed that start and end dates of snow events was erroneous for

both of the SWE products because passive microwave retrievals are insensitive

to shallow or wet snow. This can be a reason also of relatively low true positive

rate of GLOBSNOW and AE_DySno (Fig. 3). Nevertheless, Hancock et al.415

(2013) reported also that GLOBSNOW was superior to AE_DySno in seasonal

patterns and peak value retrievals of SWE. The superiority of GLOBSNOW is
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Put Figure 4 here.

Figure 4:

in contradiction to the accuracy results (Fig. 3), however, the di�erences may

be due to di�erent measures of comparison used in both studies.

Time series of the snow products used as input data to the model variants and420

simulated snow cover data by the WetSpa model (i.e. after the preprocessing

described in Sect. 2.4) are presented in Figure 4. The remote sensing and

WetSpa-simulated time series resemble the seasonal pattern of the observed SD

data. The di�erences in magnitude of the variables are, however, clearly visible

especially with the SWE data. In the case of the SCF data a clear di�erence is425

visible between continuous MOD10A1 and discrete IMS data.

3.2. Calibration and validation of WetSpa with variety of snow products

The calibrations with the global SCE algorithm and validation results are

presented in Tab. 5. Each model variant was calibrated with similar, high

NS scores at least for 2 of the 3 calibration runs meaning that the calibration430

results converges to the global optimum. The di�erences between the optimal

calibration results (Tab. 5), gives evidence for equi�nality of the models.

The best model variant in terms of validation NS score was MOD10A1

with the data-based switching; the temperature-based switching variant for

MOD10A1 was the second best (Tab. 5). The Standard WetSpa, which did435

not use remote sensing snow cover data, but the dense representation of me-

teorological stations (Fig. 1) to model the snow accumulation and snowmelt,

resulted in only a slightly worse NS score. Nevertheless, the use of MOD10A1

data improved the NS scores when compared to the Standard WetSpa variant.

Similar �ndings were presented by Parajka and Blöschl (2008) who reported440

improved simulation e�ciency of snow cover when MODIS snow cover data was

included additionally to discharge in the optimization function. However, the

inclusion of MODIS data did not improve the discharge simulation. On the

other hand, the discharge simulation was improved when snowfall was corrected
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Table 5:

Put Table 5 here.

by MODIS data, as reported by Shrestha et al. (2014). Both mentioned studies,445

did not use MODIS data to drive directly the snow processes in a hydrological

model presented in this research.

The model variants with data sources that could implement both data-based

and temperature-based switching performed better, with respect to the NS

validation scores for the data-based switching than for the temperature-based450

switching (Tab. 5). This suggests that the variance of the snow products tested

in this study re�ects the variance in observed phenomena and do not have to

be adjusted with the temperature. The decrease in NS validation scores for the

temperature-based switching in comparison to the data-based switching is also

noted for the Observed SD model variant, which does not use remote sensing455

data. This con�rms that day to day snow variations represent better snowmelt

phenomena than the daily averaged temperature variations.

The best NS calibration scores were obtained by the Observed SD model

variants (Tab. 5). However, the NS scores were much lower for the validation

period. The reason could be the use of a constant snow density factor (ρ), while460

the true snow density is nonstationary during the snow season and between

the seasons, moreover, it is geographically dependent (Onuchin and Burenina,

1996; Bormann et al., 2013). Hence, the ρ value that �t well the calibration

period did not represent the snow densities in the validation period. Another

reason could be a too sparse network of meteorological stations with SD and465

temperature measurements. Of the �ve stations which registered the SD and

temperature series, only three were within the catchment borders, and none was

in the south-eastern part of the catchment (Fig. 1).

3.2.1. Hydrograph evaluation

The simulation results for all model variants described in Table 3 are pre-470

sented in Figure 5. The simulations follow the observed hydrographs well for
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most of the high and low discharge events, however, none of the model variants

