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A B S T R A C T   

The paper proposes to identify the parameters of linear dynamic models based on the original 
implementation of least absolute deviation estimators. It is known that the object estimation 
procedures synthesized in the sense of the least sum of absolute prediction errors are particularly 
resistant to occasional outliers and gaps in the analyzed system data series, while the classical 
least squares procedure unfortunately becomes of little use for reliably identifying systems in the 
presence of destructive measurement errors. Bearing in mind that the classic task of minimizing 
the quality functional of absolute deviations encounters fundamental analytical problems, it is 
proposed to use a dedicated iterative estimator for off-line evaluation of the parameters of the 
analyzed process. In addition, a simplified recursive version of the absolute deviation estimation 
procedure was developed, which allows for practical on-line tracking of the evolution of variable 
parameters of non-stationary systems. Importantly, a novel refinement of the discussed absolute 
deviation estimators was proposed to effectively overcome some inconvenient numerical effects. 
We also present an interesting comparison of the improved (by non-linear modification) iterative 
absolute-deviation estimator with the classical Gauss-Newton gradient algorithm, which leads to 
constructive conclusions. Finally, using computer simulations, the operation of the developed 
iterative and recursive estimators minimizing the absolute deviation is illustrated. The work ends 
with an indication of directions for further research.   

1. Introduction 

The unprecedented development of science and technology, which is conventionally referred to as the „semiconductor revolution” 
(because it is associated with the invention of the transistor in 1947), has also radically influenced progress in numerous areas of 
human life. In parallel, these results also accelerated research in areas such as electronics, information technology, telecommunica
tions, industrial robotics and automation. Especially in the domain of broadly understood automation, we observe great theoretical 
and practical progress in the field of diagnostics, process supervision and adaptive control [1,2], digital filtering and prediction [3,4], 
and system identification [5,6]. 

In many such practical professional implementations, effective ways of calculating the parameters of mathematical models turn out 
to be invaluable. This is because for industrial monitoring and/or supervision systems, such estimators are necessary when assessing 
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the correctness or quality of controlled production sub-processes. In the reliable mechanization of such procedures, proper modeling of 
the process dynamics is essential. Most often, operator models of transfer functions, difference or differential equations, or repre
sentations in the state space are taken into account here. In this context, the importance of the choice between a discrete-time 
description (instrumental, mathematical) and a continuous-time model (physically/ energetically motivated) should be raised. 

Historically, as a result of the great progress in the production of digital computers, there was a tendency to uniformly treat 
numerically implemented algorithms and models of the analyzed systems in a common discrete domain, which was also manifested in 
the main directions of research undertaken in the field of parameter estimation. Users of discrete descriptions find measurable benefits 
here, because numerical implementations of such easy-to-use models are also significantly supported by advanced libraries of pro
fessional software. Though, a discrete representation is usually a purely mathematical description with unitless parameters, which 
rarely have a direct link with physical quantities (e.g. energy). What is more, the parameters of the discrete-time transfer function 
strongly depend on the sampling frequency. In general, the choice between continuous-time and discrete-time modeling is not a trivial 
problem and depends on many factors. For example, when system identification is aimed at evaluating significant and basic physical 
quantities, analog modeling is strongly recommended [7,8], while when the identified quantities constitute data needed for some 
specific processing (e.g. tuning of a digital controller), it is recommended to act in target discrete domain. 

It is obvious that the quality of the processed measurements has a fundamental impact on the reliable identification of the 
monitored process. The signals recorded by measuring devices usually contain some undesirable additions or interferences such as 
additive (high frequency) noise, deterministic (systematic) bias or occasional deviations (outliers). Interfering noise (white or 
correlated) can usually be eliminated with auxiliary (low-pass) pre-filters. In turn, the phenomenon of bias can be reduced by proper 
calibration of the sensors or the use of dedicated compensation methods. Unfortunately, in the case of large measurement errors, the 
classical least squares (LS) method is unable to completely process data distorted by destructive errors. Therefore, it is recommended to 
use special estimation procedures that are insensitive to outliers [9,10]. 

There are basically two concepts for parameter estimation that are insensitive to outliers:  

a) the use of dedicated detection procedures that allow for effective isolation of random outliers in measurement data, which in turn 
allows for safe identification using the least squares scheme,  

b) the use of methods that are inherently insensitive to large measurement errors (such as the procedures presented here based on non- 
quadratic quality indices). 

Concept (a) is clearly less practical, as it must rely on additional processing based on hypothesis verification methods (such as the 
Grubbs criterion) to detect off-line outliers in the recorded measurements. Unfortunately, this approach is reliable for eliminating 
single errors, but does not necessarily work for a sequence of several outliers in the recorded data set. Thus, any remaining outliers may 
easily impair the performance of LS estimators (which are not resistant to large errors). 

Therefore, in our study, we consider concept (b), which aims to desensitize identification procedures to data with outliers [11,12]. 
For this purpose, we propose iterative-recursive estimation procedures with the least absolute deviation (LA). After discussing them, 
we present their practical performance in several computer simulations with obvious measurement errors and experimentally confirm 
the desirable feature of insensitivity to outliers. 

These proprietary estimators, together with an inventive improvement that allows us to overcome specific implementation 
problems (e.g. scaling factors close to zero), are our contribution to the field of identification insensitive to measurement errors. In 
addition, the validity of the absolute deviation approach is undeniable due to the mathematically proven superiority of our modified 
iterative estimator over the estimation procedure based on the classical Gauss-Newton gradient algorithm. And to show the consistency 
of the developed methodology, the basic property of the original iterative LA estimator is briefly recalled in the appendix to this article 
(with reference to the rigorous proof given in [13]). 

The above issues are presented in this article in the following order. In Section 2, derivations of the batch (off-line) and recursive 
(on-line) implementations of the basic least squares algorithm is outlined, which makes it easy to follow the reasoning associated with 
the target LA procedures. Then iterative (batch) and recursive (approximate) least absolute deviation procedures are discussed in 
Section 3. In turn, Section 4 proposes an inventive redefinition of the standard absolute-deviation functional that eliminates the 
cumbersome numerical problem of small divisors. In addition, Section 5 presents an instructive confrontation of the improved LA 
scheme with an estimation procedure implemented based on the well-known Gauss-Newton optimization pattern. Finally, Section 6 
illustrates the unprecedented properties of the LA method using computer simulations where the processed data is contaminated with 
large measurement errors. In the summary of the work, in Section 7, the motivation for undertaking research is emphasized, the main 
results are briefly listed and directions for further research are outlined. In addition, Appendix A briefly explains an important property 
(convergence) of the basic iterative absolute-deviation procedure. 

2. Batch and recursive LS algorithms 

Consider the classical SISO regression model of a supervised process: 

χ(l) = φT(l)θ + e(l) (1)  

φ(l) = [φ1(l) ⋯ φn(l) ]
T (2) 
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θ = [ϑ1 ⋯ ϑn]
T (3)  

where χ(l) stands for the measurement of the output, while φ(l) and θ denote some regression and parameter vectors, respectively. The 
term e(l), called equation error, prediction error (or residual bias), is also a good representation of the modeling inaccuracy or noise/ 
disturbance component. 

The model parameter vector θ can be easily estimated using known identification algorithms, including the classical least squares 
procedure. 

To facilitate our target consideration of the absolute deviation approach, we first briefly outline the typical reasoning leading to 
batch (algebraic) and recursive (on-line) implementations of the LS method. 

The weighted least squares estimator follows directly from the minimization of the handy square index [14] 

I(θ) =
1
2
∑k

l=1
γ(l)e2(l) =

1
2
∑k

l=1
λk− l[χ(l) − φT(l)θ

]2 (4)  

in which the sequence of positive weights γ(l) takes the convenient exponential form γ(l) = λk− l. The weighting factor λ controlling the 
rate of forgetting (in the case of identifying a non-stationary/variant object) is usually in the range [0.9 , 1]. The coefficient λ is related 
to the coefficient L = 1/(1 − λ), which represents the ’effective number of observations’. 

