
IET Software

Review Article

Software development methodologies and
practices in start-ups

ISSN 1751-8806
Received on 12th July 2018
Revised 23rd July 2019
Accepted on 9th September 2019
E-First on 7th November 2019
doi: 10.1049/iet-sen.2018.5270
www.ietdl.org

Esubalew Workineh Tegegne1, Pertti Seppänen1, Muhammad Ovais Ahmad1,2,3
1M3S Research Unit, University of Oulu, P.O. Box 90570, Oulu, Finland
2Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden
3Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland

 E-mail: Ovais.Ahmad@oulu.fi

Abstract: Software start-ups are aiming to develop cutting-edge software products under highly uncertain conditions,
overcoming fast-growing markets under multiple influences. This study aims to identify and analyse the existing scientific
literature regarding software development methodologies and practices in software start-ups published between January 2006
and December 2017 using the systematic mapping study. The results identified 37 relevant primary studies out of 1982 papers.
To validate the results from the mapping study, an empirical study was based on the research data collected from 14 real-life
software start-ups located in Finland, Italy and Norway. The result shows that Agile and Lean start-up methodologies are the
most commonly used in software start-ups due to the flexible nature and easy tailoring. A total of 144 software development
work practices are extracted from the primary studies. This study contributes to the research in several ways: (i) provides state
of the art regarding software development methods and practices in software start-up contexts, (ii) reports commonly used
methods along with its benefits identified in primary studies and (iii) identifies opportunities for future software start-up research.

1 Introduction
In recent years, there is a significant increase in the number of
software start-ups around the globe. Start-ups are new phenomena
in the technology market, creating new businesses and jobs [1].
Technological advancements have brought an increased demand
for new software and services. According to Klotins et al. [2], such
advancement makes to establish new software companies and
exploit the technology. Software start-ups are playing an important
role in addressing the increasing demand for new software products
and services [2]. Many success stories surrounding the software
start-ups (i.e. Facebook, Instagram, Uber, Airbnb etc.) contribute to
the popularity of start-up phenomenon. These success stories are
used as a driving fuel in the software start-up environment.
However, despite these success stories, not all start-up companies
succeed [3–5]. According to Giardino et al. [6], 60% of the total
start-ups in the world do not survive the first 5 years from their
creation. This has led researchers to study various factors
contributing to succeeding or failing of software start-ups [4, 5, 7].
For example, a high failure rate among start-ups is due to lack of
resources, immaturity, multiple influences and dynamic
technologies. On the other hand, there are assumptions that
inadequate software development practices might be a significant
contributing factor for the high failure rates in start-ups [2]. Start-
up companies develop the software in a situation where resources

are very limited and practices are not specified by a prescriptive
methodology [7].

Despite the popularity of the start-up phenomenon, the existing
literature on software development activities in start-ups is scarce.
Few studies have identified, characterised and mapped software
development methods and practices in software start-ups [2, 7–9].
According to Klotins et al. [2], the existing knowledge about
software engineering practices is limited among the start-ups and
the existing body of knowledge is insufficient to support
engineering aspects in start-ups. The existing published studies [2,
7] on start-ups have limitations, as shown in Table 1.

The mapping study conducted by Paternoster et al. [7] has
identified, categorised and analysed 213 software development
work practices used in software start-up companies. Klotins et al.
[2] identified 54 software engineering practices in start-up
companies, which are mapped to the Software Engineering Body
of Knowledge (SWEBOK) knowledge areas [10]. However, both
studies [2, 7] have focused on development practices but did not
make a deeper analysis of development methodologies.

More recently, two literature reviews, Berg et al. [11] and
Klotins et al. [12], are published in the same vein. The Berg et al.
[11] mapping study observes how the software start-up research
has evolved compared to the software engineering knowledge areas
presented in SWEBOK. Berg et al. [11] primary studies were 74,
obtained from three databases naming Scopus, ISI Web of Science

Table 1 Comparison of last 6 years (2014–2019) literature reviews on software start-ups
Comparison
context

Paternoster et al. [7] Klotins et al. [2] Berg et al. [11] Klotins et al. [12] This study (2019)

purpose extract and analyse
software development
practices used in start-

ups

identify and categorise
software engineering

practices utilised in start-
ups and mapped to

SWEBOK

identifying change in
focus of research area
and thematic concepts

operating start-up
research

identify key knowledge
areas and opportunities

for further research

identify and analyse
software development
methods and practices

used in start-ups

years included 1994–2013 1994–2014 1994–2017 2001–2015 2006–2017
no. of primary
studies

43 14 74 88 37

sources scientific literature scientific literature scientific literature experience reports scientific literature

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

497

http://crossmark.crossref.org/dialog/?doi=10.1049%2Fiet-sen.2018.5270&domain=pdf&date_stamp=2019-12-01

and Engineering Village Compendex. The study focus was to map
the software start-up literature in the light of SWEBOK, the
context of start-ups and inferring applicability of empirical findings
as well as to identify the research gaps. Whereas Klotins et al. [12]
investigated on how the software engineering is applied in a start-
up context with a focus to identify key knowledge areas and
opportunities for further research. The data source for Klotins et al.
[12] was an experience report from CB Insights website, which is
‘global network of executives and startups…’ [13, 14]. A total of
88 experienced company reports were analysed to identify various
software engineering knowledge areas. Both reviews [11, 12]
provide a high level of categorisation of the start-up process and
practices dominantly in the light of SWEBOK knowledge areas.
Further, 5 years ago, two studies [2, 7] were conducted; however,
the start-up environment is fast changing and is dynamic, which
needs up-to-date research results. This study aims at filling the gap
in the research with a clear focus on development methods,
processes and practices in start-ups. Different from the previous
mapping and systematic literature reviews [2, 7, 11, 12], this study
will be performed as a complementing study conducted by
Paternoster et al. [7].

This study investigates the software development methods and
practices used in start-ups. The study provides state of art regarding
software start-ups, synthesis of adopted development methods, its
use benefits and provides direction for future research.

The paper is structured as follows: Section 2 describes the
background and related work with this study; Section 3 discusses
the systematic mapping study (SMS) process (e.g. planning,
conducting, reporting) followed to perform the review and the
empirical study. The results are presented in Section 4. Section 5
discusses the answers to the research questions; and Section 6
provides a conclusion to the study and future directions.

2 Background
Start-ups are described as a human institution created to build a
new product under conditions of extreme uncertainty [15]. Blank
[3] defines a start-up as a temporary organisation that creates high-
tech innovative products and has no accumulated experience in the
development activities. A start-up is a company that is challenged
by immaturity, severe resource limitations, multiple influences
dynamic technologies and markets [8].

The term ‘Software Startup’ or ‘software package startups’ was
first introduced by Carmel [16]. Software start-ups are young
package firms that create new niche products under a short period
of time [16]. Since 1994 various other definitions for the term
‘Software Startups’ are emerged in the field [8, 9, 17]. Coleman
and O'Connor [9] describe software start-ups as unique companies
that develop software through various processes and without a
prescribed methodology. On the other hand, Sutton [8]
characterised the software start-ups by the challenge they face as:

• little or no operating history – software start-ups have little-
accumulated experience in development processes and
organisation management;

• young or immature compared to more established and mature
companies;

• limited resources: scarcity in finance, time, human resources and
market; typically focus on delivering and promoting the product,
and building up customers;

• multiple influences: under pressure from investors, customers,
partners and competitors in decision-making process;

• dynamic technologies and markets: newness of software
companies often require to develop or operate with disruptive
technologies to enter into a high-potential target market.

Therefore, many researchers shared the above characterisation of
software start-ups [7]. From a business model perspective, there are
two kinds of software start-ups: product-oriented and project-
oriented start-ups. The product-oriented software start-ups develop
market and sell their own product, whereas the project-oriented
software start-ups do not develop their own product, instead they
serve their customers by building products for them [18]. In earlier

times, the development of software as a service or a product started
as a chaotic activity often referred to as ‘code and fix’. Software
was written with a little planning, and the design of the product
was set by many short-term decisions [19]. As an alternative to this
approach, a methodology was introduced. A development
methodology imposes a disciplined process upon software
development with the aim of making software development more
predictable and more efficient [19]. A software development
methodology is a set of activities, practices or processes that an
organisation uses to develop and maintain the software and the
associated products (e.g. project plans, design documents, code,
test cases and user manuals) [20]. Chapman [21] defined the
software development methodology as a documented collection of
policies, process disciplines and procedures exercised by a
development team or an organisation to practice software
engineering activities and software development practices that a
methodology defines to be used in the process [22].

It is important to note that software development methodology
does not simply imply the development of software code, it covers
the entire process involved in developing and maintaining a
software product [21]. However, the process is not a rigid
instruction on how to develop software. Rather, it is a flexible
approach that enables the software team or companies to do the
work by choosing the appropriate set of work actions and tasks
[20]. As a result, software companies are able to deliver a software
product in a timely manner and with sufficient product quality to
satisfy their customers. In the past, there had been a number of
different methodologies designed to help companies manage their
software development activities. However, no single approach has
achieved a generalised acceptance, as there is a number of other
contextual and situational factors that influence the choice of
methodologies and processes [23].