�t the highest peaks with discharges above 120 m3/s. The erroneous peaks are

above the 98% quantile of the data; nonetheless, these peaks are very important

features from an eco-hydrological point of view. The underestimation of the475

highest peaks was most probably due to rating curve uncertainty for the high-

est water level range, when the measurement pro�le may be 200-1000 m wide

on a densely vegetated �oodplain (Fig. 2). This is also justi�ed by the fact that

highest SWE in the catchment may not always correspond to the highest peak

discharges (cfr. SWE in Fig. 4 with the observed discharge in Fig. 5).480

The model variants using the SWE data (AE_DySno and GLOBSNOW)

clearly underestimated the observed discharge (Fig. 5). The underestimation

was also visible in the Observed SD model which use ρ to recalculate SD to SWE,

but only during the 2008 �ood event. In contrary, the SCF model variants (IMS

and MOD10A1) and the Standard WetSpa simulated the observed discharge485

much better, especially during the falling and rising limbs and the low �ow

periods. The hydrograph of the IMS model variant presented a very good match

with the observed discharge, what is in contrast to the low NS scores for the

validation period (Tab. 5). This dichotomy between the IMS hydrographs

and NS scores is due to the large overestimation of the �ood event in 2010.490

The simulated peak discharge in 2010 was 429 m3/s (not plotted in Fig. 5

for clarity), i.e. 2.9 times higher than the observed peak. Note that, in the

calibration period, when no erroneous peaks were simulated, the IMS model

variant has nearly the highest NS score (cfr. Fig. 5 and Tab. 5). The huge

overestimation of the event in 2010 was because the snow presence in the IMS495

data is assumed as 100% SCF. As a result, during the winter 2009/2010 the

snow cover was constantly 100% in the catchment, while SWE was decreasing

(Fig. 4). This produced vsm at the highest potential rate and overestimated

the discharge.

The use of IMS and MOD10A1 snow products in the WetSpa model im-500

proved visually the simulated discharge when compared to the standard WetSpa.

Moreover, the IMS and MOD10A1 with data-based switching model variants
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Put Figure 5 here.

Figure 5:

performed better than Standard WetSpa in the peak discharge estimation and

simulated fewer peaks that did not occur in the observed data (Fig. 5).

Needless to say, the drawback of using the data-based switching with MOD10A1505

data is that the vsm estimation is not fully independent from t and t0(Tab. 3).

Thus in this model structure the data-based switching gives only additional fuse

that prevents generating vsm if no decrease in SCF was observed between the

consecutive time steps.

3.2.2. Extended validation510

Although NS is one of the most popular e�ciency measures used in hy-

drological modelling, it is subject to criticism (e.g. Schae�i and Gupta, 2007)

mostly because of over-sensitivity to high discharge values (Legates and Mc-

Cabe, 1999). In order to extend the validation of the discharge simulation

additional e�ciency measures were calculated (Fig. 6).515

The overall model e�ciency was quanti�ed with KG, which showed a similar

pattern of scores as NS (cfr. Fig. 6 and Tab. 5). Similarly like NS the data-

based switching model variants had higher KG scores than the temperature-

based variants given the same data source. However, three di�erences between

KG and NS scores pattern can be distinguished. The IMS model variant (al-520

though still the lowest KG score) was evaluated much better in reference to the

other model variants than it was the case for NS scores. This could be because

KG do not normalize ME to σo as it is the case for NS (Gupta et al., 2009).

Second di�erence is that MOD10A1 data-based switching model variant (al-

tough still the highest KG score) was evaluated much better in reference to the525

other model variants than it was the case for NS scores. This con�rms the good

skill for runo� prediction of MOD10A1 data when data-based switching is used.

The last di�erence is that GLOBSNOW with data-based switching and both

Observed SD model variants had higher KG scores than the Standard WetSpa
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model, what was not the case when these models were compared in terms of NS530

scores. This points to the importance of the selection of a validation measure

for model calibration and comparison as well as shows limitations of the here

used methodology.

The low discharge error was quanti�ed with the NSlow. The highest NSlow

e�ciencies were obtained by the Standard WetSpa, but the MOD10A1 with535

temperature-based switching has a similar score (Fig. 6, NSlow values). The

model variants using remote sensing data performed similarly with NSlow in the

range of 0.3 - 0.5. The worst performance with respect to NSlow was obtained

by the Observed SD model variant. The NSlow scores demonstrate that the

model variants updated with the remote sensing snow cover data performed540

worse than Standard WetSpa for the low �ow simulation. However, the low

�ows occur in the study area in the summer half-year, i.e. during the snow-free

season.