The strictly convex functional (4) reaches a minimum provided that its gradient is equal to zero 

∇θI = −
∑k

l=1
λk− lφ(l)

[
χ(l) − φT(l)θ

]
= 0 (5)  

Consequently, the LS estimation of vector θ is given by 

θ̂ =

[
∑k

l=1
λk− lφ(l)φT(l)

]− 1[
∑k

l=1
λk− lφ(l)χ(l)

]

(6)  

Finally, given the positive definite Hessian of I(θ), 

∇2
θI =

[
∑k

l=1
λk− lφ(l)φT(l)

]

> 0 (7)  

we conclude that (6) forms a unique minimum of (4). 
The batch solution (6) is characterized by a tiresome matrix inversion, which, however, can be circumvented by using the matrix 

inversion lemma (MIL) [14]: 

[
λM + vvT]− 1

=
1
λ

[

M− 1 −
M− 1vvTM− 1

λ + vTM− 1v

]

(8)  

where M is an invertible square matrix, v is any column vector of compatible dimension, and λ is a positive number. By introducing the 
aggregated symbols R(k) and s(k) for the main two terms in (6), they can then be written in recursive form: 

R(k) =
∑k

l=1
λk− lφ(l)φT(l) (9)  

R(k) = λR(k − 1) + φ(k)φT(k) (10)  

s(k) =
∑k

l=1
λk− lφ(l)χ(l) (11)  

s(k) = λs(k − 1)+φ(k)χ(k) (12)  

Thus, lemma (8) applied to (10) gives the inverse of R(k), denoted for convenience by the matrix P(k)

P(k) = R− 1(k) =
[
λR(k − 1) + φ(k)φT(k)

]− 1
=

1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)

λ + φT(k)P(k − 1)φ(k)

]

(13)  

After simple rearrangements, the final estimate (6) is 

θ̂(k) = R− 1(k)s(k) = P(k)s(k) =
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)

λ + φT(k)P(k − 1)φ(k)

]

[λs(k − 1) + φ(k)χ(k) ]

= θ̂(k − 1) + P(k)φ(k)
[
χ(k) − φT(k)θ̂(k − 1)

]
(14)  

The above recursive LS procedure (13)-(14) starts with the adoption of the initial matrix (13) with the largest (realistically) values on 
the main diagonal of P(k), e.g. P(0) = diag

[
105 ⋯ 105]. 
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The Hessian R(k) found in (6), (7) and (9) can be loosely referred to as the ’information matrix’, although strictly speaking it should 
be rescaled by the variance σ2

e of the residual error e(k) to more appropriately represent information matrix, i.e. σ2
e R(k). Its inverse, P(k)

shown in the LS algorithm (13)-(14), can thus be called the ’covariance matrix’, although the exact form is given here by P(k)/σ2
e . 

Let us also recall the modification consisting in the introduction of an instrumental variable (IV) to the LS procedure. The desired IV 
solution can be obtained by replacing the column regression vector φ(k) with some ’noise-free’ instrument ξ(k) when evaluating the 
gradient (5). As a result of a rearrangement similar to (9)-(14) we obtain a recursive procedure analogous to (13)-(14), where φ(k) is 
replaced by ξ(k) and φT(k) remains unchanged. 

In summary, we can introduce a common template for the LS and IV recursive procedures, in which the innovated covariance 
matrix P(k) together with the ’a priori’ prediction error ε(k) are used to update the estimate of the vector θ [14]: 

ε(k) = χ(k) − φT(k)θ̂(k − 1) (15)  

P(k) =
1
λ

[

P(k − 1) −
P(k − 1)η(k)φT(k)P(k − 1)

λ + φT(k)P(k − 1)η(k)

]

(16)  

θ̂(k) = θ̂(k − 1) + P(k)η(k)ε(k) (17)  

where the auxiliary vector η(k) is φ(k) or ξ(k) for the LS and IV methods, respectively. 
It is easy to show that the unweighted LS algorithm (at λ = 1) gives a consistent estimate of θ, provided that the prediction error e(k)

and the regression vector φ(k) have no correlation: E{φ(k)e(k) } = 0. This takes place when the random variables {e(1), e(2)⋯} making 
the residual process e(k) are zero-mean independent (the white noise sequence). 

Since in practical situations the equation error e(k) is most often a correlated process, the LS estimate of θ contains a systematic 
error. The IV variant of the LS procedure is a good method to avoid inconsistencies and asymptotic bias in the estimations, because the 
instrument ξ(k) is noise-free and does not correlate: E{ξ(k)e(k) } = 0. Useful rules for generating the instrument ξ(k) can be found in 
[15,16]. 

3. Batch and recursive LA algorithms 

The basic estimator of the smallest absolute deviation used to identify the model (1)-(3) results from the minimization of the non- 
quadratic functional 

J(θ) =
∑k

l=1
γ(l)|e(l)| =

∑k

l=1
λk− l
⃒
⃒χ(l) − φT(l)θ

⃒
⃒ (18)  

with the weight sequence γ(l), similarly as in (4). 
Of course, the analytical minimization of such a non-square functional LA can be problematic. However, using an appropriate 

estimate of the prediction error e(k) generated by an auxiliary estimator, a zero gradient of (18) can be achieved in the following 
approximate way 

∇θJ = −
∑k

l=1
λk− lφ(l)sign(e) = −

∑k

l=1
λk− lφ(l)

e(l)
|e(l)|

≈ −
∑k

l=1
λk− lφ(l)e(l)

|ê(l)|
= −

∑k

l=1
λk− lφ(l)[χ(l) − φT(l)θ ]

|ê(l)|
= 0 (19)  

where a helpful tautology was used (satisfied for e ∕= 0): 

d|e|
de

= sign(e) =
e
|e|

(20)  

Finally, based on (19), an approximate (LA) estimate of θ can be expressed in batch (or algebraic) form as 

θ̂ =

[
∑k

l=1
λk− l φ(l)

|ê(l)|
φT(l)

]− 1[
∑k

l=1
λk− l φ(l)

|ê(l)|
χ(l)

]

(21)  

Equation (21) coincides with (6) if only the vector φ(l) is scaled with the absolute value of the estimate of the equation error e(l). 
By implementing the above procedure in an iterative manner, the error estimation can be refined and thus the accuracy of 

parameter estimation can be improved. Namely, using the LS estimation of θ given by (6) to approximate the successive values of the 
residual error ê(l) = χ(l) − φT(l)θ̂, (for l = 1⋯k), we are able to initially calculate the estimate LA according to (21). Then, using the 
estimate of θ thus obtained, the residual error ê(l) can be recalculated (updated) and reapplied in (21) to obtain the final (current) 
estimate of LA. This reasoning obviously overlaps with the conventional ’successive approximation’ method and leads to the following 
iterative implementation of the batch LA procedure (for r = 0, 1, ⋯): 

ê[r](l) = χ(l) − φT(l)θ̂[r] (22)  
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θ̂[r+1] =

[
∑k

l=1
λk− lφ(l)φT(l)

|ê[r](l)|

]− 1[
∑k

l=1
λk− lφ(l)χ(l)

|ê[r](l)|

]

(23)  

Note that by rearranging formula (22) to the regression form (for the output: χ(l) = φT(l)θ̂[r] + ê[r](l)), we can show (23) as an 
innovation 

θ̂[r+1] = θ̂[r] + [H(k) ]− 1ψ(k) (24)  

H(k) =
∑k

l=1
λk− lφ(l)φT(l)

|ê[r](l)|
(25)  

ψ(k) =
∑k

l=1
λk− lφ(l)ê

[r]
(l)

|ê[r]
(l)|

=
∑k

l=1
λk− lφ(l)sign

(
ê[r]

(l)
)

(26)  

where the error term ê[r](l) is given by (22), the vector ′ − ψ(k)′ is the gradient and H(k) is the Hessian of (18). 
In practice, the above iterative LA procedure is stopped when the decrease in successive values of criterion (18) becomes insig

nificant (relative to the numerical threshold Δmin): 

J
(

θ̂[r] ) − J
(

θ̂ [r+1] ) < Δmin (27) 

The original concept of iterative LA processing [17], referred to as the “re-weighted least squares” method, has been further 
developed and applied to many practical problems [13,18,19]. It should be emphasized here that the iteratively calculated sequence of 
functional values (18) is proved to be decreasing [13]: J

(
θ̂ [r+1] ) < J

(
θ̂[r] ), which confirms the sense of test (27). Moreover, since each 

value of (18) is positive, the sequence J
(

θ̂[r] ) has a lower bound. Thus, taking into account that every monotonic sequence bounded 
from below has a limit, it can be concluded that the LA algorithm (24)-(26) minimizes the quality index (18). The essence of the above- 
mentioned convergence property is briefly recalled in Appendix A. 

Moreover, we should be aware that in the above LA procedure there is likely to be a problem of small divisors (factors |ê[r](l)|). Thus, 
absolute values |ê[r](l)| that are very close to numerical zero can be replaced with a threshold value (emin). This practical method of 
’regularization’ is commonly used in many numerical procedures. 