The start-ups develop innovative software and services without
strictly following any specific development methodology or
practices [7]. However, the existing studies highlighted that various
development methods and practices are partially used in software
start-ups, such as Agile methods, Lean start-up [2, 7, 11, 15, 22].
According to Abrahamsson [22] the Agile methods emphasise on
the relationship and commonality of software developers and the
human role reflected in the contracts, as opposed to
institutionalised processes and development tools. Agile methods
also manifest itself in close team and working environment
relationships, as well as other procedures boosting the team spirit
[22]. Scrum is a common example of the Agile methodology. The
Agile method is used as a project management approach in the
context of this publication. Lean start-up method is a product
development process, which combines the business-driven
hypothesis experimentation and iterative product releases [15].
According to Ries [15], the Lean start-up method enables to build a
product iteratively based on the needs of early customers that could
lead to reduced market risks such as expensive product launches
and failures.

In general, development methods in start-ups have been
neglected in the studies or are less familiar [6–8]. In 2015, Klotins
et al. [2] conducted a study to identify and categorise software
engineering knowledge areas utilised in start-ups to map out the
state of art. Klotins et al. [2] identified 54 software development
practices from 14 primary studies and categorised them into 11
main knowledge areas from SWEBOK. The study highlighted that
existing research does not provide reliable support for software
engineering in any phase of a start-up life cycle. Klotins et al. [12]
extend their previous study [2] by conducting a multi-vocal
exploratory study of 88 start-up experience reports. The study
shows that most engineering challenges in start-ups stem from
inadequacies in requirements engineering and stress that more
research on adaptation of established practices, and validation of
new start-up specific practices is needed [12].

Recently, Berg et al. [11] conducted an extensive mapping
study on software start-up engineering covering the literature from
three databases (i.e. Scopus, ISI Web of Science and Engineering
Village Compendex) from 1994 to 2017. The study provides a
comprehensive view of software start-ups for software engineering
researchers and proposes that future research should focus on start-

498 IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

up evolution models and human aspects. Paternoster et al. [7]
provide the state of the art and evidence on software development
practices used in start-ups. The study claims that software
development work practices are chosen opportunistically,
practiced in a way to provide value under constrains imposed by
the startup context [7]. However, the study reported that there is
lack of highlight quality literature and proposed investigation on
identifying the software development strategies engineered by
practitioners.

The existing studies cover a wide range of areas related to
development practices in start-ups [2, 6–8, 11, 12]. Additionally,
there is limited fresh knowledge regarding development
methodologies in the start-up world. However, little coverage is
given in investigating and identifying software development
methodologies used by start-ups. This research gap is clearly
highlighted by Paternoster et al. [7]. This knowledge gap motivated
this study. We conducted systematic mapping study along with
empirical research with a focus on software development
methodologies and practices in the start-up context.

3 Research methodology
3.1 Systematic mapping study

We followed the established SMS guidelines and procedures of
Kitchenham and Charters [24]. The SMS process is illustrated in
Fig. 1, which consists of three main phases: planning (four steps),
conducting (five steps) and documenting (three steps). In the
following section, we will discuss these phases in detail.

3.1.1 Planning the review: The planning phase comprises four
steps. First, motivation for conducting this SMS is to provide the
start of the art related to software development methods and
practices used in the context of start-ups. Further, to collect such
methods that benefit in the software start-up context. The following
research questions drive this SMS:

• RQ1. What is currently known about the software development
methodologies and practices in software start-ups?

• RQ2. What are the claimed benefits of software development
methods in the software start-up literature?

• RQ3. What are the software development methods and practices
used in software start-ups?

RQ1 is designed with the intent to identify empirical evidence
regarding software development methodologies in start-ups in
existing scientific literature. This will help researchers and
practitioners to shed light on the use of development
methodologies in software context and open an avenue for future
research. Then, explore on what research methods are used in
software start-up papers and their quality. Further, RQ1 focused to
identify software development practices in software start-ups.

Those studies were eligible for inclusion, which present
empirical data on software development practices in software start-
ups. The inclusion criteria used were:

• The study should be written in English and published between
January 2006 and December 2017.

• The study directly answers one or more of the research
questions of this study.

• The study should have a clear focus on software start-ups.
• The study should be available in full text.
• The study can be in the form of systematic mapping study,

experience report, applied engineering practices, development
models or lessons learned.

Studies were excluded from this SMS if their focus was
specifically not on development methods and practices in software
start-ups or if they did not provide academic rigour or industry
relevance:

• duplicate articles;
• studies not clearly focused on software start-ups nor

development methods and practices in software start-ups (non-
software companies: biotech, manufacturing etc.);

• studies related to technicalities of start-ups (funding, algorithms,
programming languages etc.);

• not peer-reviewed scientific papers (i.e. books, blog posts,
presentations etc.).

3.1.2 Conduct the review: Pilot search is an important part of
conducting SMS [24], which provides an overall idea about
available literature. We use Google Scholar for pilot search because
it yields diverse and unbiased literature. The initial keywords,
startups, software, development, are used in various combinations.
The pilot helped to identify that the existing studies use various
synonyms for software start-ups i.e. software start-up, high-tech
venture, high-tech start-up, IT startup, Lean startup etc. The SMS
search strings are structured according to guidelines proposed by
Kitchenham and Charters [24] (see Table 2).

Search strings are applied to all the selected data sources. The
example of search strings used is as follows:

(‘early-stage firm’ OR ‘early-stage company’ OR ‘high-tech
venture’ OR ‘high-tech ventures’ OR ‘start-up company’ OR
‘start-up companies’ OR ‘high-tech start-up’ OR ‘high-tech start-
ups’ OR ‘high-tech startups’ OR ‘high-tech startup’ OR ‘startup
company’ OR ‘startup companies’ OR ‘software startup’ OR ‘lean
startup’ OR ‘lean start-up’ OR ‘lean startups’ OR ‘software
startups’ OR ‘IT start-ups’ OR ‘IT start-up’ OR ‘IT startup’ OR ‘IT
startups’ OR ‘software start-up’ OR ‘software start-ups’ OR
‘software product startup’ OR ‘software product startups’ OR
‘software start up’ OR ‘web startup’ OR ‘web start-up’ OR ‘web

Fig. 1  Systematic mapping process

Table 2 Search strings
Criteria Core concept Related words
population software start-up start-up, software start-up, software

start-up, high-tech venture, high-tech
start-up, IT start-up, lean start-up

intervention software
development

software development, engineering,
implementation, build

comparison practice practice, methodology, method,
process, strategy, approach, model

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

499

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

startups’ OR ‘web start-ups’ OR ‘internet startup’ OR ‘internet
start-up’ OR ‘internet startups’ OR ‘internet start-ups’ OR ‘mobile
startup’ OR ‘mobile start-up’ OR ‘mobile startups’ OR ‘mobile
start-ups’) AND (develop* OR engineer* OR implement* OR
build*) AND (software OR process OR model OR methodolog*
OR method OR practice OR strategy).

3.1.3 Identification of primary studies: Five databases were
selected to collect relevant papers: IEEE, Scopus, Web of Science,
ACM digital library and ProQuest. These major electronic
databases cover software engineering domain and the ability to
handle advanced queries [7]. Each database required specific
search string to retrieve an initial list of studies. The advanced
functionality of each database helps to focus on specific fields such
as software engineering and computer science. The records are
imported into Google Spreadsheet. The basic input includes meta-
data such as (i) title, (ii) author, (iii) year, (iv) publication type and
(v) abstract. To screen the retrieved papers, we follow the best
practices proposed by Kitchenham and Charters [24] which is
illustrated in Fig. 2.

The search strings in each database were used to search each
paper title, keywords and abstracts. At the database level, the
papers were screened with the advanced features of each database
(i.e. screening by year, language and scope of software engineering
domain). This step results in a total of 1982 studies. All the studies
were imported to Refworks (http://refworks.com) with the aim to
remove duplicate elements. In total, 234 studies were removed as
duplicates from the list. Then the results were transferred to Google
spreadsheet to study inclusion and exclusion criteria. This step
indicated that many publications focused on areas that were outside
the scope of this study. Our focus is on software start-ups and their
software development methods and practices. There were many
start-up studies which focused on a variety of different fields such
as agricultural, hardware, electronics etc.

This screening yielded 71 studies for further analysis. The
remaining papers were checked in detail for whether they qualify
the inclusion criteria. The papers that met the inclusion criteria
were transferred for quality assessment. By reading the full-text of
the paper, 41 primary studies were selected. The two researchers
have disagreements on the quality of four papers. These papers
were jointly discussed and decided to exclude owing to the quality
problem. Finally, 37 primary studies were obtained.