The error for high discharge simulation was quanti�ed with NShigh. The

highest NShigh e�ciencies were obtained by the MOD10A1 with the data-based545

switching (Fig. 6, NShigh values). Similar NShigh scores were obtained by

MOD10A1 (temperature-based switching), Observed SD, GLOBSNOW (both

with data-based switching) and Standard WetSpa model variants. The NShigh

were higher for the data-based switching than for the temperature-based switch-

ing in the model variants using external snow data sources. This is a strong550

indication that for simulation of snowmelt driven high discharges the data-

based switching is more suited than the temperature-based approach when the

degree-day method is used. This would not necessarily be the case for simu-

lations with energy balance models, where energy �uxes would drive physical

processes occurring in the snow pack. The IMS model variant received the low-555

est NShigh = −0.99 (not plotted in Fig. 6 for clarity), which is obviously due

to the erroneous peak in the 2010 �ood (Fig. 5). The NShigh values indicate

that the high discharge simulation may be improved in comparison to Standard

WetSpa when remote sensing, or in situ measurements of snow cover data is

used. This was, however, not the case for the AE_DySno model variants and560
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the temperature-based switching variant of GLOBSNOW and Observed SD.

All model variants, except IMS, had a negative bias (Fig. 6, ME values).

Reason for this behaviour is that the models failed to simulate properly the

peaks of the �ood events above 120 m3/s. The MOD10A1 data-based switching

variant underestimated the observed discharge only for 6 m3/s which is 4.3% of565

the data range. An even closer to zero bias was achieved by the IMS variant:

1.2 m3/s (0.8%). The MOD10A1 with temperature-based switching and Stan-

dard WetSpa underestimated the observed discharge at similar level, about 7

m3/s (5.0%). The SWE and SD model variants performed worse than Standard

WetSpa in terms of bias (Fig. 6). The relatively high bias values suggest that570

remote sensing SWE and observed SD recalculated to water equivalent based

on kcor are not adequate for snowmelt modelling in WetSpa. Another reason

for the negative bias could be that the passive microwave data underestimate

snow cover compared to visible / near infra-red data (Armstrong and Brodzik,

2001, 2002).575

The r2 values presented in Fig. 6 do not account for the magnitude of

error between simulated and observed daily values, but shows the collinearity

of the two variables. The collinearity, in this case, informs weather the day

to day variations in observed discharge are followed by the simulated discharge

(numerator in Eq. 10). In other words, r2 is related to the accuracy of timing580

in the simulated discharge.

The r2 values, similarly like NShigh, were higher for the data-based switch-

ing variants of the data source than for the corresponding temperature-based

switching (Fig. 6). Note that between the MOD10A1 model variants the di�er-

ence was only marginal in advantage of data-based switching. This decrease of585

r2 means that the temperature-based switching deforms the snowmelt pattern

that is achieved from the data alone.

The highest r2 was obtained for the GLOBSNOW data-based switching

model variant. The discrepancy between high r2 and lower values of the other

accuracy measures may be due to strong underestimation of simulated discharge590

in this model variant (Fig. 6). It is worth mentioning that the r2 values were
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Put Figure 6 here.

Figure 6:

considerably higher for GLOBSNOW than for the second SWE model variant

- AE_DySno. This is in agreement with Hancock et al. (2013), who demon-

strated that GLOBSNOW performs better in SWE timing than AE_DySno.

Additional correction of GLOBSNOW or AE_DySno data could allow obtain-595

ing better simulation results than currently presented. This could be achieved

by assimilation techniques, as a Kalman �lter presented by Andreadis and Let-

tenmaier (2006) for AMSR-E and MODIS data.

3.3. Uncertainty analysis

Figure 7 present the 95% con�dence intervals, under the assumption that600

NS > 0.6, i.e. behavioural models, for the one year simulation period. Observed

discharge is within the con�dence interval for more than 90% of the time for

all model variants except the MOD10A1 with the temperature-based switching

(Tab. 6). This model variant has relatively narrower con�dence interval than

other variants, in particular for low discharge periods from August to Octo-605

ber (Fig. 7). This means that MOD10A1 with temperature-based switching

simulates low discharges with heavy negative bias resulting in unrealistic con�-

dence interval estimation. Similar, but not as big bias is observed in MOD10A1

with data-based switching. Another example of substantially di�erent con�-

dence intervals than the observed discharge is Standard WetSpa (Tab. 6). The610

con�dence intervals estimated in Standard WetSpa shows large deviation from

the observed discharge in the low �ow period: December to January 2009. Re-

maining model variants had the lower con�dence bound close to the observed

discharge suggesting that this event was problematic to simulate in each case.

Nonetheless, the deviation from the observed discharge was not as big as in615

Standard WetSpa.