Our objective function LA (18) given as a sum of absolute values is convex, but not in the strict sense. So it may happen that the LA 
functional adopts a ’flat minimum’. However, this is an extremely rare case where the actual gradient (26) becomes approximately 

zero ‖ψ(k)‖ = 0, so we have stagnation circumstance J
(

θ̂[r+1]
)
= J
(

θ̂[r]
)

and no innovation θ̂[r+1] = θ̂[r]. However, such a stagnation 

of the LA index is immediately detected by the stop test (27). 
In conclusion, the numerical problem of divisors close to zero can be seen as an implementation flaw of the iterative batch LA 

approach presented above. 
A recursive implementation of the LA method can be derived in a similar way as shown for the LS scheme. First, we introduce new 

symbols R(k) and s(k) for the key terms presented in (21) and represent them in a recursive way: 

R(k) =
∑k

l=1
λk− l φ(l)

|ê(l)|
φT(l) (28)  

R(k) = λR(k − 1) +
φ(k)
|ê(k)|

φT(k) (29)  

s(k) =
∑k

l=1
λk− l φ(l)

|ê(l)|
χ(l) (30)  

s(k) = λs(k − 1)+
φ(k)
|ê(k)|

χ(k) (31)  

The MIL (8) applied to (29) yields the inverse of R(k): 

P(k) = R− 1(k) =
[

λR(k − 1) +
φ(k)
|ê(k)|

φT(k)
]− 1

=
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)
λ|ê(k)|+φT(k)P(k − 1)φ(k)

]

≈
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)
λ|ε(k)| + φT(k)P(k − 1)φ(k)

]

(32) 

After classical transformations, instead of the batch version (21), a more convenient recursive LA estimator can be used: 
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θ̂(k) = R− 1(k)s(k) = P(k)s(k) =
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)
λ|ê(k)|+φT(k)P(k − 1)φ(k)

][

λs(k − 1) +
φ(k)
|ê(k)|

χ(k)
]

= θ̂(k − 1) + P(k)
φ(k)
|ê(k)|

[
χ(k) − φT(k)θ̂(k − 1)

]
≈ θ̂(k − 1) + P(k)φ(k)sign

(
χ(k) − φT(k)θ̂(k − 1)

)
(33)  

In the formula above, the ’a priori’ prediction error ε(k) = χ(k) − φT(k)θ̂(k − 1) was used as the best possible on-line measure of the 
unknown equation error (|ε(k)| ≈ |ê(k)|), and the sign tautology (20) was used to represent the ratio ε(k)/|ε(k)|. As before, the variables 
R(k) and P(k) can be loosely interpreted as information and covariance matrices, respectively (see explanations in Section 2). Formulas 
(32)-(33) are an approximate version of the recursive LA estimator. 

Summarizing the discussion, an approximate recursive LA procedure (avoiding the problem of small divisors) can be presented in 
the following compact format, where the innovation covariance matrix P(k) and the ’a priori’ prediction error ε(k) are used to refresh 
the estimate of the vector θ [18]: 

ε(k) = χ(k) − φT(k)θ̂(k − 1) (34)  

P(k) =
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)
λ|ε(k)| + φT(k)P(k − 1)φ(k)

]

(35)  

θ̂(k) = θ̂(k − 1) + P(k)φ(k)sign(ε(k) ) (36) 

This approximate recursive LA procedure coincides with the classical IV scheme (15)–(17), provided that the instrument η(k) is 
adopted as the regression vector scaled with the ’a priori’ measure (34) of the prediction error, i.e. η(k) = φ(k)/ε(k). 

By performing the similar reasoning as in the LS case [14], and taking into account that e(k)/|e(k)| = sign[e(k)], we conclude that in 
the (unweighted) LA case the estimate θ̂(k) converges asymptotically to θ, provided that E[φ(k)sign(e(k) ) ] = 0. This issue, relating to 
the basic LA method, was discussed by the authors in [18]. 

Assuming, as before, that the residual process e(k) is white noise, we conclude that the process ‘sign(e(k))’ has also white noise 
properties (this is because deterministic functions of independent random variables remain independent random variables). For this 
reason, the correlation E[φ(k)sign(e(k))] of the signals φ(k) and sign[e(k)] is zero, and therefore the LA estimate θ̂(k) is asymptotically 
consistent (k→∞). 

Because in most situations, the equation error e(k) turns out to be a correlated process, so here it is also worth suggesting the 
approach of an instrumental variable (IV) as a good solution to the bias problem. Importantly, the methods of generating such an 
instrumental variable vector may be the same for both estimation schemes, i.e. LS and LA [15]. 

In contrast to LS, initialization of (34)-(36) based on a high-diagonal matrix P(k) cannot be recommended here. It is more rational 
to start the estimation with the LS procedure (15)-(17) in several steps, and then based on the obtained reliable LS estimate of θ, the 
matrix P(k) and the prediction error |ê(k)|, one can proceed to LA processing according to (34)-(36). 

4. Smoothly approximated LA algorithms 

We now wish to propose another solution to the troublesome problem of analytic differentiation of the basic functional LA (18) 

Fig. 1. Smooth approximation (39) of the sign function.  
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(starting with batch iterative). 
The discussed batch-iterative method leading to the estimator of the smallest sum of absolute deviations in the innovation version 

(24)-(26) for the system (1)-(3) has the already mentioned disadvantages consisting of small scaling factors and the (less annoying) 
problem of flat minimum of the LA functional (18). These problems can also be solved in another way by using a ’sigmoid’ function to 
reliably approximate the ’sign’ function present in the gradient (19). 

For this purpose, the previous quality functional (18) should be redefined in such a way that its derivative takes the desired sigmoid 
shape, which is represented, for example, by the analytically useful hyperbolic tangent shown in Fig. 1. After such modification, the 
new smooth and differentiable objective function takes the form 

J̃(θ) =
∑k

l=1
γ(l)f (e(l) ) =

∑k

l=1
λk− lf

(
χ(l) − φT(l)θ

)
(37)  

based on a smooth cost profile function f(e), which is a smooth approximation of the absolute value (Fig. 2) 

f (e) = α− 1ln(cosh(αe)) (38)  

Note that in the index (37) we have the weighting tool γ(l) and in (38) we have a tuning factor α. 
The applied smooth LA (SLA) cost profile f(e), built on the hyperbolic cosine and logarithmic functions, is a sensible approximation 

to the absolute value (f(e) ≈ |e|), as long as the tuning factor α is large enough (α→∞). 
It is easy to check that the profile f(e) is locally quadratic: fe) ≈ 0.5αe2 (for e ≈ 0). Fig. 2 also shows that f(e) < |e| (for e ∕= 0). Also 

function f(e) has (for large |e|) has skew asymptotes, namely: f(e) ≈ |e| − α− 1ln(2). 
For our considerations, the forms of successive derivatives of f(e) are also important: 

f ′(e) =
df
de

= tanh(αe) (39)  

f″(e) =
d2f
de2 =

α
cosh2(αe)

(40)  

which are an odd function (strictly increasing) and an even function (greater than zero), respectively. 
The shape of the derivative (39), representing the hyperbolic tangent (Fig. 1), explains our motivation for choosing the form of the 

profile function f(e) (Fig. 2) used in the modified index (37). Here you can also see that the sigmoid curve approximates the sign 
function very well, as long as α is large enough. 

According to the reasoning in Section 3, the index (37) can be approximately minimized, provided that estimates of the prediction 
error e(l) are available. 