3.1.4 Quality assessment: The 37 primary studies were assessed
on the ten-factor quality criteria proposed by Dybå and Dingsøyr
[25]. A binary grade was used for all the primary studies quality
assessment, ‘1’ represents ‘yes’ and ‘0’ represents ‘no’. Two
researchers independently checked the quality assessment of
primary studies:

• Was this a research paper? (or was it merely ‘lessons learned’
report based on expert opinion?)

• Was there a clear statement of the aims of the research?
• Was there an adequate description of the context in which the

research was carried out?
• Was the research design appropriate to address the aims of the

research?
• Was the recruitment strategy appropriate to the aims of the

research?
• Was there a control group with which to compare treatments?
• Was the data collected in a way that addressed the research

issue?
• Was the data analysis sufficiently rigorous?
• Had the relationship between researcher and participants been

considered to be an adequate degree?
• Was there a clear statement of findings?
• Was the study of value for research or practice?

Fig. 2  Identification of primary studies

500 IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

3.1.5 Data extraction and analysis: The data extraction was
started by reading full-text analysis of primary papers. One author
extracted the data and other authors facilitated and improved the
data extraction process. In the data extraction process, the relevant
information related to software development methodologies and
practices in start-ups was identified from each primary study, using
the original author's terms. Then recording the results in a tabular
form to enable comparisons and analysis based on different
groupings was made. In summary, the data synthesis was achieved
by: (i) identification of software development methodologies used
by start-ups from each study and (ii) documentation of a set of
reported development practices in start-ups from each primary
study.

3.1.6 Data extraction and analysis: The data extraction was
started by reading a full-text analysis of primary papers. One
author extracted the data and other authors facilitated and improved
the data extraction process. In the data extraction process, the
relevant information related to software development
methodologies and practices in start-ups was identified from each
primary study, using the original author's terms. Then recording the
results in a tabular form to enable comparisons and analysis based
on different groupings was made. In summary, the data synthesis
was achieved by:

• identification of software development methodologies used by
start-ups from each study;

• documentation of a set of reported development practices in
start-ups from each primary study.

3.2 Empirical study

An empirical study was conducted as a comparison to the findings
of the literature study. The empirical study followed the guidelines
presented by Runeson and Höst [26] for conducting the case study
research in software engineering. Interviews were opted for the
research data gathering due to practical difficulties tied to other
data gathering methods proposed by Runeson and Höst [26]. The
empirical study was based on the research data collected from 14
real-life software start-ups located in Finland, Italy and Norway.
The data was gathered using interviews with a broad interview
schema to cover different viewpoints on software development in
start-ups (see Table 3).

3.2.1 Study design overview: The interviews were semi-
structured, as presented by Runeson and Höst [26]. The semi-
structured interviews with a broad schema allowed the
interviewees to focus on areas that were especially relevant to their
start-ups. The key informant technique [27] was utilised by
selecting the interviewees among the founders or other key persons
of the case start-ups, who were assumed to be able to answer the
questions addressing software start-ups in a broad manner. In two
cases where the founders did not have software development skills
or experiences of their own additional interviews were conducted
with software experts.

3.2.2 Transcribing interviews, analysis and synthesis
procedure: A professional transcription company transcribed the
interview recordings to textual documents. We analysed the
empirical data qualitatively by conducting a thematic synthesis as
defined by Cruzes et al. [28] and Cruzes and Dybå [28, 29] by

Table 3 Interview schema
ID Information Topic Note
initial phase
IQ01 Do you remember the time (month-year) when you had the initial idea? pivot —
IQ02 What was your initial idea? pivot —
IQ03 Who were your targeted customers? start-up model, pivot —
IQ04 How did you find out about these customers? start-up model, pivot —
IQ05 What was the initial team composition? competency —
IQ06 How did you come up with the list of features for the first prototype? start-up model, pivot, testing —
IQ07 When did you have the first prototype? competency, pivot, testing —
IQ08 How did you make the first prototype? start-up model, competency,

pivot, testing
—

IQ09 How did you test it? testing, competency —
IQ10 How much effort was spent on testing? testing, competency —
IQ11 What are the important quality attributes? testing —
IQ12 What were the special competencies needed to make this prototype? competency —
significant pivots
IQ13 How many changes were made up till now? pivot —
IQ14 Is the initial idea and the current product same? (use product, marketing, financial, team

dimensions)
pivot —

IQ15 When did you make the last changes in business, market, and product features? pivot —
IQ16 What do you think is the significant pivot? Explain. pivot —
evolution
IQ19 Time when you had the first launching pivot, start-up model —
IQ20 What is the current size of your customer base? pivot —
IQ21 What is the current team composition? competency —
IQ22 How had the company grown since it was established? (organic or buying subcontracting) competency, start-up model —
IQ23 What employees are currently working in the company? competency —
IQ24 Why are these people preferred? competency —
IQ25 How do you perform testing now? testing —
IQ26 How much effort is spent on testing? testing —
IQ27 What is an important quality attribute now? testing —
future plan
IQ28 Assuming growth, which kind of people you wish to reach? competency —
IQ29 How will the situation change in the next 3–5 years? general —

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

501

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

utilising both inductive and deductive coding. The coding started
with a set of initial codes and new codes were defined along for
new topics that emerge from the research data. We utilised the
NVivo 11 tool for conducting the thematic synthesis. In the data
analysis, it turned out that the search data relevant for software
development methods was available from nine start-ups, while in
five cases the detailed data on methods was missing. Thus, the
analysis is based on nine case start-ups, which are listed in Table 4.

Coding the data: The initial codes were selected based on the
reading of the transcribed interviews for deductive coding. The
amount of initial codes was small, containing only Lean start-up,
Agile development and own (company-specific) development
methods. While conducting the coding, seven new codes were
identified: continuous integration, customer cooperation, Kanban,
test-driven development, own processes, unsystematic
development methods and methods based on personal skills of the
key persons. It is worth noting that the following phenomena were
identified during the coding process, affecting the interpretation of
the findings:

• The distinction between process-specific and pure-method-
specific topics was not clearly definable. Instead, the process-
type views and methods views were used in a mixed manner by
the interviewees. An example of the former is Kanban, having
the main focus on project management, while the test-driven
development can be seen as a pure development method, not
being dependent on any specific process model. As processes
and methods are many times interlinked and the interviewees
addressed both in a mixed ways, both were included in this
study.

• Although the key concepts of the Lean start-up are generic, not
specific for software start-ups, the interviewees referred Lean
start-up as a software development method, thus giving us
reasoning to include it in the study.

• Differences between own methods and processes, methods
based on personal skills, and unsystematic development
methods were identified in the research data, and thus they were
classified under separate codes. The differences are more closely
described in the results section.

Creating themes out of codes: While studying the above-mentioned
codes and the research data gathered under them, we could identify
a division line that divided the very heterogeneous set of software
development methods of our research data into two clearly separate
approaches: software development methods by the book and
company-specific software development methods. The division
gave us reasoning to define two themes according to the two
approaches, methods by the book and company-specific methods.

While we were able to classify most of the codes to one
approach only, Agile methods turned out to be deployed in the case
start-ups both by the book and by company-specific ways. Thus,
we divided the Agile development code into two, Agile by the
book and informal Agile. The results of the thematic synthesis are
shown in Table 5.

Creating a model of themes and codes: The next step of our
study was to create a model describing the utilisation of software
development methods in our case start-ups, as recommended by
Cruzes and Dybå [29]. The model was created by drawing a
distribution chart that shows the identified themes and codes with
bubbles representing the share of each identified code. The
amounts of NVivo11 references under the codes were used to

Table 4 Case startups
Company case
summary

Customers Interviewee(s) Status

company A B2Ca, internet users founder discontinued due to difficulties in
customer discoveryBolzano

Italy
company B Trondheim B2C, B2Bb, internet users, event

organisers
founder and software expert first product on markets

Norway
company C Trondheim B2C, B2B, mobile users, emergency call

centres
founder and software expert first product on markets

Norway
company F B2B, logistics, manufacturing industries chief technical officer of the host

company (an internal start-up)
prototype series under customer testing

Oulu Finland
company G B2B, Finnair founder established business
Helsinki-area
Finland
company H B2B, mobile device vendors founder first prototypes under customer testing
Helsinki-area
Finland
company I B2B, fisheries, biology researchers,

underwater construction companies
chief technical officer established business

Oulu Finland
company J founder established business
Oulu Finland
company K founder established business
Oulu Finland
aB2C: business-to-customers.
bB2B: business-to-business.

Table 5 Themes and codes identified in the research data
Methods by the book Company-specific methods
Lean start-up methods based on personal skills
test-driven development unsystematic methods
Kanban own processes
customer cooperation own methods
continuous integration Agile informal Agile

502 IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

define the sizes of bubbles, and both absolute numbers of
references and their percentages compared to the total amount of
references were shown in the chart. The distribution chart is
presented in Fig. 3. Due to a close relationship of own processes
and own methods, those two codes are drawn as a common bubble
in the chart.