The model variants which implemented both switching algorithms had the

narrower con�dence intervals at the peak of �ood events simulated for data-
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Table 6:

Put Table 6 here.

based switching (Fig. 7). This was also the case for MOD10A1 temperature-

based switching model variant which has very narrow con�dence interval. Nev-620

ertheless, the con�dence interval during the peak discharge was narrower in

the MOD10A1 data-based switching variant. Beside that no relation between

the model structure (switching method) and the con�dence interval �tting the

observation was observed (Tab. 6).

The snow cover uncertainty results are presented in Figure 8. The 95%625

con�dence interval for SWE simulations in the Standard WetSpa covers in ma-

jority the SWE series obtained with other data sources. This suggests that

the snow accumulation and snowmelt algorithm in the Standard WetSpa (Sect.

2.5.2) works properly. The 95% con�dence interval for SCF from the Standard

WetSpa also covers well the other SCF series (Fig. 8). In this case the con�-630

dence interval �t the IMS SCF much better than MOD10A1 SCF. This is due

to the SCF calculation method in WetSpa, which gives 100% SCF when in a

Thiessen polygon (i.e. in a representative area for a meteorological station)

SWE>0 . Even though 25 meteorological stations are used in the model, the

simulated SCF at the catchment scale is not continuous and resembles better635

the discrete series of IMS than MOD10A1 SCF.

The uncertainty analysis could have been conducted using another e�-

cient method for uncertainty analysis, such as Di�erential Evolution Adaptive

Metropolis (DREAM; Vrugt et al., 2008). DREAM, however, was not used due

two reasons. First, the GLUE method is easy to apply while giving reason-640

able uncertainty estimation (Vrugt et al., 2009). Second, the purpose of the

uncertainty analysis in this paper was only to highlight the interference of the

di�erent data sources and model structures with the uncertainty. The latter

was also a reason for relatively short, one year simulation period selection.
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Put Figure 7 here.

Figure 7:

Put Figure 8 here.

Figure 8:

3.3.1. Behavioural parameters distribution645

In this section the distributions of behavioural parameters related to snow

processes (ksnow, krain, t0, kcor and ρ) and the groundwater recession coe�-

cient (kg) are discussed. The kg is selected for the analysis, because it is used

in all model variants and is related to groundwater, which is the dominant dis-

charge component in the study catchment. The distributions of the behavioural650

parameters, presented in Figure 9, highlights two general issues: (1) di�erent

data sources give di�erent distributions for the same model structure, and (2)

di�erent model structures change the distributions within the same data source.

The �rst issue is clearly visible on the example of AE_DySno GLOBSNOW

model variants. The variants use exactly the same model structures, but the655

snow data sources are di�erent. As a result the behavioural distributions for

kcor are completely di�erent between the data sources, while similar between

the switching variants for the same data source (Fig. 9). This need not be the

cases for all parameters, since the t0 distributions are similar for AE_DySno and

GLOBSNOW variants with temperature-based switching. On the other hand,660

the Standard WetSpa and the SCF models (MOD10A1, IMS) had di�erent

model structures but produce similar, wide behavioural parameters distributions

(ksnow, krain in Fig. 9). This may be because of high uncertainty related to

these parameters or model structures or data sources.

The second issue is clear when comparing the temperature- and data-based665

switching model variants for the same data source. For the example of ρ, kcor

and kg (except MOD10A1) presented in Figure 9, it is clear that the data-based

switching narrows the behavioural parameters distributions in comparison to

the temperature-based switching, i.e. di�erent model structure in�uence the
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uncertainty with the same data source. This e�ect is best visible with the670

kg parameter, which is used in all model variants. Median of the behavioural

parameters distributions is at similar level in all model variants, but the dis-

tributions are much narrower for the data-based switching. The exception is

MOD10A1, which has a wider distribution with the data-based switching than

with t0. This is a result of over-parametrization in the model structure, i.e.675

both temperature and SCF are responsible for the generation of snowmelt (as

described in Sect. 2.5.2). Thus, wide representation of global WetSpa param-

eters can produce behavioural models in the MOD10A1 data-based switching

variant.