Replicating the method of determining the gradient (19) and using the error shaping factor μ(e) relating e with the derivative (39) 
of the profile function f(e): 

μ(e) = e
f ′(e)

=
e

tanh(αe)
(41)  

we can (equally) use e/μ(e) = f′(e) to express the gradient of (37) 

Fig. 2. Smooth approximation (38) of the absolute value.  
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∇θJ̃ = −
∑k

l=1
λk− lφ(l)f ’(e) = −

∑k

l=1
λk− lφ(l)

e(l)
μ(e(l) ) ≈ −

∑k

l=1
λk− lφ(l)[χ(l) − φT(l)θ ]

μ(ê(l) ) = 0 (42) 

As before, in the denominator (42) there is an estimate ̂e(l) of e(l). However, compared to (21), here we finally get an SLA estimate 
of θ, where the tool μ(e) takes over the role previously played by the absolute value: 

θ̂ =

[
∑k

l=1
λk− l φ(l)

μ(ê(l) )φ
T(l)

]− 1[
∑k

l=1
λk− l φ(l)

μ(ê(l) ) χ(l)
]

(43) 

Processing (43) can be again refined by iterations. With the appropriate LS estimate θ̂ [0] of (6) initiating these iterations, the 
successively updated estimates θ̂[r] allow the sequence of prediction errors to be updated (for l = 1⋯k). This leads to an iterative batch 
procedure of SLA similar to (22)-(23): 

ê[r](l) = χ(l) − φT(l)θ̂[r] (44)  

θ̂[r+1] =

[
∑k

l=1
λk− lφ(l)φT(l)

μ(ê[r](l) )

]− 1[
∑k

l=1
λk− l φ(l)χ(l)

μ(ê[r](l) )

]

(45)  

The innovation form of SLA is obtained by substituting the output χ(l) = φT(l)θ̂[r] + ê[r](l) from (44) to (45): 

θ̂[r+1] = θ̂[r] + [H(k) ]− 1ψ(k) (46)  

H(k) =
∑k

l=1
λk− lφ(l)φT(l)

μ(ê[r](l) )
(47)  

ψ(k) =
∑k

l=1
λk− lφ(l)ê

[r]
(l)

μ(ê[r]
(l))

=
∑k

l=1
λk− lφ(l)tanh

(
ê [r]

(l)
)

(48)  

where ′ − ψ(k)′ is the gradient and H(k) is the Hessian of the minimized index (37). 
Processing (44)-(45) or (46)-(48) ends with the relative change test (27), which step by step analyzes the change in criterion (37) 

whether it falls below the given threshold Δmin. This solves the problem of possible zero divisors, since the factor (41) is always 
positive: μ(ê[r](l)) > 0. 

In addition, the calculation of the shaping factor (41) itself is numerically well-conditioned (no division by zero), which can be 
demonstrated using two rapidly converging power series for the components of the hyperbolic ’sinh’ and ’cosh’ functions, used to 
construct the ’tanh’ function in μ(e) (see also Fig. 3): 

μ(e) = e
tanh(αe)

=
1
α

cosh(αe)
sinh(αe)

(αe) =
1
α

1 +
(αe)2

2! +
(αe)4

4! +
(αe)6

6! + ⋯

1 +
(αe)2

3! +
(αe)4

5! +
(αe)6

7! + ⋯
(49) 

The redefined SLA criterion (37) based on f(e) resembles the standard LA shape (18), but (37) is square in the small neighborhood 

Fig. 3. Smooth error shaping function μ(e).  
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of each kink point (now smoothed). The strictly convex SLA index (37) also overcomes the ’flat minimum’ problem in index (18). 
An approximate recursive implementation of the smooth SLA scheme can be obtained by the method shown in Section 3. Thus, 

introducing the new symbols R(k) and s(k) for the expressions given in (43), we get 

R(k) =
∑k

l=1
λk− l φ(l)

μ(ê(l) )φ
T(l) (50)  

R(k) = λR(k − 1) +
φ(k)

μ(ê(k) )φ
T(k) (51)  

s(k) =
∑k

l=1
λk− l φ(l)

μ(ê(l)) χ(l) (52)  

s(k) = λs(k − 1)+
φ(k)

μ(ê(k)) χ(k) (53)  

The MIL formula (8) can be applied to invert (51): 

P(k) = R− 1(k) =
[

λR(k − 1) +
φ(k)

μ(ê(k) )φ
T(k)

]− 1

≈
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)

λμ(ε(k) ) + φT(k)P(k − 1)φ(k)

]

(54)  

As a result, the estimate (43) can be shown as 

θ̂(k) = R− 1(k)s(k) = P(k)s(k) =
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)

λμ(ê(k) ) + φT(k)P(k − 1)φ(k)

][

λs(k − 1) +
φ(k)

μ(ê(k) ) χ(k)
]

≈ θ̂(k − 1) + P(k)φ(k)
χ(k) − φT(k)θ̂(k − 1)

μ(χ(k) − φT(k)θ̂(k − 1) )
(55) 

In the above argument, the ’a priori’ prediction error ε(k) = χ(k) − φT(k)θ̂(k − 1) was consistently used as an estimate of the 
equation error (|ε(k)| ≈ |ê(k)|). 

Finally, the smooth (approximate) SLA recursive estimator can be presented in the standard form, including the determination of 
the ’a priori’ prediction error ε(k), the innovation of the covariance matrix P(k), and the final update of the estimation vector: 

ε(k) = χ(k) − φT(k)θ̂(k − 1) (56)  

P(k) =
1
λ

[

P(k − 1) −
P(k − 1)φ(k)φT(k)P(k − 1)

λμ(ε(k) ) + φT(k)P(k − 1)φ(k)

]

(57)  

θ̂(k) = θ̂(k − 1) + P(k)φ(k)
ε(k)

μ(ε(k) ) (58) 

The above (56)-(58) coincides with the IV scheme (15)–(17), where the auxiliary variable is η(k) = φ(k)/μ(ε(k)) and not η(k) =

φ(k)/ε(k). 
Principles of practical initialization of algorithm (56)-(58) are described in Section 3. 
In conclusion, it is worth mentioning here the basic advantages of smooth execution of the LA strategy. First, in the iterative scheme 

46–48 we overcome the problem of divisors close to zero (|ê [r](l)| ≈ 0) at no cost, because the applied error shaping factor μ(e) always 
remains positive (since μ(0) = α− 1). Second, the smooth LA functional represented by the sum of strictly convex profile functions f(e) is 
also strictly convex, which guarantees that (37) has a unique minimum. Third, the calculation of μ(e) = e/tanh(αe) based on the power 
series expansions (49) is numerically safe (i.e. does not require division by small numbers). 

It is worth adding that the primary iterative procedure LA (24)-(26) has already been shown to minimize the original absolute 
deviation quality factor (Appendix A). Unfortunately, an analogous rigorous proof for the iterative SLA algorithm (46)-(48) cannot yet 
be provided. On the other hand, the iterative implementation of the SLA algorithm (46)-(48) with a sufficiently large tuning parameter 
α is actually numerically ’very close’ to the primary LA implementation (see Figs. 2 and 3). Hence, one can derive a practically justified 
belief that the smooth LA method also converges. 

5. Alternative approaches to LA estimation 

In practical situations, linear programming methods (simplex) are usually the first choice for optimizing an ‘analytically difficult’ 
functional [20]. Still, adapting such procedures to support the non-linear index (18) requires the implementation of additional var
iables υ(l), such that |y(l) − φT(l)θ| ≤ υ(l). J(θ) = υ(1) + ⋯ + υ(k) is apt for simplex minimization under the linear constraints − υ(l) +
φT(l)θ ≤ y(l) and − υ(l) − φT(l)θ ≤ − y(l). 

This approach is rather impractical for several reasons. First, a large number of measurements (k = 100, see Section 4, part A) 
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involves the use of (k) new variables and at least (2 × k) constraints. Thus, even when we identify only a few parameters (6 or 4, see 
Section 6), the appearance of many additional variables radically increases the computational effort. 

Secondly, in the worst case of the exponential complexity of the simplex scheme, the data processing time can be really long (up to 
30 times longer compared to the execution time of the LA procedure). As a result, it is unrealistic to attempt to run the simplex routine 
on-line (as can be the case with LA and SLA). 

With this in mind, we attempt an instructive comparison of the smoothed LA procedure with the Gauss-Newton (gradient descent) 
algorithm adapted to minimize the smooth LA criterion. By comparing the important properties of the considered estimators (e.g. 
“information content” expressed in the Hessian matrices), we show the relevance of the SLA approach. Besides, we show the Huber’s 
loss function as an alternative to our smooth approximation (38). 

Therefore, against the background of the disadvantages of the classical concept, the proposed SLA estimation method shows its 
strong advantages. 

5.1. Gauss-Newton optimization 

From a theoretical point of view, it is instructive that the improved/smooth iterative method LA (46)-(48) can be related to the 
known Gauss-Newton (GN) optimization algorithm. This classical steepest descent scheme, which uses the gradient ∇θ and Hessian ∇2

θ 
of the fundamental criterion function I(θ), is given by (with r = 0, 1,⋯) 

θ̂[r+1] = θ̂[r] +
{[

∇2
θI(θ)

]− 1
[ − ∇θI(θ) ]

} ⃒
⃒
⃒

θ=θ̂[r]
(59) 

Theoretically, the criterion I(θ) present in (59) can take quite any form, such as those used above: I(θ), J(θ) or J̃(θ). Of course, 
applying the GN method to the square index (4) is pointless, because by definition formula (59) simply coincides with the exact LS 
solution (6) after one iteration. On the other hand, in the case of the basic criterion LA (18), the direct application of (59) is unrealistic, 
because it is impossible to determine the derivative of the sign function (as we obtain an impermissible Dirac function in the Hessian). 