4 Threats to validity
Validity threats are major factors that influence the accuracy of
research negatively. To evaluate and mitigate threats to validity, we
follow guidelines provided by Wohlin et al. [30].

Construct validity relates to obtaining the right measures for the
concept being studied [26, 30, 31]. In qualitative studies it referred
to the interview questions interpretation and understanding. To
reduce this threat, all the SMS data collection process is exhibited
in Fig. 2 and interview questions are pre-tested. At the beginning of
our interview, the researchers explain the study goal and key
terminologies in order to avoid misunderstanding. Additionally,
two authors acted as external reviewers to validate the research
protocol. Further, there is a possibility of bias in the nature of
software start-up papers which are subjective in nature. However,
due to a large set of data from primary studies and diverse
interviewees’ population this threat is minimised. To provide
strength to internal validity, a small number of data can be analysed
using the grounded theory [12].

Internal validity relates to causal relationships and ensuring that
it is not a result of a factor that was not measured or the researcher
had no control over. This study does not consider the internal
validity threat because we are not aiming for statistical causal
relationship on software development methods and process in
software start-ups. However, its internal validity is also linked to
researcher biasness during the analysis and coding process. During
the analysis the researcher without his/her knowledge might ignore
a factor which is unknown and mix up the studied relationship with
known factors [12]. To minimise this threat, the SMS data is
complemented with the qualitative data, where the analysis is

conducted by at least two researchers. The results are discussed and
compared with the state of the art.

Conclusion validity relates to the bias of researchers in the
interpretation of that data. The investigator biasness is difficult to
eliminate completely. However, we took the following actions to
reduce its intensity: Two authors were involved in the analysis of
the primary papers; a full record of all retrieved papers is
maintained to show how 37 primary studies were identified. These
primary studies were read and conclusions were drawn by at least
two authors. This same technique was applied to data collection,
analysis and reporting the results of interviews.

External validity relates to the extent to which the study results
are generalisable [30, 31]. To mitigate external validity, this study
rigorously followed the guidelines provided by Petersen et al. [31]
and Dybå and Dingsøyr [25]. For instance, the data was collected
from 14 software start-ups from three European countries (Finland,
Italy and Norway). Threats to study selection in SMS are handled
with the help of inclusion and exclusion criteria. Additionally, the
different contextual factors, such as type of product, competitive
landscape etc., also bring the bias. However, following the
tradition, we take into consideration the dimensions of Macmillan
et al. to facilitate a broader reasoning related to the reasons that
obstruct the triumph of software start-ups [1, 32]. We argue that
these different contextual factors provide us rich findings.
Nevertheless, the results should be considered with caution,
because our SMS and participated companies in the present study
cannot be assumed to represent software start-up companies in
general. The number of participating companies can be considered
as one limitation of this study. However, the start-up companies
provide valuable and rich information. The interviewees provide
similar information and insight to development methods and
practices in software start-ups. This means not much new
information was added in later interviews. This is an indication of
information saturation sufficiency so no more interviewees were
needed. Hence, this threat is considered to be under control.

5 Results
5.1 Results of systematic mapping study

This section presents the results of the analysis of 37 primary
studies selected from five databases. Section 5.1 provides an
overview of primary studies related to (i) publication year, (ii)
research method adopted, (iii), quality assessment of primary
studies and (iv) research focus. Section 5.2 presents the state-of-
the-art analysis of development methodologies in software start-
ups and Section 5.3 discusses development practices used in start-
ups, according to the research question.

5.1.1 Overview of primary studies: The growing trend of the
publications is exhibited in Fig. 4, which covers the annual number
of studies published on software start-ups between 2006 and 2017.

Fig. 3  Distribution of software development methods identified from the research data

Fig. 4  Publication distribution by year

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

503

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

There were only seven studies (19%) published prior to 2012,
whereas 30 studies (81%) were published in 2012 and later.
Therefore, it can be argued that there is a growing interest
regarding software start-ups in recent years.

Our inclusion criteria did not yield any publication between
2009 and 2011. However, such observations are aligned with
Paternoster [7] because no primary studies fully focused on
software development methods and process in those years. The
exception is that one study [33] was relevant to this SMS but did
not pass quality assessment criteria.

The primary studies used diverse research methods and
techniques as shown in Fig. 5. Qualitative method using interviews
is the predominant (51%) data collection technique adopted in
primary studies. In qualitative studies, the author of one study [34]
considered the method used as ‘startup stories’ due to small
amount of data collected.

Nine primary studies (24%) used mixed method approach (i.e.
survey and literature review, server logs and interviews, mapping
study and interviews). Only one paper adopted design science
approach and constructed an artefact to evaluate developer's work
in software start-ups. The remaining 12 primary studies are
quantitative (n = 4), systematic mapping (n = 4) and one study
comes under action research category. Table 6 shows the research
focus of primary studies, which is categorised into three groups i.e.
software development, process management and managerial/
organisational. The classification of research focus is based on the
definitions and categories adopted from Paternoster et al. [7].

Software development is the engineering activities used to write
and maintaining the source code [7]. More than half of the primary
studies (60%) focus on software development activities in start-
ups. For instance, the study in [49] introduced a strategy to release
the product as quickly as possible, speeding up the development
through low-precision engineering activities. Further, Tingling and
Saeed [58] focus on the adoption of Agile methodology and
extreme programming (XP) principles as a solution for problems
related to traditional software developments in start-ups.

Process management means engineering methods and
techniques used to manage the development activities [7]. The 35%
of the primary studies focus on the investigation of process
management that is used in software start-ups. Such as the study in
[36] investigates the challenges of Lean start-up approach and
customer development in building products and businesses in start-
ups. Accordingly, the study in [9] characterised the experiences of
start-up companies in developing processes to support their
software development activity.

Managerial/organisational concern with aspects that are related
to software development, by means of resource management and
organizational structure [7]. Only 5% of the primary studies focus
on managerial and organisational aspects of software development.
For example, Chorev and Anderson [62] identify the critical factors
for the success of start-up companies in Israel. We can observe that
the majority of primary studies (35 out of 37 studies) are related to
software development and process management in start-ups, which
we considered to be fundamental for our research questions
(software development methodologies and practices). This
indicates that the selected primary studies have a strong
contribution and high relevance to answer the research questions.

5.1.2 Development methodologies in software start-ups: The
analysis of primary studies identified 12 different software
development methodologies used by software start-ups (see
Table 7). The result indicates that Lean start-up is 36% and Agile,
in general, is 26% widely in start-up companies. Other
methodologies include prototyping, model-driven development,
waterfall, rational unified process (RUP), and ad-hoc methodology.

Two studies [42, 62] have not specified any software
development method, but included as primary studies because they
reported development practices. Some primary studies reported
multiple start-up experiences in one paper and some start-ups used
multiple development methodologies. Our unit of analysis is
development methodology studies.

Lean in start-ups and its benefits are reported in 16 out of 37
primary studies. The use of Lean in software start-ups yields a
number of benefits which are reported in Table 8. Lean start-up

Fig. 5  Research methods used in primary studies

Table 6 Primary studies and their research focus
Study ID Research focus
 [9, 35–46] process management
 [2, 4, 6, 7, 18, 20, 34, 47–61] software development
 [62, 63] managerial/organisational

Table 7 Development method used in software start-ups
Method Frequency Percentage Primary studies
Lean start-ups 14 36 [18, 34, 36, 39, 45,

47–51, 53, 57, 61,
63]

Agile in general 10 26 [20, 37, 39, 41, 43,
44, 55, 56, 59, 60]

ad-hoc management 4 10 [40, 50]
 [46, 60]

prototyping 2 5 [4, 35]
XP 2 5 [9, 58]
model-driven
development

1 2.5 [38]

waterfall 1 2.5 [9]
RUP 1 2.5 [9]
distributed scrum 1 2.5 [50]
hyper-agility 1 2.5 [54]
iterative/incremental 1 2.5 [20]
tailored Agile 1 2.5 [50]

Table 8 Lean use benefits in software start-ups
Lean benefits Primary studies
creating an MVP for quick learning in product
development

 [34–36, 47, 49–51]
 [57, 61]

customer development by ‘getting out of the
building’

 [36, 47, 49, 51]
 [34, 53]

directly validating the business with the real
people

 [47, 50, 51]
 [45, 53]

validating the business type and growth
hypotheses through build >measure > learn
feedback loop

 [35, 47, 49]
 [57, 61]

reduce waste by eliminating unnecessary
development

 [36, 47, 49]
 [34, 53]

possibility of pivoting if the product is
unsuccessful

 [34, 37, 57]
 [45]

help to create functioning products based on
customers’ needs

 [36, 47, 49, 50]

quick feedback from customers [36, 49, 53, 57]
continuous testing and integration [34, 61]
help in searching for and validating a viable,
sustainable and repeatable business model

 [47, 51]
 [45, 57]

504 IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

[15] supports the identification of the most risky parts of a software
business and produces a minimum viable product (MVP) to
systematically test and plan the modified version of next iteration
as well as empower development team [7, 49].