The Standard WetSpa model variant have wide behavioural parameters dis-680

tribution for the snow related parameters used in the degree-day method: t0,

ksnow, krain (Fig. 9). Other model variants using the degree-day method (and

the same parameters) have narrower behavioural distributions, especially for

t0. This may be due to the constant values of the degree-day method parame-

ters. As a result the degree-day parameters of the Standard WetSpa model may685

not represent physical values, but just the best �t that distributes snowmelt

over whole simulation period. On the other hand, Standard WetSpa has nar-

row behavioural distribution of kg when compared to most of the variants. So

the uncertainty of the degree-day parameters is balanced by the behavioural

distributions of other global parameters, as in this case kg.690

Finally, worth noticing is the behavioural distribution of t0 for IMS. The t0

parameter is responsible for timing and magnitude of snowmelt and with the

high quality of the IMS data (Fig. 3) the resultant behavioural distribution is

the narrowest of all compared model variants.

It is important to notice, that the behavioural distribution of parameters (as695

well as the values of parameters obtained during the calibration) responsible for

simulation of snow processes in the degree-day based modes (i.e. ksnow, krain

and t0) may be a�ected by snowfall undercatch. The rain gauge measurements

were not corrected for this phenomenon. Hence, these parameters may be biased

in order to re�ect underestimated snowfall measurements.700
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Put Figure 9 here.

Figure 9: .

4. Conclusions

Nowadays, more and more distributed remote sensing time series are becom-

ing available and replace the standard, in-situ measurements. It is of interest

to see whether hydrological models can bene�t (e.g. by improved calibration)

from the remote sensing data when compared to the in-situ data. The aim of705

this paper was to assess how snow cover data (AE_DySno, GLOBSNOW, IMS,

MOD10A1 and observed SD) can in�uence the model in terms of calibration

quality and uncertainty analysis, i.e. to assess the skill of the snow products

including insights into the role of the model structure. The tested model struc-

tures had two di�erent rules for snowmelt and accumulation switching. The710

data-based switching was based on the day to day changes in the snow cover,

while the temperature-based switching was based on the threshold for mean

daily temperature.

The high resolution data (MODIS and IMS) had higher agreement with

observed SD than the low resolution, passive microwave data (GLOBSNOW715

and AE_DySno). The accuracy of the snow products was re�ected on the

hydrological model calibration results.

The calibration results have demonstrated that using MOD10A1 remote

sensing snow cover data as a driver of snow processes in the WetSpa hydro-

logical model improves the validation NS scores in comparison to the standard720

WetSpa model, not using remote sensing data. Potential improvements could

be also achieved with the use of IMS data. In this case, an additional pro-

cessing would be needed to prevent simulating erroneous peak discharges when

SCF in a catchment is 100%, while the corresponding SWE already started to

decrease. With the undertaken methodology the GLOBSNOW and AE_DySno725

SWE products could not achieve the validation NS scores any better than Stan-

dard WetSpa.

28

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The validation of the calibration results was extended with the use of addi-

tional measures quantifying: overall e�ciency (KG), low �ows (NSlow), high

�ows (NShigh), bias (ME) and collinearity (r2). The overall e�ciency de-730

picts better performance of GLOBSNOW, MOD10A1 and Observed SD than

the standard WetSpa model. Moreover, use of the GLOBSNOW, MOD10A1

and Observed SD data sources results in superior simulations of high �ows in

comparison to the Standard WetSpa, but at the cost of reduced low �ow per-

formance. Indeed, the Standard WetSpa was the best in low �ow simulations735

of all compared model variants. However, it has to be mentioned, that low

�ows in the study area occur in summer half-year, when the in�uence of an-

tecedent snow is negligible. In terms of bias, the best results were obtained by

the model variants using MOD10A1 and IMS data. The SWE and observed SD

model variants were strongly biased. This suggests the chosen method for SWE740

data assimilation using a stationary correction factor (kcor) was too simplistic

to achieve correct simulations. However, the GLOBSNOW data has a potential

for providing better hydrological simulations since the simulated discharge has

the strongest collinearity with the observed discharge of all model variants.

This study demonstrated also the role of model structure in the WetSpa be-745

haviour using di�erent sources of snow cover data. The model variants which im-

plemented both switching methods performed better for the data-based switch-

ing in terms of KG, NS, NShigh and r2. This means that using temperature

as a tuning variable for snowmelt timing from snow cover data results in de-

creased model performance. Furthermore, the role of the model structure is750

best visible in the uncertainty analysis results. Not only the model variants

using the same data source had di�erent behavioural parameters distributions

with di�erent switching algorithm (mostly narrower for the data-based switch-

ing; Fig. 9), but the width of the simulation con�dence intervals at the highest

�ow event was narrowed when the data-based switching was used instead of the755

temperature-based switching (Fig. 7).