Fortunately, the gradient and Hessian can be determined analytically for the smooth criterion LA (37). The resulting GN formula 
with I(θ) = J̃(θ) is 

θ̂[r+1] = θ̂[r] + [HGN(k) ]− 1ψ(k) (60) 

On the other hand, the iterative procedure of SLA (46)-(48) with shaping factor (49) can be shown as 

θ̂[r+1] = θ̂[r] + [HSLA(k) ]− 1ψ(k) (61)  

Using (39)-(40), the Hessian matrices can be given as 

HGN(k) =
∑k

l=1
λk− lφ(l)φT(l)

α
cosh2(αêr(l) )

(62)  

HSLA(k) =
∑k

l=1
λk− lφ(l)φT(l)

tanh
(
αê[r](l)

)

ê[r](l)
(63)  

while the gradient component ′ − ψ(k)′ is identical in both formulas (60) and (61) and 

ψ(k) =
∑k

l=1
λk− lφ(l) tanh

(
αê[r]

(l)
)

(64) 

Note that both the GN and SLA algorithms have the same search direction (64), while the gain terms (i.e. inverted Hessian matrices) 
are apparently different. It is easy to check that for errors close to zero (e ≈ 0) quantities (62) and (63) are practically equivalent: 
tanh(αe)/e ≈ α/cosh2(αe) ≈ α. As a result, for small errors the Hessian matrices are also equal (HGN(k) ≈ HSLA(k)), so both solutions (60) 
and (61) converge. 

However, there are some indications that the SLA scheme is superior to GN. This conclusion can be reached by comparing the 
square forms of the corresponding Hessian matrices. Since Hessian has a sense of information matrix (see the explanatory discussion in 
Section 2), we can evaluate these solutions in terms of related ’information content’. Equivalently, by comparing the inverse matrices 
(interpreted as covariance matrices F(k) = H− 1(k)), we can confront the corresponding dispersion of estimates. 

For this purpose, using (62) and (63), the corresponding quadratic forms (with a compatible vector ‖v‖ ∕= 0) can be represented as 

vT[HGN(k) ]v =
∑k

l=1
λk− l[vTφ(l)

]2 α
cosh2(αêr(l) )

(65)  

vT[HSLA(k) ]v =
∑k

l=1
λk− l[vTφ(l)

]2tanh
(
αê[r](l)

)

ê[r](l)
(66) 

Based on the following easily verifiable relationships 
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tanh(αe)
e

>
α

cosh2(αe)
for e ∕= 0

tanh(αe)
e

≈
α

cosh2(αe)
≈ α for e ≈ 0

(67)  

we conclude that in the sense of positive definiteness of the appropriate information matrices H(k) and the covariance matrices F(k) =
H− 1(k) the following occurs: 

HSLA(k) ≥ HGN(k) (68)  

FSLA(k) ≤ FGN(k) (69)  

The above clearly proves the superiority of the SLA procedure (61) over the GN version (60). 
Notably, for large α, the SLA cost (37) can match LA (18) well enough, so the convergence theorem (Appendix A) is likely to hold 

also for the smoothed LA estimator (46)-(48). It should also be noted that there is no such guarantee for the GN approach, where 
convergence is only ensured provided that the initial value of θ is ’close enough’ to the actual minimum. 

5.2. Application of Huber’s loss function 

In an alternative concept of adapting the gradient routine to minimize the piecewise linear criterion (18), the Huber loss function 
(HL) can be applied [21]. Then such a redefined LA indicator can be presented as 

I(θ) =
∑k

l=1
γ(l)ℏ(e(l) ) =

∑k

l=1
λk− lℏ

(
y(l) − φT(l)θ

)
(70)  

where the cost profile function takes the Huber form 

ℏ(e) =
{

0.5e2 for |e| ≤ ρ
ρ ( |e| − 0.5ρ ) for |e| > ρ (71) 

On the one hand, the above Huber loss function (locally quadratic in the ρ-neighborhood of the minimum of (71)) eliminates the 
non-differentiable kink points of the modified criterion (70). 

On the other hand, as this function is linear outside the user-defined “shaping interval” [ − ρ , ρ], criterion (70) must remain weakly 
convex. Thus, unlike with the unimodal SLA functional (37), the Huber-based index (70) may result in the so-called ’flat minima’. 

Moreover, minimizing the absolute deviation index based on the Huber approximation is inconvenient. Strictly speaking, the 
Gauss-Newton scheme based on the Huber criterion (70) leads to 

θ̂[r+1] = θ̂[r+1] + [HHL(k)]− 1ϛ(k) (72)  

HHL(k) =
∑k

l=1
λk− lφ(l)φT(l)ℏ’’( e[r](l)

)
(73)  

ϛ(k) =
∑k

l=1
λk− lφ(l)ℏ′( ê [r]

(l)
)

(74)  

Unfortunately, the derivative of the spline function (71) has undesirable, non-differentiable kink points at the ends of the shaping 
interval [ − ρ , ρ] and in the middle of this interval it has ℏ′(e) = e (with the tangent equal to one), and some second derivative ℏ″(e) of 
the function (71), while in any reliable approximation of the sign function this tangent (slope) should be as large as possible (Fig. 1). 

To overcome this issue, paradoxically, we should use a specific smooth and classically differentiable function that is another 
approximation of the ‘problematically smooth’ Huber loss profile. Bearing in mind this clear weakness of the implementation of the 
Huber estimator, one can appreciate the appropriateness of (39) used in the SLA method (46)-(48) discussed here. 

As mentioned, the simplex method has exponential complexity. Batch methods (LS, LA, SLA, GN) are characterized by complexity 
O(n3), which results from the applied matrix inversion. In turn, the recursive algorithms (LS, LA and SLA) have complexity O(n2). 

In the next section, the iterative and recursive LA methods discussed will be shown in action. 

5.3. Solutions based on machine learning 

Of the many effective algorithms often considered when solving optimization problems (such as estimating system parameters), the 
expectation minimization (EM) procedure is very effective when identifying systems based on an incomplete measurement set (with 
missing data). However, just like simplex and Gauss-Newton schemes, this procedure is also only off-line. In addition, the rate of 
convergence is very low, especially for large data sets. In contrast, our LA/SLA procedures can be implemented in a recursive 
(approximate) format on-line. These procedures also have the unique feature of high insensitivity to destructive measurement errors 
(which can be observed both in the case of ‘isolated’ sporadic outliers and the entire sequence of such measuring errors). 

In addition, possible implementation of the EM algorithm for processing data contaminated with outliers is quite problematic, 
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because it would require detection, isolation and elimination of all erroneous measurements from the data set before running the EM 
procedure. Therefore, the EM solution in the case of identification including outliers does not constitute any special competition or 
counterweight to the approach (S)LA. 

The Alternating Direction Multiplier Method (ADMM) is a machine learning procedure (often considered a more efficient version of 
the stochastic gradient descent algorithm). On the one hand, ADMM is fast and easy to implement. On the other hand, the method is not 
always convergent. Whereas, the LA-iterative procedure guarantees convergence while minimizing the underlying quality indicator 
with the nature of ‘absolute deviation’ (the proof is in the appendix). 

Undoubtedly, ADMM is practical, effective and worth your attention. However, we focus our research on analytical methods, for 
which you can mathematically demonstrate the convergence or asymptotic behavior. We value modern optimization methods and use 
them in the evolutionary optimization of multi-criteria in multidimensional parameters and when designing control and diagnostic 
systems. However, in this work we want to maintain the concise and consistency of the theoretical and analytical content provided, 
without mixing various areas (i.e. analytical approaches and machine learning techniques). 

6. Simulation experiments 

One of the basic advantages of the LA method is its insensitivity to large measurement errors, called outliers. Thus, in this section 
we intend to demonstrate this unique property of LA and its methodological advantages over the classical LS approach. In the literature 
in this field, you can find practical examples demonstrating the claimed properties of the basic LA procedures [13,15]). The numerical 
tests included below illustrate the use of smoothed LA estimators to identify various regression models in the presence of destructive 
errors in processed I/O data (in supervisory or automation systems). The iterative LA algorithm was used for polynomial approxi
mation of measurement data, while tracking the parameters of a non-stationary system was performed with the recursive LA method. 

