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Abstract: This paper examines the stiffness degradation and interface failure load on soft soil–
concrete interface. The friction behavior and its variability is investigated. The direct shear tests
under constant normal load were used to establish parameters to hyperbolic interface model which
provided a good approximation of the data from instrumented piles. Four instrumented piles were
used to obtain reference soil–concrete interface behavior. It was found that the variability of the
friction characteristics is the highest for organic clays and the lowest for organic silts. The intact
samples exhibit lower shear strength than reconstituted ones. The adhesion varies significantly
depending on interface and soil type, which can result in high scatter of the skin friction prediction.
The analysis of parameters variability can be used to determine the upper and lower bound of
friction behavior on the interface at constant normal load condition. The backward shearing results
in decrease in shear strength up to 40% of the precedent forward phase but higher initial stiffness by
a factor of between 2 and 3. Presented research provides basic shear and stiffness parameters for four
soft soils (organic clay, organic silt, peat, and silty loam) and gives information about variability of
interface characteristics.

Keywords: soil-concrete interface; soft soils; skin friction; hyperbolic model; organic soil; peat

1. Introduction
1.1. General Considerations

The interface shear strength is important factor in geotechnical design of embank-
ments, retaining walls or pile foundations. The engineering guidelines for determination
of soil–structure interface friction properties can be found in many guidebooks [1,2]. How-
ever, some important issues arise when designers try to incorporate these guidelines in
practical application. Firstly, steel interfaces are much more widely investigated than con-
crete ones [3–6]. Secondly, there are very limited data for friction properties of organic
soil and different materials. A variability of interface friction parameters is also not often
determined. There is a very low amount of data considering interface stiffness degradation
with displacement. The interface friction fatigue due to large displacement or backward
shearing following forward shearing is rarely considered. The ratio between forward and
backward shearing is important in pile design when the direction of the shear stress can
change. All above mentioned issues are addressed in the first part of this paper. In the
second part, the application of laboratory test results in prediction of pile shaft friction
mobilization is presented. The knowledge of soft soil–concrete interface behavior is vivid
in the determination of negative [7] or positive skin friction [8]. The proper estimations of
pile shaft resistance and interface stiffness degradation are crucial for successful design.
The usefulness of laboratory interface testing is presented in the comparison with pile
shaft friction mobilization obtained from instrumented pile tests. The parameters deter-
mined in lab tests are used in simple hyperbolic model [9] to predict the pile shaft unit
resistance mobilization.
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1.2. Current State of Knowledge

Zhang and Zhang [10] distinguish three stages in soil-structure interfaces investigation
and research: (1) before the 1960s, (2) between 1960 and the 1980s, and (3) since the 1980s.
Before the 1960s, interfaces were not investigated as a unique material. Between 1960 and
the 1980s, the focus was laid on macroscopic frictional stress–strain relationships of the
interfaces. Since the 1980s, more complex stress paths, cyclic loadings, microscopic failure
mechanisms and various interfaces types (both soils and materials) were investigated.
These research results in the determination of the critical roughness [5,11] and failure modes
at the interface [12] for cohesive soils. The interfaces were tested under constant normal
load or under constant normal stiffness conditions [13] and with different rates, which are
important factors for over-consolidated cohesive soils [14] and all non-cohesive soils [15].
The most important research in terms of soil–concrete interfaces is described below.

Potyondy [16] conducted probably the first modern interface investigation focused
on skin friction and adhesion measured in direct shear box. He tested friction between
concrete, steel, and wood plates and sand, sandy silt and clay. The tests were made on
moist and dry samples. Brandt [17] tested silty clay–concrete interfaces in small and large
direct shear box. Goh [18] presented results of shearing three types of soils on rough and
smooth concrete plates. Tiwari et al. [19] summarized angle of interface friction to internal
friction angle ratios for different types of soils. Chen et al. [20] presented results of red clay–
concrete interface shearing in large direct shear box. Canakci et al. [21] conducted interface
testing between organic soil and different types of materials. Wang et al. [22] reported
results of red clay–concrete cyclic shearing with small strain range. Zhang et al. [23] tested
clay–concrete interfaces shear strength due to different water contents and shear rates.
Wang et al. [24] investigated clay–concrete interface behavior with different roughness of
concrete plates. The friction characteristics from selected previous research are summarized
in Table 1 for smooth interfaces and in Table 2 for rough interfaces.

Table 1. Smooth concrete interface testing dataset.

Soil Type δ ca φ’ c’ δ/φ’ τf/τb Ki σn u Reference
(◦) (kPa) (◦) (kPa) (-) (-) (kPa/mm) (kPa) (mm)

Red clay 24 (1) - - - - 1.13 102 (2) 100 - [22]
Red clay 10 41 16 95 0.63 - - - - [20]

Sandy clay 18.3 14 28 16.2 0.65 - 200 100 0.1 [18]
Silt 22.3–26.5 - 29–30.5 0 0.74–0.90 - - - - [25]
Silt 25.2–27.7 - 27–30 0 0.92–0.93 - - - - [19]
Silt - - - - 1.0 - - - - [16]

Note: δ = interface friction angle; ca = adhesion; φ’ = effective angel of internal friction; c’ = effective cohesion; τf/τb = forward to backward
shear strength ratio; Ki = interface shear stiffness at σn and u; σn = normal stress (CNL); u = horizontal displacement; (1) = estimated point
value from one measurement; (2) = secant stiffness.