The uncertainty analysis reveals also that under the selected threshold for

behavioural models (NS > 0.6) the con�dence interval in all variants covered
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the observations similarly. The pattern of the con�dence interval was similar

in the summer storms periods, while it was di�erent in the snow accumulation760

periods: models using SCF data sources simulated more false positive peaks

than the remaining model variants.

To conclude, each of the tested remote sensing data sources has positive and

negative in�uences on the results of discharge simulations in the WetSpa model.

Some data sources, like AE_DySno (low resolution, passive microwave), have765

more negative in�uence, which possibly could be overcome when other model

structures or additional pre-processing would be used. While other data sources,

like MOD10A1 (high resolution, visual / near-infrared), show more positive

in�uences on the modelling results and proved to give better calibration than

the standard WetSpa model. Needless to say, the model structure has a huge770

in�uence on the calibration and the uncertainty of the simulations as it can

considerably change the behavioural parameters distributions and the widths of

the con�dence intervals.

For future research it would be interesting to conduct similar experiments

with other hydrological models like SWAT or MIKE SHE and to extend the775

uncertainty analysis. It would be also of interest to conduct similar analysis with

using a set of various e�ciency measures for calibrating the models. Another

possibility would be to repeat the experiment on a broader range of study sites

covering di�erent catchment areas and climatic conditions. Finally, interactions

between frozen soil and snowmelt runo� as well as a distributed degree-day780

coe�cient could be tested in the future since these features are currently lacking

in WetSpa.
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• Figure1: Map showing the true colour satellite image of the study area.
The red and green points indicate the meteorological stations from which
the data was used in this study. At the climatological stations (red) the
precipitation, temperature and snow depth data were measured, while
the precipitation stations provide the precipitation data only. The three
labelled stations were used to conduct the snow data accuracy assessment
described in Sect. 2.3.

• Figure 2: A look over the lower basin of the Biebrza River: during the
spring �ood (left) and no �ood moment (right) in the year 2007. Courtesy
of Sylwia Szporak-Wasilewska.

• Figure 3: ROC curves presenting the snow products quality with respect
to the observed SD after reclassi�cation to binary values (Eq. 3).

• Figure 4: Comparison of the catchment averaged snow products used with
the simulated SWE (top) and SCF (bottom) by the Standard WetSpa
model variant.

• Figure 5: The best simulated discharge hydrographs for each model variant
selected based on validation results (see Tab. 5) of the three calibration
runs. The hydrographs present the whole simulation period (calibration
and validation) from 1st November 2004 to 31st December 2010.

• Figure 6: Validation of the best hydrological model variants calibrated
withNS using di�erent criteria, from top to bottom: KG, NSlow, NShigh,
ME and r2. The dashed vertical lines separates the di�erent model vari-
ants; the dotted horizontal line in the ME plot is ME = 0 m3/s, i.e. no
bias. The value of IMS NShigh = −0.99 is not plotted for clarity. The
labels in the bottom axis presents the dataset used in the model variant
and the switching method (temperature- or data-based)

• Figure 7: Discharge uncertainty obtained wit the GLUE method. The
threshold for behavioural parameters set was NS > 0.6 and the con�dence
interval was 95% i.e. lower and upper dashed lines show the 2.5th and
97.5th quantiles.

• Figure 8: Comparison of the 95% con�dence interval estimated with the
GLUE method for SWE (top) and SCF (bottom) in the Standard WetSpa
model variant with the SWE and SCF from the snow cover data used
in the study. The presented time series are catchment averaged. The
observed SD from the meteorological stations was recalculated to SWE
with ρ = 0.95 mm water/cm, i.e. the median ρ from the behavioural
distribution in the Observed SD data-based switching model variant (Fig.
9).