6.1. Polynomial signal reconstruction 

Among the various tasks considered in industrial diagnostics, polynomial reconstruction of measurement signals based on some
times unreliable records of sampled data is used. Determining the Newton-Lagrange interpolation polynomial seems like a simple 
solution, but it can end in failure when processing infected measurement data. Moreover, the resulting polynomial may oscillate 
unacceptably between the interpolation nodes, which in practice disqualifies this type of data reconstruction. The polynomial degree 
equal to the number of nodes (minus 1) is also impractical. Therefore, a low-degree polynomial approximation of measurements is 
usually more useful. 

Considering the polynomial of degree n 

χ(t) = c0 + c1t + c2t2 + ⋯ + cntn (75)  

at discrete moments of time (t = lT), a classical regression model [13] can be used as 

χ(l) = φT(l)θ + e(l) (76)  

φ(l) =
[
1 lT (lT)2 ⋯ (lT)n ]T

(77)  

θ = [c0 c1 c2 ⋯ cn]
T (78)  

with the regression vector φ(l) containing deterministic quantities (successive powers of the discrete-time variable (lT) and the vector θ 
holding the coefficients of polynomial (75). 

In the test, we reconstructed the polynomial (75) of the fifth degree (n = 5), using the following continuous signal as the primary 
data source 

y(t) = Ωexp( − ζt)sin(ωt) (79)  

parameterized with Ω = 15, ζ = 1.5 and ω = 6.4 rad/s. 
With a sampling period of T = 0.01 s, a sequence of one hundred discrete measurements was recorded: y(l) = y(t)|t=lT, l = 1⋯k 

(k = 100). To make the test realistic, the quantization effect of the AD converter was simulated using additive white noise w(l) with a 

Table 1 
Estimating the Parameters of an Approximating Polynomial using four Methods.   

LS SLA LA simplex 

c0  –0.5753  –0.7214  –0.7347  –0.7317 
c1  151.4144  123.8066  123.9808  123.8682 
c2  –844.3762  –411.6575  –413.9981  –412.9612 
c3  1805.7320  308.3843  316.6720  313.5116 
c4  –1767.9299  115.5361  104.9884  108.7346 
c5  658.1648  –135.1215  –130.6854  –132.2009  

J. Kozłowski and Z. Kowalczuk                                                                                                                                                                                     

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Mechanical Systems and Signal Processing 216 (2024) 111455

13

uniform distribution and variance σ2
w = 10− 4, which results in 

χ(l) = y(l)+w(l) (80) 

It was assumed that large errors in the processed signal can be imitated by the phenomenon of loss of measurement data. Thus, the 
correct values of y(l), obtained at sampling moments l = 25⋯34 and l = 57⋯66, were replaced with zeros, which is equal to the loss of 
analog data in two time intervals of 0.1 s. 

The batch estimate of θ was obtained using the LS algorithm (6) and the iterative SLA procedure (46)-(48) with α = 20 and Δmin =

10− 3. In this stationary case, exponential forgetting was disabled in both algorithms (λ = 1). 
The estimated coefficients (78) are given in Table 1. The LS and SLA reconstructions of the signal (79) observed according to the 

polynomial (75) are shown in Fig. 4. The stopping condition (27) of the SLA procedure worked after 13 iterations. 
In the case under consideration, it is easy to provide mechanical motivation for the proposed polynomial approximation of an 

oscillating signal (79). Such a case can be used for reliable diagnostics of the vehicle at general car diagnostic stations to check the 
quality of mechanical suspension. In a typical diagnostic procedure, the tested wheel is first subjected to vibrations. Then the vibration 
platform on which the wheel is placed is blocked, the resulting exponentially-decaying oscillation signal (representing the free 
response of the suspension) is recorded and evaluated for the efficiency of the suspension components (i.e. spring and shock absorber – 
Fig. 5). Once a polynomial model (75) approximating the oscillatory signal has been identified, the actual ‘suspension parameters’ ω, ζ, 
and Ω can be reliably reproduced from the appropriate analytical formulas. Namely, the zero crossing points (t1, χ(t1) = 0; t2, χ(t2) =

0) and the extreme values (tmin, χ(tmin); tmax, χ(tmax)) can be established by numerically solving the algebraic equations: χ(t) =
c0 +c1t+c2t2 +c3t3 +c4t4 +c5t5 = 0 and dχ(t)/dt = c1 + 2c2t + 3c3t2 + 4c4t3 + 5c5t4 = 0. Hence, the desired ‘suspension parameters’ 
can be determined as: ω = π/|t2 − t1|, Γ = ln[sin(ωtmin)/sin(ωtmax)], ℵ = ln[χ(tmin)/χ(tmax)], ζ = (Γ − ℵ)/(tmin − tmax) and Ω =

χ(tmax)/[exp( − ζtmax)sin(ωtmax)]. 
The obtained suspension parameters (TABLE 2) can be used to obtain the target values: Hooke’s spring coefficient (K) of the spring 

and Stokes’ drag/resistance coefficient (B) of the shock absorber (Fig. 5). 
Given the effectiveness of this approach, direct assessment of diagnostic parameters (ω, ζ, Ω) from raw sample data may prove 

surprisingly ineffective. This is expected because trying to measure the period of damped oscillations ω based on the detection of zero 
crossings is rather unreliable, especially when the sampled data is contaminated with additive noise (‘environmental’ disturbances or 
unavoidable quantization noise). The assessment of the remaining constants (ζ, Ω) will also be a big problem if we do not use a reliable 
model of the recorded process y(t). 

Other interesting examples, such as fault-insensitive dynamic weighing of trucks [13] and practical diagnostics of vehicle me
chanical parts [15] are available in the literature. 

The test realistically illustrates the impact of large measurement errors on the accuracy of parameter estimation. As expected, the 
LS estimator is very sensitive to simulated large errors, while the SLA algorithm is extremely insensitive to unwanted events such as 
measurement outliers or data loss. 

Obviously, since the LS method fails to identify the system in the presence of destructive faults, we implemented the original (not 
smoothed) LA method (24)-(26) and the simplex procedure (Section 5) to solve the signal reconstruction problem. As we expected, the 
SLA, LA, and simplex scores were actually very similar (Table 1). This is because for the applied tuning factor α = 20, which is quite a 
large value of this ‘smoothing parameter’, the smooth approximation (41) of the error shaping factor μ(e) (Fig. 3) used in the SLA 

Fig. 4. Measurement data signal (thick line) with data corruption/loss (within vertical lines) and its off-line/batch LS and SLA reconstructions 
shown as solid blue and red lines, respectively. 
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procedure (46)-(48) is sufficiently close to the pure absolute value (|e|) used in the simple LA procedure (24)-(26). This means that both 
SLA and LA schemes should also behave very similarly. 

Additionally, we verified the operation of the numerical simplex procedure (described in Section 5) implemented to minimize the 
LA index (18) (the whole thing can be referred to as ‘simplex LA’, i.e. LA estimation in the simplex sense). Also in this case, the obtained 
estimates did not differ significantly from the LA and SLA results (Table 1). However, it should be emphasized that the LA/SLA 
procedures have the same complexity O(n3), while the simplex scheme is characterized by (in the worst case) exponential complexity. 

It is obvious that the choice of the polynomial degree (n) affects the accuracy of the resulting polynomial reconstruction of the 
underlying signal (79). On the other hand, it is best to implement models (75) with as few parameters as possible. To resolve this trade- 
off, the polynomials χ(t) of different degrees were fitted to the undisturbed signal y(t). Taking into account that the extreme values of y 
(t) are ymax and ymin, the relative error eχ = max|y(t) − χ(t)|/(ymax − ymin) was considered a reasonable measure for the effective 
evaluation of a polynomial and its degree. Preferring the lowest possible degree of the polynomial and considering the value of eχ ≈ 5% 
as acceptable, we decided to assume n = 5 (which gives the relative error eχ ≈ 4.26%). 

6.2. Identification of a Non-Stationary system 

In supervisory and control systems, on-line monitoring of the evolution of industrial processes is needed. This requires adopting an 
appropriate model of the supervised process. The parameters of this model are then assessed using appropriate procedures. Diagnostic 
information can be derived from the analysis of estimated parameters or other aggregate measures (e.g. spectral density function or 
cumulative periodogram). 