Promising principles of customer development are the first
motivation factor for using the Lean start-up. Batova et al. [36]
define the customer discovery as a process in which business
owners develop hypotheses about their business models and then
validate or invalidate those hypotheses by researching potential
customers. This supports the idea of customer development which
aims to come up with new viable products and services under
conditions of extreme uncertainty. It involves the production of a
functioning prototype guided by customer feedback [36, 49]. With
this tangible prototype, it helps to approach anticipated customers.
Customer discovery leads to the validation of the product idea or
prototype and, if proven, the creation of the product [34, 53].
Therefore, this results in a strong customer development and
relationship [49].

Waste reduction is important in production processes and
making these processes more efficient by eliminating unnecessary
research and development [49]. Before developing products or
even prototypes, start-ups should find out whether they have actual
customers and understand what these customers want [36]. As a
result, start-ups avoid wasting time in building unwanted
functionality and preventing exhaustion of financial, human and
time resources for the start-up companies [36, 47, 53].

Build-measure-learn is the principle of Lean start-ups [15]. At
early stages of a start-up, the prototype-centric development
approaches are commonly practiced by case start-ups under [35] to
validate the business idea. This is supported by development of
throw-away or rapid prototypes by visualising the business idea on
a paper or software. Start-ups at the early stage apply fast cycles of
‘build and fix’ when necessary to act quickly and decisively
enough to get the first response from the market [49]. Developing a
set of suitable functionality gives the chance for developers to
present a prototype to a potential customer and get productive
feedbacks.

5.1.3 Agile in start-ups and various obtained in primary
studies: The use of Agile in general and more specific methods
are identified i.e. distributed scrum [50], XP [9, 58], hyper-agility
[54], iterative and incremental [20] and tailored Agile [50]. The
Agile is described as a preferred methodology for start-ups for its
benefits (see Table 9).

Start-ups are attracted to the Agile methodology with the
promise of shorter development schedules and greater delivery
flexibility and support to their business goals for small software
companies [41]. Taylor et al. [56] indicated that using Agile
methods in start-up companies improves the management of the
development process and customer relationships. These
development methods have been considered the most viable due to
a number of benefits i.e. embrace changes rather than avoiding
them, allowing development to follow the start-ups’ business

strategy, shortens the lead time from idea conception to production
with fast deployment [39, 50, 59].

Evolutionary prototyping or prototype-centric development
methodology was adopted by case start-ups in primary studies [4,
35]. According to Giardino et al. [4], start-ups prefer to build an
initial quick prototype and afterwards build the real product after
validating the product in the market. Throw-away prototypes are
rapidly constructed on paper/software to visualise the business idea
whereas evolutionary prototypes are construction of the launching
product through a detail and gradual planning [4]. Such prototype
development helps to obtain fast user responses and quick product
validation, followed by building a functioning prototype and iterate
it over time.

XP importance in software start-ups is also visible in primary
studies [9, 58]. Coleman and O'Connor [9] state that XP is flexible
and developer-centred development method with the advocacy of
self-empowered teams and shared ownership. It is also associated
with an ‘embrace and empower’ style of management in software
start-ups. Tingling and Saeed [58] described that XP has a
generative set of guidelines that consist of 12 interrelated
principles. Some of these principles include 40 h work week,
coding standards, collective code ownership, continuous
integration, pair programming, refactoring etc. The extent of
adopting the principles of XP in start-ups is affected by temporal
conditions and institutional maturity of the start-ups, and both
management and developer cultures are also important
determinants [58].

5.1.4 Software development practices in start-ups: From 37
primary studies, a total of 144 work practices were extracted,
which are clustered into three categories: development practices,
process management practices and managerial or organisational
practices.

Software development practices are defined as engineering
activities used to write and maintaining the source code [7].
Common development practices among software start-ups include
prototyping and experimenting via existing components,
continuous value delivery, use of easy-to-implement tools to
facilitate product development [6], develop only what is needed for
now [18], goal-driven rapid development of technology rather than
process directed [54], use of open source solutions, use of key
performance indicators to assess the consumer's demand [7] and
pair programming [58]. Prototyping is the most common
development practice among start-ups to focus on implementing a
limited number of suitable functionalities (MVP) and to launch the
product on the market as quickly as possible [6, 35, 48–52, 57].
However, certain practices such as refactoring and test-driven
development may not be considered to be viable practices for
software start-ups, especially at the very early stage [39]. This
might be due to a constant pressure of time-to-market demand
which brings low priority for product quality.

Process management practices in start-ups include customer-
centric development, use customer feedback [35, 36], daily Scrum
stand-up meetings, Kanban board [47], process tailoring [9, 35,
56], performing incremental process improvement actions,
adopting short and light software process improvement and release
management process model [41], pivoting practices [34, 35], and
incremental and iterative establishment of software processes [42].
Software process improvement actions and process tailoring
practices are the most commonly used process management
practices explored in this review. It is argued that adoption of
release management process helps to improve the workflow of a
start-up company [40]. Coleman and O'Connor [9] explain that
start-up companies tailored a process model, by dropping some of
the practices and adding the new ones which suit their
environment. Such tailoring process is an influential factor for
success in start-ups [45].

Managerial or organisational practices include aspects that are
related to software development, by means of resource
management and organisational structure. These include core team
expertise, and diversified team management, careful selection of
personnel [62], managerial experience [9], building small omni-

Table 9 Agile use benefits in software start-ups
Agile benefits Primary studies
fast releases using iterative and incremental
approach

 [20, 39, 43, 50]
 [59, 60, 63]

shorter development time [20, 41, 43, 50]
 [39, 44]

response to change [37, 39, 43, 59]
delivery flexibility [39, 41, 43, 56]
customer collaboration and frequent customer
feedback

 [20, 37, 59, 60]

self-organising collaboration between cross-
functional teams

 [43, 44, 56]

customer satisfaction/relationship [20, 56, 59]
team motivation/enthusiastic development teams [43, 44, 56]
continuous delivery [20, 48, 56]
easiness to manage small teams [44, 56]

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

505

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

functional teams with no functional boundaries [54], focusing on
team building [34], team empowerment [7].

In general, development methodologies have their own defined
principles and practices, but they share common values that can be
achieved by each practice. For a start-up, it is difficult to choose a
proper practice from a pool of different practices. Identification of
a set of development practices is essential for start-ups to help
process tailoring. Since start-ups are flexible in selection of
practices from different methodologies, it can be an input for
practitioners to better apply methodologies in a tailored way.
Sometimes, development practices are interrelated between
different methodologies. As a result, the selection of preferred
practices fits the needs of a software start-up. The selection of a
suitable development practice helps software start-ups to maximise
the benefit of adopting a new development methodology [59].

5.2 Results of interviews

In the empirical study, we identified 11 software development
methods divided into two high-level approaches, methods by the
book and company-specific methods (see Fig. 3). The results
indicate that the two high-level approaches have an almost
identical distribution, methods by the book having a slightly bigger
distribution, 19 references compared to 15 references of the
company-specific methods (56 versus 44%). One finding of the
empirical study is the dominance of Agile methods among the case
start-ups, being in line with the findings of the literature study. Up
to 40% of the identified references showed deployment of Agile
methods. Notable is, however, that the start-ups do not necessarily
follow Agile methods as they are formally defined, but tend to
define company-specific implementations of them. In our research
data the codes of Agile methods by the book and in a company-
specific way had equal distributions, 20% of the total references.

In a relatively small group of case start-ups, the other formally
deployed methods, Lean start-up, test-driven development,
Kanban, continuous integration and customer cooperation,
collected only fairly small amounts of references each. The most
frequently utilised method was customer cooperation. It was
classified as a separate code, although it is a cornerstone of the
Lean start-up. The reason is that it appeared in the research data
also as a generic method, independent of the Lean start-up. As
mentioned above, the implementation of Agile methods dominated
among company-specific methods. The three other codes collected
together only a slightly bigger amount of references, 24 versus
20% of the Agile methods.

Compared to the methods deployed by the book, the company-
specific methods are hard to classify at a more detailed level. The
classification shown in Table 5 and used when creating the chart of
Fig. 3 was based on the details identified in the research data. The
classification can be interpreted as a case-specific one, reflecting
the findings of this study as well the prior studies on start-ups [2,
7]. However, it should not be a basis of any generic conclusions. A
close look on the references under the category of company-
specific methods, including the company contexts and the broader
research data of the related companies, revealed that there were
besides unsystematic ad hoc ways of work a set of practices and
methods that did not fall in the category of any established
methodology. However, they were justified and utilised in a
systematic way. Further, in that category, cases arose where the
justification of utilising certain practices was the key persons’
earlier experiences and personal skills. Due to the specific weight
put on those cases by the interviewees, we separated those cases
under a code of their own.