• Figure 9: Behavioural parameters distribution for, from top to bottom:
kg, t0, ksnow, krain, kcor and ρ for the model variants which use these
parameters (Tab. 3); kg is the global WetSpa parameter used in all model
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variants. The labels in the bottom axis presents the dataset used in the
model variant and the switching method (temperature- or data-based).
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Table 1: Meteorological data from the Olecko station for the period: 1975 - 2012.
Location of the station is presented in Figure 1. Winter is from November to
April, Summer is from May to December. For sources of potential evapotran-
spiration (PET) see section 2.2.1; remaining data was provided by the Polish
Institute of Meteorology and Water Management - National Research Institute
(IMGW)

Variable Yearly Winter Summer Maximum / Month Minimum / Month
Mean

temperature
[◦C]

7.0 0.1 13.7 17.6 / VII -3.6 / I

Precipitation
sum [mm]

619 231 388 82 / VII 27 / II

PET sum
[mm]

550 85 465 105 / VII 5 / I, II, XII

Mean Snow
depth [cm]

3.7 7.5 0.0 17.8 / II 0 / V to IX

Percentage of
days with
snow cover

21% 43% 0% 75% / II 0% / V to IX

1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


T
a
b
le

2
:
P
ro
p
er
ti
es

o
f
th
e
fo
u
r
sn
o
w

p
ro
d
u
ct
s
u
se
d
in

th
e
st
u
d
y.

P
ro
d
u
ct

A
lg
o
ri
th
m

V
a
lu
es

R
es
o
lu
ti
o
n

A
va
il
a
b
il
it
y

M
is
si
n
g
d
a
ta

S
p
a
ti
a
l

T
em

p
o
ra
l

A
E
_
D
y
S
n
o

A
u
to
m
a
ti
c,
b
a
se
d
o
n
p
a
ss
iv
e

m
ic
ro
w
av
e
d
a
ta

fr
o
m

A
M
S
R
-E

se
n
so
r
w
it
h

a
n
ci
ll
a
ry

d
a
ta
.

S
W
E
in

ra
n
g
e
0
-4
8
0

[m
m
]

2
5
k
m

d
ay

2
0
0
2
to

2
0
1
1

(i
n
st
ru
m
en
t

fa
il
u
re
)

D
u
e
to

n
o
t
fu
ll
co
v
er

b
y

o
rb
it
s:

8
.7
%

in
th
e
st
u
d
y

a
re
a
.

G
L
O
B
S
N
O
W

A
u
to
m
a
ti
c,
b
a
se
d
o
n
p
a
ss
iv
e

m
ic
ro
w
av
e
d
a
ta

fr
o
m

S
M
M
R
,

S
M
M
/
I
a
n
d
A
M
S
R
-E

se
n
so
rs

a
n
d
m
et
eo
ro
lo
g
ic
a
l
st
a
ti
o
n
s

d
a
ta
.

S
W
E
[m

m
]

2
5
k
m

d
ay

(i
n
th
e
st
u
d
y

p
er
io
d
)

1
9
8
7
to

2
0
1
0

D
u
e
to

w
a
te
r,
m
o
u
n
ta
in
s

(n
o
n
e
in

th
e
st
u
d
y
a
re
a
)
o
r

m
is
si
n
g
in
p
u
t
d
a
ta
:
5
8
.0
%

(m
a
jo
ri
ty

in
th
e
sn
ow

fr
ee

p
er
io
d
).

IM
S

M
a
n
u
a
l,
b
a
se
d
o
n
a
im

a
g
es

fo
rm

m
a
n
y
sa
te
ll
it
es

w
it
h

v
is
ib
le
,
in
fr
a
-r
ed

a
n
d
p
a
ss
iv
e

m
ic
ro
w
av
e
se
n
so
rs
.

S
n
ow

a
n
d

ic
e
co
v
er

ex
te
n
t

[p
re
se
n
ce

o
r

a
b
se
n
ce
]

4
k
m

d
ay

2
0
0
4
to

p
re
se
n
t

R
a
re
,
fr
o
m

va
ri
o
u
s
re
a
so
n
s:

0
.3
%

o
f
th
e
ti
m
e
se
ri
es
.

M
O
D
1
0
A
1

A
u
to
m
a
ti
c,
b
a
se
d
o
n
v
is
ib
le

a
n
d
n
ea
r
in
fr
a
-r
ed

re
�
ec
ta
n
ce

fr
o
m

M
O
D
IS
\
T
er
ra

se
n
so
r.

S
C
F
[-
]

5
0
0
m

d
ay

2
0
0
0
to

p
re
se
n
t

F
re
q
u
en
t,
m
o
st
ly

d
u
e
to

cl
o
u
d
co
v
er
:
2
6
.0
%

o
f
th
e

ti
m
e
se
ri
es
.