To illustrate such a situation, the recursive SLA algorithm was used to identify on-line the following autoregressive discrete-time 
object dynamics model: 

y(l) = −
∑n

i=1
aiy(l − i)+

∑m

i=1
biu(l − i)+ e(l) (81)  

where e(l) is the error of the equation, u(l) and y(l) are the sampled input and output, respectively. As before (80), contamination of the 
output with white noise w(l) of uniform distribution and variance σ2

w = 10− 2 was taken into account. 
The standard form of regression [14] for (81) is 

χ(l) = φT(l)θ + e(l) (82)  

φ(l) = [ − χ(l − 1) ⋯ − χ(l − n) u(l − 1) ⋯ u(l − m) ]
T (83)  

θ = [a1 ⋯ an b1 ⋯ bm]
T (84)  

where the parameter vector θ contains the model coefficients, and the delayed samples of the input and output signals are stored in the 
regression vector φ(l). 

The following deterministic excitation was used: 

u(l) = Ω1sin(ω1l)+Ω2sin(ω2l)+Ω3sin(ω3l) (85)  

with amplitudes Ω1 = Ω2 = Ω3 = 25 and frequencies ω1 = 0.3, ω2 = 0.7, ω3 = 0.9. The non-stationary behavior of the observed 

Fig. 5. Mechanical suspension of a vehicle, where the reconstructed signaly represents a system free response (79).  

Table 2 
Reconstruction of Continuous-Signal Parameters using the LS and SLA 
Methods.   

LS SLA 

ω (6.4)  6.53  6.43 
ζ (1.5)  1.17  1.46 
Ω (15)  12.22  14.23  
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system (81) with low order (n = 2, m = 2) and three constants (a2 = 0.3, b1 = 1.0, b2 = − 0.9) was associated with a gradual change 
of only one parameter a1 = − 0.2⋯ − 0.4 in the time interval l = 50⋯250. The measurements sequence y(l) recorded (with noise) at the 
computational moments l = 1⋯k (k = 300) was then locally reset to zero y(l) = 0 on two intervals (for l = 95⋯99 and for l =

195⋯199). 
The modeled system (81) was identified using the recursive procedures LS (15)-(17) and SLA (56)-(58) with α = 20. The weighting 

mechanism (λ = 0.98) was used to track the variability of the non-stationary dynamics parameters. 
The LS algorithm was initiated using the diagonal matrix P(0) = diag

[
105 ⋯ 105], while the SLA routine was activated at time l =

20 based on the LS results (see description in Section 3). The quality of estimation is illustrated in Figs. 6-7. 
As expected, the weighting mechanism serves well to identify non-stationary dynamics, but LS shows strong sensitivity to occa

sional outliers, while SLA has great robustness to large errors. It can therefore be seen that, despite its approximate nature, the 
recursive SLA procedure can be recommended as a reliable tool for identifying dynamic systems on-line without additional measures 
applied to the case of outliers. 

Additionally, both experiments presented in this section were performed for different levels of additive measurement noise. The 
simulated noise here mainly represents quantization effects occurring in the sampling devices. Since such devices (AD converters) 
perform rounding-off on sampled data with different values, the resulting residual ‘quantization noise’ will certainly be uniformly 
distributed zero-mean white noise. Bearing in mind that by increasing the resolution of the converters, the variance of this noise 
(proportional to the square of the quantization step) can be dramatically reduced, we also devoted some attention to the problems 
caused by additive measurement noise. 

However, in order to numerically analyze the impact of quantization noise on the estimation results, we repeated the simulation 
tests with a significantly increased (even one hundred times) level of noise variance σ2

w. It was observed that the SLA procedure remains 
insensitive to such simulated outliers. At the same time, the accuracy of SLA estimation suffered from the inevitably increased ‘local 
variance’ of individual estimates, which (to some extent) reduced the quality of parametric identification under these conditions. 

It is obvious that we can improve the estimation accuracy by increasing the AD resolution. Moreover, the concept of instrumental 
variables is an effective tool for improving consistency in estimation (as suggested in Section 2). 

The basic property of the studied batch and recursive SLA estimators is the desired insensitivity to large measurement errors. 
Important issues of polynomial signal reconstruction and dynamic system identification have been deliberately addressed to 
demonstrate the practical attractiveness of the method. Other practical implementations of the LA approach can be found in the 
literature [13,22]. 

7. Conclusion 

In this study, practical estimation algorithms in the sense of the least sum of absolute deviations have been discussed and verified in 
practical tests. From a theoretical point of view, it is important that, thanks to the demonstrated convergence of the LA estimator 
(Appendix A), the concept of parametric estimation proposed here has a solid mathematical justification. 

In general, the analyzed LA estimators when confronted with LS procedures turn out to be exceptionally effective in identifying 
systems in the presence of destructive measurement errors (in the form of random outliers or other errors represented by sequences of 
erroneous or zero values in measurement records). Importantly, our recursive implementation of the LA and SLA methods is un
complicated and similar to the classical LS procedure, while the Gauss-Newton estimator can only be run off-line (with explicit matrix 
inversion). 

Fig. 6. Trajectories of the parameters of the non-stationary system (thin dotted lines) and the evolution of four LS estimates (solid lines), where the 
intervals with outliers are marked with dashed vertical lines. 
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The numerous simulation results mentioned and included in this article show that the practical forgetting mechanism used in the 
conventional realization of the weighted LS routine also works in the recursive implementation of the LA and SLA methods. 

7.1. Reported contribution 

The original modification of the primary iterative LA method based on the sigmoid function (39), resulting in the minimum 
uniqueness of the redefined (strictly convex) LA index (37), appears to be an innovative remedy to the problem of minimization of the 
primary LA criterion (18) with problematic non-differentiable ‘kink points’. 

The recursive implementations (34)-(36) and (56)-(58) of the weighted LA estimator, which can be run on-line, allow for reliable 
system identification irrespective of their approximate nature. Importantly, an interesting confrontation of the improved iterative LA 
procedure and the classical Gauss-Newton gradient algorithm (Section 5) proves the predominance of our innovative SLA solution over 
the standard Gauss-Newton implementation (i.e. in terms of positive definiteness of the information and covariance matrices). 

It is instructive from the interpretation point of view that the recursive LA procedures can be treated as particular realizations of the 
IV method (15)-(17) with the instrumental variable taking form of the regression vector modified using special factors (i.e. the profile 
functions of the prediction error, including the original absolute value function, as well as the shaping function (49)), used for the 
primary and smoothed LA realizations. It is also important that the proposed numerical evaluation (49) of the error shaping factor μ(e)
perfectly overcomes the problem of small divisors. 

The usefulness of the developed smooth LA concept is proved by means of simulation tests, in which the announced ‘genetic 
insensitivity’ to destructive faults (random outliers or sequences of faulty data) is evident. 

In practice, it may be useful to implement a complex iterative-recursive LA algorithm that uses both an iterative (precise) LA and 
recursive (approximate) LA schemes. This can be achieved by performing iterative processing of LA (24)-(26) between successive 
sampling moments. However, there is Hessian’s inversion in the iterative formula (24), which increases the processing time. To meet 
the time constraints of such an LA solution (i.e. stop iterations before the next sampling moment), one can relax the constraints 
imposed on the estimation accuracy (27) by increasing the threshold value Δmin. 

7.2. Further research 

From a scientific point of view, it is advisable to further develop the discussed error-insensitive methods and apply them in many 
areas, such as process supervision, adaptive filtering and intelligent control. 

1. Improved system identification, error tolerant and effective for ’highly non-stationary’ systems: To further immunize LA pro
cedures against additive high noise, it is practical to use dedicated, noise-free LA instruments strengthen by the instrumental 
variable method. Promising results can be found in [15,16]. Moreover, it is possible to reliably track systems with variable pa
rameters and ’strong non-stationarity’ by using the concept of parallel identification [23] based on LA/SLA estimators.  

2. Error-insensitive identification of non-trivial objects: In many practical situations, the superiority of continuous-time models over 
discrete-time ones is obvious, mainly because continuous-time models are physically motivated and thus retain the proper physical 
meaning of the identified parameters [5,8]. The tasks of identifying non-linear objects, infinite-dimensional models, or delay 
systems are considered to be complex technical challenges. There are many such practical or industrial examples available in the 

Fig. 7. Trajectories of the parameters of the non-stationary system (thin dotted lines) and the evolution of four SLA estimates (solid lines), where the 
intervals with outliers are marked with dashed vertical lines. 
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literature, which concern objects with static non-linearities [15,24], partial differential equations [25] and systems with unknown 
input delay [26,27].  