An interesting detail is that unsystematic methods gained the
biggest amount of references after informal Agile methods in the
category of company-specific methods. It indicates that in our
group of start-ups there were cases where the initial development
team was both unable to take any formal method into use and
unable to derive systematic methods and practices from the earlier
experience and skills of the individual team members. Taking a
look on Fig. 3, we can conclude that group case start-ups have only
a small minority of references, 12%, fell under the code of
unsystematic methods. The other identified methods were utilised

by the book, were implemented to fit the companies’ situations, or
were based on the earlier experiences and skills of the key persons.
The findings give, thus, reasoning to the conclusion that in our
group of case start-ups the value of systematic approaches in
organising the software development work was recognised, even
though not always implemented along the formally defined ways.

6 Quality of primary papers
To check the quality of the 37 primary studies, we assessed each
study using the ten-factor framework proposed by Dybå and
Dingsøyr [25]. The accumulation of this quality assessment is
presented in Table 10. The research aim of all primary studies was
ranked ‘1’ as it was clearly elaborated along with the context and
how the study was conducted.

The 37 primary studies in the mapping study provide a clear
research aim and described the context in which research is
conducted. Nevertheless, the research design of some primary
studies was not sufficiently discussed, as four primary studies were
literature reviews, where sampling was not applicable. The primary
studies adequately elaborated data collection and analysis.
Additionally, findings are presented appropriately in primary
studies. Our analysis shows that 18 out of 37 primary studies
(49%) got full points from the quality assessment.

7 Discussion
In this paper, we have applied a systematic mapping method to
analyse the 37 primary papers, to provide the state-of-art
knowledge of the methodologies and practice of software
development in start-up companies. The literature findings are
further investigated in 14 software start-ups in three European
countries to elaborate how start-ups choose methodologies to
manage their development processes.

The SMS shows that an increasing number of publications can
be an indicator of an increasing interest in software start-up
research. The majority of primary studies uses qualitative research
(15 studies) and mixed research methods (9 studies). The mixed
methods are used in various combinations such as survey and
interview, systematic mapping study, interviews etc. These
methods provide rich data; however in the context of our review
primary studies, maturity is not explicit (i.e. when and what
software development method and practices was initially adopted
and how frequently they were used). In terms of research focus,
primary studies were categorised [7] into three groups i.e. software
development, process management and managerial/organisational.

The major portion of primary studies was ‘software
development’ (n = 22) and ‘process management’ (n = 13), where
focus is on software development-related activities. Almost all
primary studies claimed to take advantages of ‘Lean start-up’ and
‘Agile methodologies’, only 2% used the waterfall model. These
results are aligned with previous studies [2, 6, 7].

In software start-up context, there is no clear guidance about the
selection and adaption of development methods, processes and
practices. The primary studies show that software start-ups
opportunistically select a method and customise according to their
needs. In early stages, mixed development approaches and
practices due to a rapidly changing environment were applied. One
reason is that start-ups are more chaotic and unpredictable, and it is
difficult to accurately predict the risks and the required practices to
develop a product. The project managers prefer lightweight
methodologies due to flexibility in order to adopt tailored practices
for software development fast response according to business
strategies. Yan and Murphy [64] also highlighted that start-ups
need to define their own development processes based on their
needs, requirements and situation. These findings are in line with
existing software start-up literature [7, 9, 37, 40, 64].

Applying strictly the principles of a specific methodology is
difficult at early stage of a start-up [37]. Coleman and O'Connor
[9] explain that process tailoring is made by dropping some of the
practices of a specific methodology and adding some new practices
from other methodologies which reflected their own particular
needs. Such tailoring helps start-ups to select a process that is
suitable for the company's business strategy (i.e. [9, 37]). It is

506 IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

evident that start-up companies pick development practices that
suit their start-up situation and most of the process is tailored. The
flexible and reactive methodologies favour changes in making
decisions, development processes and learn from failures are most
suitable in the start-up companies. Learning from failures is an
important factor in choosing and adopting effectively a
development methodology in a start-up company. Developers
should have the freedom to choose development practices quickly
and change or stop immediately when the process goes wrong, fix
the approach and learn from previous failures. Further,
empowerment of team members is considered a productive
managerial/organisational mechanism for better responsibilities
and improved expertise.

In software start-ups, small collocated teams have effective
communication and collaboration as well as solving problems
quickly [35]. Pair programming is one of the Agile practice where
two teammates work in pair. The primary studies support that pair
programming and small teams are good to fix code defects and
complex problems [58].

Customer support plays an important role in successful
adoption of development methodologies in software start-ups and
speedy product deliveries. An active customer participant in
providing requirements and updates frequently enables swift
adoption of software methodology. Taylor et al. [56] highlighted
that sometimes the customer provides initial requirements and
remains practically uninvolved until the end of project deadline. In

such a scenario, start-ups face a high level of uncertainty and may
risk of change of a product feature(s), which could cost more time
and resources. A motivated customer who provides support
throughout the development process enables the smooth process
adaption and helps to deliver MVP [56, 64]. However, the focus is
on speedy delivery of the product to compare the quality attributes.
Start-ups usually exercise speed-related practices (such as short
iterations, iteration planning and release planning) than quality-
related practices (such as unit testing, refactoring, test-driven
development). It seems that quality concerns have low priority than
speed-related practices especially at their early stages [39, 64].
Daily stand-up meeting is a well-known Agile practice that is
frequently used in software start-ups to facilitate communication.
Since most start-ups have very small size of teams, informal
communication happens frequently and daily stand-up meetings are
suitable to manage communication among team members.
However, Lean start-up and Agile processes do not suit for every
problem domain in start-up cases. The development processes in
start-ups are evolutionary in nature, and the product is obtained by
iterating and updating an early prototype following the customer
feedback [7].

The primary studies reported a number of benefits of using the
Agile and Lean software start-ups. For example, start-ups are
capable of creating fast and flexible minimum variable product,
direct validation of the business with the real people and learn
quickly due to short feedback loop. Agile helps to enable customer

Table 10 Quality assessment of primary papers
Primary studies Research Aim Context Design Sampling Control Data collection Reflexivity Finding Value Total score (10)
 [35] 1 1 1 1 1 1 1 1 1 1 10
 [47] 1 1 1 0 0 0 1 0 1 1 6
 [36] 1 1 1 0 1 1 0 1 1 1 8
 [48] 1 1 1 0 0 0 0 1 1 1 6
 [37] 1 1 1 1 1 1 1 1 1 1 10
 [49] 1 1 1 1 1 1 1 1 1 1 10
 [62] 1 1 1 1 1 1 1 1 1 1 10
 [38] 1 1 1 0 0 1 0 0 1 1 6
 [9] 1 1 1 1 1 1 1 1 1 1 10
 [50] 1 1 1 1 1 1 1 1 1 1 10
 [18] 1 1 1 0 0 0 1 0 1 1 6
 [39] 1 1 1 1 1 1 1 1 1 1 10
 [6] 1 1 1 1 1 1 1 1 1 1 10
 [4] 1 1 1 1 1 1 1 1 1 1 10
 [51] 1 1 1 0 0 0 1 1 1 1 7
 [40] 1 1 1 0 0 0 1 0 1 1 6
 [2] 1 1 1 1 1 1 1 1 1 1 10
 [52] 1 1 1 1 1 1 1 1 1 1 10
 [53] 1 1 1 0 0 0 1 0 1 1 6
 [54] 1 1 1 1 1 1 1 1 1 1 10
 [41] 1 1 1 1 0 1 0 1 1 1 8
 [34] 1 1 1 1 0 0 1 1 1 1 8
 [7] 1 1 1 1 1 1 1 1 1 1 10
 [55] 1 1 1 0 1 0 1 1 1 1 8
 [20] 1 1 1 1 1 1 1 1 1 1 10
 [56] 1 1 1 0 0 1 0 1 1 1 7
 [57] 1 1 1 0 0 1 1 1 1 1 8
 [58] 1 1 1 0 1 1 1 1 1 1 9
 [42] 1 1 1 0 1 1 1 1 1 1 9
 [43] 1 1 1 0 0 0 0 1 1 1 6
 [63] 1 1 1 1 1 1 1 1 1 1 10
 [44] 1 1 1 0 1 1 1 0 1 1 8
 [59] 1 1 1 1 1 1 1 1 1 1 10
 [60] 1 1 1 1 1 1 1 1 1 1 10
 [45] 1 1 1 1 1 1 1 1 1 1 10
 [61] 1 1 1 0 1 1 0 1 1 1 8
 [46] 1 1 1 0 1 0 1 0 1 1 7

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

507

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

collaboration and frequent feedback, and the team members
become more self-organised and manage tasks easily. However, a
number of challenges also highlighted in primary studies such as
people behaviour, lack of owners or/and project manager in using
light weighted methods and practices.

The findings of SMS and our empirical study showed that
software start-ups commonly use Agile methods and practices.
Start-ups do not necessarily follow the principles of each
methodology as they are formally defined, tailored to company-
specific implementations of them. It is also evident that, early
phases of software start-ups, they are dominant by non-
development activities. Most of them are activities related to
business and customer discovery with not much focus on software
development process. They focus on idea refinement, team
building and funding activities.