1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


T
a
b
le
3
:
S
n
ow

m
el
t
a
n
d
sn
ow

a
cc
u
m
u
la
ti
o
n
ca
lc
u
la
ti
o
n
in
th
e
d
i�
er
en
t
m
o
d
el
va
ri
a
n
ts
.
T
h
e
la
st
co
lu
m
n
p
re
se
n
ts
w
h
ic
h
sn
ow

m
el
t

/
sn
ow

a
cc
u
m
u
la
ti
o
n
sw

it
ch
in
g
m
et
h
o
d
w
a
s
im

p
le
m
en
te
d
.

M
o
d
el
va
ri
a
n
t

S
v
va
ri
a
b
le
in

a
d
a
ta
se
t

A
cc
u
m
u
la
ti
o
n

M
el
t

S
w
it
ch
in
g
b
a
se
d
o
n

S
ta
n
d
a
rd

W
et
S
p
a

-
s
=
s
+
v r

a
in

v s
m

=
k
s
n
o
w
(t
−
t 0
)
+
k
r
a
in
v p

r
e
(t
−
t 0
)

te
m
p
er
a
tu
re

O
b
se
rv
ed

S
D

S
D
[c
m
]

b
a
se
d
o
n
d
a
ta

v s
m

=
ρ
(S
D

i−
1
−
S
D

i)
te
m
p
er
a
tu
re
,
d
a
ta

M
O
D
1
0
A
1

S
C
F
[-
]

∈
{0

:
1}
∩
R

b
a
se
d
o
n
d
at
a

v s
m

=
S
C
F
(k

s
n
o
w
(t
−
t 0
)
+
k
r
a
in
v p

r
e
(t
−
t 0
))

te
m
p
er
a
tu
re
,
d
a
ta

IM
S

S
C
F
[-
]

∈
{0
,1
}
∩
N

b
a
se
d
o
n
d
at
a

v s
m

=
S
C
F
(k

s
n
o
w
(t
−
t 0
)
+
k
r
a
in
v p

r
e
(t
−
t 0
))

te
m
p
er
a
tu
re

G
L
O
B
S
N
O
W

S
W
E
[m

m
]

b
a
se
d
o
n
d
a
ta

v s
m

=
k
c
o
r
(S
W
E

i−
1
−
S
W
E

i)
te
m
p
er
a
tu
re
,
d
a
ta

A
E
_
D
y
S
n
o

S
W
E
[m

m
]

b
a
se
d
o
n
d
a
ta

v s
m

=
k
c
o
r
(S
W
E

i−
1
−
S
W
E

i)
te
m
p
er
a
tu
re
,
d
a
ta

1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 4: Ranges of the WetSpa global parameters optimized with the SCE
method and used for the uncertainty analysis with the GLUE method. Only
the parameters marked with a star (*) were used in all model variants, other pa-
rameters were variant speci�c (see Tab. 3 and Sect. 2.5.2). The full parameters
description is available in Liu et al. (2004).
Parameter Description Range

ki* inter�ow scaling factor [-] 0.1 : 6.0
kg* groundwater �ow recession coe�cient [m2/s] 1× 10−6 : 1× 10−1

ki2* inter�ow recession coe�cient [m2/s] 1× 10−4 : 6
kss* initial soil moisture ratio to �eld capacity [-] 0.1 : 3.0
kep* correction factor for evapotranspiration [-] 0.3 : 2.0
G0* initial groundwater storage depth [mm] 1 : 400
Gmax* maximum groundwater storage depth [mm] 1 : 1000
t0 threshold temperature [◦C] -3 : 3

ksnow degree-day coe�cient [mm/◦C] 0.01 : 6.00
krain rainfall degree-day coe�cient [mm/mm/◦C] 0.01 : 6.00
krun* coe�cient re�ecting the e�ect of rainfall intensity on runo� [-] 0.01 : 2.00
Pmax* rainfall intensity threshold above which krun is set to 1 [mm/day] 1 : 700
kcor correction factor for the SWE data [-] 0.01 : 3.00
ρ snow density factor [mm water/cm] 0.01 : 3.00
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Table 6: The percentage of time the observed discharge was outside the 95%
con�dence interval estimated with the GLUE method for all model variants

Model variant
switching

data-based temperature-based

MOD10A1 8.8% 46.0%
IMS - 4.9%

Observed SD 5.5% 5.5%
GLOBSNOW 5.2% 2.7%
AE_DySno 8.8% 9.9%

Standard WetSpa - 6.6%
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