3. Modern methods of system identification: Currently, some non-classical solutions are also popular in the practical implementation 
of process parameter estimation. In general, these approaches can be derived from a large family of artificial intelligence methods 
such as genetic algorithms [28] and (deep) neural networks [29]. Some interesting implementations of this type can already be 
found in the literature (e.g. [30]). 
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Appendix A 

Convergence of the LA Algorithm 

A detailed proof of the convergence property can be found in [13]. Here we present the essence of analytical reasoning so as to draw 
constructive conclusions. 

A. Theorem: The sequence J[r] = J
(

θ̂[r]
)

of the LA functional (18) determined in the successive iterations along with the primary LA 

estimate (24)-(26) is decreasing (r = 0, 1, ⋯): J[r+1] < J[r]. 

B. Proof: As the sum of absolute values (18) is positive, the target inequality is equivalent to: 
(
J[r+1])2

<
(
J[r]
)2. 

The LA functional (18) can be shown as 

J(θ) =
∑k

l=1
γ(l)|e(l) | =

∑k

l=1
γ(l)
⃒
⃒χ(l) − φT(l)θ

⃒
⃒ (A.1)  

with the weighting mechanism γ(l) > 0 represented by any summable sequence (γ(1)+ γ(2)+ ⋯ < ∞), including the exponential 
function γ(l) = λk− l. The LA estimates for r = 0, 1, ⋯ that optimize (18) are 

θ̂[r+1] = θ̂[r] + [H(k) ]− 1ψ(k) (A.2)  

where the prediction error ê[r](l), the gradient ′ − ψ(k)′ and the Hessian H(k) are expressed as 

ê[r](l) = χ(l) − φT(l)θ̂[r] (A.3)  

H(k) =
∑k

l=1
γ(l)

φ(l)φT(l)
|ê[r](l)|

(A.4)  

ψ(k) =
∑k

l=1
γ(l)

φ(l)ê [r]
(l)

|ê [r]
(l)|

(A.5) 

Now assume that in subsequent iterations the prediction error is non-zero: ê[r]
(l) ∕= 0, for l = 1⋯k. This results in the positive 

definiteness of the Hessian H(k), where for any non-zero vector of compatible size (‖v‖ ∕= 0) 

vT[H(k) ]v =
∑k

l=1
γ(l)

[vTφ(l) ]2

|ê [r](l)|
> 0 (A.6) 

By introducing the covariance matrix F(k) = H− 1(k), formula (A.2) can be developed step by step as follows 

φT(l)θ̂[r+1] = φT(l)
[
θ̂[r] + F(k)ψ(k)

]
(A.7)  
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χ(l) − φT(l)θ̂ [r+1] = χ(l) − φT(l)
[
θ̂[r] + F(k)ψ(k)

]
(A.8)  

⃒
⃒ê [r+1](l)

⃒
⃒ =

⃒
⃒ê[r](l) − φT(l)F(k)ψ(k)

⃒
⃒ (A.9)  

∑k

l=1
γ(l)
⃒
⃒ê [r+1](l)

⃒
⃒ =

∑k

l=1
γ(l)
⃒
⃒ê[r](l) − φT(l)F(k)ψ(k)

⃒
⃒ (A.10) 

Using the simplifying notation J[r+1] = J
(

θ̂[r+1] ), we get 

J[r+1] =
∑k

l=1
γ(l)g(l)h(l) (A.11)  

g(l) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|ê [r]
(l)|

√

(A.12)  

h(l) =
⃒
⃒ê[r](l) − φT(l)F(k)ψ(k)|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|ê [r](l)|
√ (A.13)  

Then we apply the ’weighted’ Cauchy-Schwarz theorem (with the weighting sequence γ(l) > 0) 
[
∑k

l=1
γ(l)g(l)h(l)

]2

≤

[
∑k

l=1
γ(l)g2(l)

] [
∑k

l=1
γ(l)h2(l)

]

(A.14)  

Therefore, based on (A.11)-(A.13), the above (A.14) takes the form 

(
J[r+1])2

≤

[
∑k

l=1
γ(l)g2(l)

] [
∑k

l=1
γ(l)h2(l)

]

(A.15)  

Still, the expressions in parentheses can be shown as 
∑k

l=1
γ(l)g2(l) =

∑k

l=1
γ(l)
⃒
⃒ê[r]

(l)
⃒
⃒ = J[r] (A.16)  

∑k

l=1
γ(l)h2(l) =

∑k

l=1
γ(l)

[
ê[r](l) − φT(l)F(k)ψ(k)

]2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|ê[r](l)|
√ )

2  

=
∑k

l=1
γ(l)

(
ê [r](l)

)2

|ê [r](l)|
− 2

(
∑k

l=1
γ(l)

ê[r](l)φT(l)
|ê[r](l)|

)

F(k)ψ(k) +
∑k

l=1
γ(l)

[φT(l)F(k)ψ(k) ]2

|ê[r](l)|

=
∑k

l=1
γ(l)
⃒
⃒ê [r](l)

⃒
⃒ − 2

(
∑k

l=1
γ(l)

φ(l)ê[r](l)
|ê [r](l)|

)T

F(k)ψ(k) +
∑k

l=1
γ(l)

[
ψT(k)FT(k)φ(l)

]
[φT(l)F(k)ψ(k) ]

|ê [r](l)|

= J[r] − 2ψT(k)F(k)ψ(k) + ψT(l)FT(k)

(
∑k

l=1
γ(l)

φ(k)φT(l)
|ê[r](l)|

)

F(k)ψ(k)

= J[r] − 2ψT(k)F(k)ψ(k) + ψT(k)FT(k)F− 1(k)F(k)ψ(k) = J[r] − ψT(k)F(k)ψ(k) (A.17)  

The above transformations use the symmetry of the matrix F(k) and the product transposition property 

FT(k) = F(k) = H− 1(k) (A.18)  

φT(l)F(k)ψ(k) = ψT(k)FT(k)φ(l) (A.19) 

Based on (A.16)-(A.17), we get inequality (A.15) as 
(
J[r+1] )2

≤
(
J[r] )2

− J[r]ψT(k)F(k)ψ(k) (A.20)  

C. Discussion: Since the Hessian H(k) (i.e. the information matrix) is positive definite (A.6), its inverse F(k) = H− 1(k) (the covariance 
matrix) is also positive definite. Therefore, for a non-zero value of the gradient (‖ψ(k)‖ ∕= 0) we have ψT(k)F(k)ψ(k) > 0. Since the LA 
quality index is always positive (J[r] > 0), the term (− J[r]ψT(k)F(k)ψ(k)) in (A.20) is less than zero, so the target relation must be sharp: 
(
J[r+1])2

<
(
J[r]
)2. 
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In the case of zero gradient (‖ψ(k)‖ = 0) the LA algorithm (24)-(26) gives θ̂[r+1] = θ̂[r], then the iterations become inefficient 
(J[r+1] = J[r]), therefore the terminal condition (27) stops this loop with θ̂LA = θ̂[r]. This solves the problem of the (rather unlikely) ’flat 
minimum’ of the LA functional (18). 

The ’monotonic convergence’ theorem states that every descending sequence bounded from below converges. Bearing in mind that 
the sequence J[r] for r = 0, 1, ⋯ is decreasing and the values of index (18) are bounded from below (J[r] > 0), we conclude that the 
sequence J[r] is convergent. This proves that the iterative routine (24)-(26) minimizes the LA index (18). 

D. Comment: It should be recalled that in the basic LA procedure (24)-(26) the residual errors ̂e[r](l) for l = 1⋯k must be non-zero. In 
fact, the vanishing errors (|ê[r](l)| ≈ 0), inevitably leading to ’approximating zero’ divisors in H(k), are replaced by the threshold emin 
(see the discussion in Section 3). 

Yet, we would like to emphasize that using the smoothed LA method (46)-(48), which is based on the minimization of criterion 
(37), the problem of divisors close to zero naturally disappears, because for |ê[r](l)| ≈ 0 the error shaping factor μ(ê[r](l)) is always 
positive and never decreases below α− 1. 

Finally, regarding the SLA procedure, since in the case of large α both quality criteria LA (18) and SLA (37) are ’virtually identical’, 
there is a reasonable premise that the iterative SLA (46)-(48) also converges in light of the proof for the presented LA convergence. 
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