In a nutshell, software start-ups are using mixed or tailored
methodologies. There is no ‘complete solution’ methodology for
software start-ups. The tailored method from Agile and Lean start-
ups is considered to be a better option to fit with the culture and
needs of start-up companies. Other studies highlighted similar
results that start-ups often replace engineering processes by light-
weight ad-hoc processes [6, 11]. Nguyen-Duc et al. [34] proposed
a model to help start-ups in all phases of the company ranging
innovative ideas to commercial products. However, the model
requires empirical evidence to generalise the results [11, 34].

8 Conclusion
Software start-ups have significant contribution in today's global
economy. Software development activities are one of the main
daily activities in software start-ups. In this study, we analyse
development methodologies and practices adopted in software
start-ups using the mix method approach (i.e. systematic mapping
literature review and interviews). The SMS identified in total 1982
articles in which 37 papers were selected as primary studies
published between 2006 and December 2017. These primary
studies were analysed with respect to (i) frequency of publication
by year, (ii) research method, (iii) adopted methods and practices in
software start-ups and its benefits and (iv) quality of primary
studies.

The results of our SMS show that there is an increasing number
of academic researches on software start-ups. The majority of
academic literature is based on a single case study approach using
interviews. There is a growing trend that start-ups are paying more
attention to software development processes compared to
managerial or organisational structure. The software start-ups are
dominantly using the Agile and Lean start-up development
methodologies due to a number of reasons, such as flexibility in the
process, adaptability to a frequently changing environment, makes
ease communication with the customer and fast delivery of product
to customers. Nevertheless, the SMS also shows that start-ups do
not strictly follow methodology principles due to limited resources,
time pressure and people behaviour. The structured adoption of any
development methodology is challenging in the context of software
start-ups. This results in a solution called tailoring methodology
ad-hoc-based adaption.

Start-ups preferred to tailor methodology which matches to
their situation by dropping some of the features in the existing
methodology and adding new practices from other methods. An
important factor in the adoption of software development methods
and practices is the experience of the owners or/and project
managers, the maturity level of the start-ups, team size, availability
of resources. However, still there is a scarcity of studies on
software development practices. The potential of software
development practices is not fully exploited by start-ups or not
reported in scientific literature. Klotins et al. [2] explain that the
existing literature on engineering practices in start-ups is not
transferable to practitioners.

In general, software development methodologies in start-ups are
informal, tailored and very light weighted methods. There is no
‘complete solution’ methodology for software start-ups. The
selection and adoption of appropriate methodology is a difficult
process and requires a deep analysis of the company itself, the

stage of the company, team size and behaviour and the type and
stage of the product concerned. There is no longitudinal study on
the use of development methods and adoption. Therefore, we do
not have information about their success, failure nor their current
status in the market.

Future research requires to strengthen the results of this study.
Due to the scarcity of studies and inadequate level of reporting
rigour in the primary studies, we believe longitudinal studies with
high rigour research are needed. It is recommended to evaluate the
effectiveness and suitability of development methods and practices
in a software start-up. Start-ups change their development methods
and practices frequently due to a rapidly changing environment.
This hints for a research topic to study the software methodologies
and practices which are suitable for different start-up situations.
Practices that are identified in this study are the commonly used
practices in software start-ups, and do not reflect whether they are
the good or bad practices. For that reason, it is necessary to
evaluate the efficiency of each practice on the start-ups and
categorise them as ‘good’ or ‘bad’ practices in the start-up context.
In software start-ups, there is a high research gap in identifying a
suitable development methodology for a specific start-up context.
Based on the results of this study, there is no suitable methodology
for all kinds of start-ups. A model proposed by Nguyen-Duc et al.
[34] for start-ups is available but lacking the empirical evidence.
Future studies are needed in the formulation of a new development
methodology which could be beneficial or more suitable in the
software start-up context.

9 Acknowledgments
The authors would like to thank the editor and anonymous
reviewers for their suggestions on earlier versions of this paper.
The literature data collection from databases and demographic
analysis is only conducted by the first author. The qualitative data
is collected by the second author. Finally, the whole paper is
concluded by the second and third authors.

10 References
[1] Giardino, C., Bajwa, S.S., Wang, X., et al.: ‘Key challenges in early-stage

software startups’. Int. Conf. on Agile Software Development, Helsinki,
Finland, May 2015, pp. 52–63

[2] Klotins, E., Unterkalmsteiner, M., Gorschek, T.: ‘Software engineering
knowledge areas in startup companies: a mapping study’. Int. Conf. on
Software Business, Braga, Portugal, June 2015, pp. 245–257

[3] Blank, S.: ‘The four steps to the epiphany: successful strategies for products
that win’ (K&S Ranch, Pescadero, CA, USA, 2006)

[4] Giardino, C., Wang, X., Abrahamsson, P.: ‘Why early-stage software startups
fail: a behavioral framework’. Int. Conf. of Software Business, Paphos,
Cyprus, June 2014, pp. 27–41

[5] Blank, S.: ‘Embrace failure to startup success’, Nature, 2011, 477, (7363), pp.
133–133

[6] Giardino, C., Unterkalmsteiner, M., Paternoster, N., et al.: ‘What do we know
about software development in startups?’, IEEE Softw., 2014, 31, (5), pp. 28–
32

[7] Paternoster, N., Giardino, C., Unterkalmsteiner, M., et al.: ‘Software
development in startup companies: a systematic mapping study’, Inf. Softw.
Technol., 2014, 56, (10), pp. 1200–1218

[8] Sutton, S.M.: ‘The role of process in software start-up’, IEEE Softw., 2000,
17, (4), pp. 33–39

[9] Coleman, G., O'Connor, R.V.: ‘An investigation into software development
process formation in software start-ups’, J. Enterp. Inf. Manag., 2008, 21, (6),
pp. 633–648

[10] IEEE Computer Society: ‘Guide to the software engineering body of
knowledge (SWEBOK-2004 version)’ (IEEE Computer Society, Los Alamitos,
CA, USA, 2004)

[11] Berg, V., Birkeland, J., Nguyen-Duc, A., et al.: ‘Software startup engineering:
a systematic mapping study’, J. Syst. Softw., 2018, 144, pp. 255–274

[12] Klotins, E., Unterkalmsteiner, M., Gorschek, T.: ‘Software engineering in
start-up companies: an analysis of 88 experience reports’, Empir. Softw. Eng.,
2019, 24, (1), pp. 68–102

[13] cbinsights.com, 2015. Available at www.cbinsights.com/blog/startup-failure-
post-mortem/

[14] Lethbridge, T.C., Sim, S.E., Singer, J.: ‘Studying software engineers: data
collection techniques for software field studies’, Empir. Softw. Eng., 2005, 10,
(3), pp. 311–341

[15] Ries, E.: ‘The lean startup: how today's entrepreneurs use continuous
innovation to create radically successful businesses’ (Crown Books, New
York, NY, USA, 2011)

[16] Carmel, E.: ‘Time-to-completion in software package startups’. Proc. 27th
Hawaii Int. Conf. on System Sciences (HICSS), Wailea, HI, USA, January
1994, pp. 498–507

508 IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

[17] Unterkalmsteiner, M., Abrahamsson, P., Wang, X., et al.: ‘Software startups –
a research agenda’, e-Informatica Softw. Eng. J., 2016, 10, (1), pp. 89–123

[18] Eloranta, V.P.: ‘Towards a pattern language for software start-ups’. 19th
European Conf. on Pattern Languages of Programs, Isee, Germany, July 2104,
pp. 1–11

[19] Awad, M.A.: ‘A comparison between agile and traditional software
development methodologies’ (University of Western Australia, Perth, WA,
Australia, 2005)

[20] Sánchez-Gordón, M.L., O'Connor, R.V.: ‘Understanding the gap between
software process practices and actual practice in very small companies’,
Softw. Qual. J., 2016, 24, (3), pp. 549–570

[21] Chapman, J.R.: ‘Software development methodology’, 2004. Available at
http://www.hyperthot.com/pm_sdm.html, retrieved 15 November 2018

[22] Abrahamsson, P., Salo, O., Ronkainen, J., et al.: ‘Agile software development
methods: review and analysis’. arXiv preprint arXiv:1709.08439, 2017, pp. 1–
32

[23] Clarke, P., O'Connor, R.V.: ‘The situational factors that affect the software
development process: towards a comprehensive reference framework’, Inf.
Softw. Technol., 2012, 54, (5), pp. 433–447

[24] Kitchenham, B., Charters, B.: ‘Systematic literature reviews in software
engineering’. Tech. Rep. EBSE, Keele University and Durham University,
Joint Report, Staffordshire, UK, 2007

[25] Dybå, T., Dingsøyr, T.: ‘Empirical studies of agile software development: a
systematic review’, Inf. Softw. Technol., 2008, 50, (9-10), pp. 833–859

[26] Runeson, P., Höst, M.: ‘Guidelines for conducting and reporting case study
research in software engineering’, Empir. Softw. Eng., 2009, 14, (2), pp. 131–
164

[27] Marshall, M.N.: ‘The key informant technique’, Fam. Pract., 1996, 13, (1),
pp. 92–97

[28] Cruzes, D.S., Dybå, T., Runeson, P., et al.: ‘Case studies synthesis: a thematic,
cross-case, and narrative synthesis worked example’, Empir. Softw. Eng.,
2015, 20, (6), pp. 1634–1665

[29] Cruzes, D.S., Dybå, T.: ‘Recommended steps for thematic synthesis in
software engineering’. Int. Symp. on Empirical Software Engineering and
Measurement, 2011, pp. 275–284

[30] Wohlin, C., Runeson, P., Höst, M., et al.: ‘Experimentation in software
engineering’ (Springer Science & Business Media, Berlin & Heidelberg,
Germany, 2012)

[31] Petersen, K., Vakkalanka, S., Kuzniarz, L.: ‘Guidelines for conducting
systematic mapping studies in software engineering: an update’, Inf. Softw.
Technol., 2015, 64, pp. 1–18

[32] Hui, A.: ‘Lean change: enabling agile transformation through lean startup,
kotter and kanban: an experience report’. Agile Conf., Nashville, TN, USA,
August 2013, pp. 169–174

[33] Taipale, M.: ‘Huitale – a story of a Finnish lean startup’, in ‘Lean enterprise
software and systems’ (Springer, Berlin, Heidelberg, 2010), pp. 111–114

[34] Nguyen-Duc, A., Seppänen, P., Abrahamsson, P.: ‘Hunter-gatherer cycle: a
conceptual model of the evolution of software startups’. Int. Conf. on
Software and System Process, Tallinn, Estonia, August 2015, pp. 199–203

[35] Nguyen-Duc, A., Shah, S.M.A., Ambrahamsson, P.: ‘Towards an early stage
software startups evolution model’. 42th Euromicro Conf. Software
Engineering and Advanced Applications, Limassol, Cyprus, 31 August - 1
September 2016, pp. 120–127

[36] Batova, T., Clark, D., Card, D.: ‘Challenges of lean customer discovery as
invention’. Int. Professional Communication Conf., 2016, pp. 1–5

[37] Björk, J., Ljungblad, J., Bosch, J.: ‘Lean product development in early-stage
startups’. IW-LCSP' 2013, Potsdam, Germany, June 2013, pp. 19–32

[38] Clark, T., Muller, P.A.: ‘Exploiting model driven technology: a tale of two
startups’, Softw. Syst. Model., 2012, 11, (4), pp. 481–493

[39] Pantiuchina, J., Mondini, M., Khanna, D., et al.: ‘Are software startups
applying agile practices? The state of the practice from a large survey’. Int.
Conf. on Agile Software Development, Cologne, Germany, May 2017, pp.
167–183

[40] Kajko-Mattsson, M., Nikitina, N.: ‘From knowing nothing to knowing a little:
experiences gained from process improvement in a start-up company’. Int.
Conf. on Computer Science and Software Engineering, Wuhan, China,
December 2008, pp. 617–621

[41] Mc Caffery, F., Taylor, P.S., Coleman, G.: ‘Adept: a unified assessment
method for small software companies’, IEEE Softw., 2007, 24, (1), pp. 24–31

[42] Wangenheim, C.G.V., Weber, S., Hauck, J.C.R., et al.: ‘Experiences on
establishing software processes in small companies’, Inf. Softw. Technol.,
2006, 48, (9), pp. 890–900

[43] Wu, H.Y., Callaghan, V.: ‘From imagination to innovation: a creative
development process’, in Novais, P., Konomi, S. (Eds.): ‘Intelligent
Environments 2016’ (IOS Press, Amsterdam, Netherlands, 2016)

[44] Souza, R., Malta, K., De Almeida, E.S.: ‘Software engineering in startups: a
single embedded case study’. 1st Int. Workshop on Software Engineering for
Startups, Buenos Aires, Argentina, May 2017, pp. 17–23

[45] Bajwa, S.S., Wang, X., Duc, A.N., et al.: ‘‘Failures’ to be celebrated: an
analysis of major pivots of software startups’, Empir. Softw. Eng., 2017, 22,
(5), pp. 2373–2408

[46] Seppänen, P., Tripathi, N., Oivo, M., et al.: ‘How are product ideas
validated?’. Int. Conf. on Software Business, Essen, Germany, June 2017, pp.
3–17

[47] May, B.: ‘Applying lean startup: an experience report-lean & lean UX by a
UX veteran: lessons learned in creating & launching a complex consumer
app’. Agile Conf., Dallas, TX, USA, August 2012, pp. 141–147

[48] Berrocal, J., Garcia-Alonso, J., Murillo, J.M.: ‘The fall and rise of NimBees’.
42th Euromicro Conf. Software Engineering and Advanced Applications,
Limassol, Cyprus, 31 August - 2 September 2016

[49] Giardino, C., Paternoster, N., Unterkalmsteiner, M., et al.: ‘Software
development in startup companies: the greenfield startup model’, IEEE TSE,
2016, 42, (6), pp. 585–604

[50] Duc, A.N., Abrahamsson, P.: ‘Minimum viable product or multiple facet
product? The role of MVP in software startups’. Int. Conf. on Agile Software
Development, Edinburgh, UK, May 2016, pp. 118–130

[51] Hokkanen, L., Leppänen, M.: ‘Three patterns for user involvement in
startups’. European Conf. on Pattern Languages of Programs, 2015, p. 51

[52] Lenarduzzi, V., Taibi, D.: ‘Mvp explained: a systematic mapping study on the
definitions of minimal viable product’. 42th Euromicro Conf. on Software
Engineering and Advanced Applications, Limassol, Cyprus, 31 August - 2
September 2016, pp. 112–119

[53] Leppänen, M.: ‘Patterns for starting up a software startup company’.
European Conf. on Pattern Languages of Programs Irsee, Germany, July
2014, pp. 1–7

[54] Marion, T., Dunlap, D., Friar, J.: ‘Instilling the entrepreneurial spirit in your
R&D team: what large firms can learn from successful startups?’, IEEE
Trans. Eng. Manag., 2012, 59, (2), pp. 323–337

[55] Pompermaier, L., Chanin, R., Sales, A., et al.: ‘An empirical study on
software engineering and software startups: findings from cases in an
innovation ecosystem’. The 29th International Conference on Software
Engineering and Knowledge Engineering, Pittsburgh, PA, USA, July 2017

[56] Taylor, P.S., Greer, D., Coleman, G., et al.: ‘Preparing small software
companies for tailored agile method adoption: minimally intrusive risk
assessment’, Softw. Process, Improv. Pract., 2008, 13, (5), pp. 421–437

[57] Terho, H., Suonsyrjä, S., Jaaksi, A., et al.: ‘Lean startup meets software
product lines: survival of the fittest or letting products bloom?’. SPLST,
Tampere, Finland, October 2015, pp. 134–148

[58] Tingling, P., Saeed, A.: ‘Extreme programming in action: a longitudinal case
study’. Conf. on Human-Computer Interaction, Beijing, China, July 2007, pp.
242–251

[59] Al-Sakkaf, A.M., Hashim, N.L., Omar, M.: ‘Using hierarchical cluster
analysis to generate clusters of agile practices’, J. Telecommun. Electron.
Comput. Eng. (JTEC), 2017, 9, (1–2), pp. 53–56

[60] Nguyen-Duc, A., Wang, X., Abrahamsson, P.: ‘What influences the speed of
prototyping? An empirical investigation of twenty software startups’. Agile
Software Development Conf., Cologne, Germany, May 2017, pp. 20–36

[61] Gutbrod, M., Münch, J., Tichy, M.: ‘How do software startups approach
experimentation? Empirical results from a qualitative interview study’. Int.
Conf. on Product-Focused Software Process Improvement, Innsbruck,
Austria, November 2017, pp. 297–304

[62] Chorev, S., Anderson, A.R.: ‘Success in Israeli high-tech start-ups; critical
factors and process’, Technovation, 2006, 26, (2), pp. 162–174

[63] Bicen, P., Johnson, W.H.A.: ‘How do firms innovate with limited resources in
turbulent markets?’, Innov., Manag. Policy Pract., 2014, 16, (3), pp. 430–444

[64] Yau, A., Murphy, C.: ‘Is a rigorous agile methodology the best development
strategy for small scale tech startups?’, 2013, available at https://
repository.upenn.edu/cis_reports/980/

IET Softw., 2019, Vol. 13 Iss. 6, pp. 497-509
© The Institution of Engineering and Technology 2019

509

 17518814, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2018.5270 by G

dask U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [17/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.hyperthot.com/pm_sdm.html
https://repository.upenn.edu/cis_reports/980/
https://repository.upenn.edu/cis_reports/980/
http://mostwiedzy.pl