Table 2. Rough concrete interface testing dataset.

Soil Type δ ca φ’ c’ δ/φ’ τf/τb Ki σn u Reference
(◦) (kPa) (◦) (kPa) (-) (-) (kPa/mm) (kPa) (mm)

Peat (1) 33.8 - 43 - 0.79 - 100 140 0.2 [21]
Marine

Leda clay 33–35 - 30.5 0 1.11 - 312 250 0.04 [26]

Red clay 26.5–28.5 (2) - - - - 1.36–1.54 105 (3) 100 - [22]
Red clay 10–13 41–104 16 95 0.63–0.81 - - - - [20]
Illite clay 25 7 26 9 0.96 - 200 50 0.1 [27]

Clay 26.5–40 (4) 7 34 50 0.78–1.17 - 75 30–60 0.2 [17]
Silty clay 31.4–34.5 4.6–10.4 33.1 18.5 0.95–1.04 - 20 50 1 [24]

Sandy clay 21 15 28 16.2 0.75 - 670 100 0.06 [18]
Silt 30 - 29–30.5 0 0.98–1.02 - - - - [25]

Note: δ = interface friction angle; ca = adhesion; φ’ = effective angel of internal friction; c’ = effective cohesion; τf/τb = forward to backward
shear strength ratio; Ki = interface shear stiffness at σn and u; σn = normal stress (CNL); u = horizontal displacement; (1) = 10% sand in peat
sample; (2) = estimated point value from one measurement; (3) = secant stiffness; (4) = range depends on external (higher values) or internal
(lower values) measurement.
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1.3. Aims of the Reserch

This paper examines various concrete interface properties. The most basic are the
interface friction angle and adhesion. The interface stiffness degradation with displacement
for different kind of soft soils is presented. The friction characteristics (shear stress ratio and
interface stiffness) during backward shearing following forward are also reported. When it
is possible, the standard deviation or coefficient of variation for parameters is provided.
The research takes under consideration mainly organic soils (organic clay, organic silt, and
peat) due to limited information in the literature, see Tables 1 and 2. In the second part of
this paper, the skin friction mobilization obtained with hyperbolic model and laboratory
parameters is compared with data registered during static loading of instrumented piles.

2. Soils Used in Interface Testing
2.1. Soils Description

The cohesive soils taken under consideration in this paper are (1) silty loam, (2) organic
clay, (3) organic silt, and (4) peat. These soils are commonly occurring in the Vistula
Marshlands, Northern Poland [28]. All tested soils are normally consolidated. The basic
physical and strength properties of soil used in interface testing are listed in Table 3 while
the short description of each soil type is provided below. Silty loam (1) is inorganic soil that
consists of approximately 35% clay particles and 65% silt particles. Organic clay (2) exhibit
high organic matter content (10% < LOI < 30%, where LOI = Loss on Ignition) and is made
of approximately 50% clay and silt particles. It contains small peat inserts which influence
the permeability properties. Organic silt (3) contains moderate organic matter content
(5% < LOI < 10%). It consists of silts (above 95% of particles) with very low admixture of
clay or sand. Peat (4) is high organic matter soil (LOI > 30%) with fibrous structure.

Table 3. Geotechnical parameters of soils used in interface testing.

No Soil Type
Soil Properties

Intact ReconstitutedLOI w $ k Eoed φ’max c’
(%) (%) (g/cm3) (m/s) (MPa) (◦) (kPa)

1 Silty loam NC 5.1 30.6 1.74 2.50e–7
(1) 1.6–2.3 30.9 (3) 0
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pared in square metal mold. The steel plate placed at the bottom of the mold was covered 
with an adhesive agent. Then, the concrete mortar was poured to about half of the mold 
and densified. In that level the geomesh reinforcement was laid and the mold was filled 
with concrete to the final height of 10 mm. The concrete mortar was densified again at this 
point. Finished forms were secured with foil overlay and left to bind. After 7 days, the 
concrete plates were squeezed out of the mold and the steel plate was separated to obtain 
smooth interface. Then, the concrete tile was left to be completely bind within 30 days. 
The concrete mortar used in this study consist of cement, mineral fillers and modifiers. It 
reaches compressive strength of 33 MPa after 28 days. The surface roughness (Ra) of 
smooth concrete interface was varying between 54 and 71 μm. 
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2 Organic clay NC 11.9 68.0 1.47 2.46e–7 0.9–2.3
23.1

(2)–26.4
(3)

0
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2.2. Soil Samples Preparation

The soil samples used in this research are intact samples and reconstituted samples.
The intact cohesive soil samples were taken as a block samples and then trimmed with
cutting shoe and placed directly in the direct shear box. Samples were consolidated for
24 h, and then sheared. The reconstituted samples were firstly remolded and brought into
the soil slurry. Then, the slurry was put into 60 × 60 mm molds. The molds were flooded
with water and then gradually loaded to a stress of 35 kPa. The samples were left to be
consolidated for 3 weeks. After that time, the samples were transfer from mold to direct
shear box. Next, the samples were additionally consolidated for 24 h, and then sheared.
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3. Interfaces and Direct Shear Devices

Two different interfaces were tested on three kind of direct shear box apparatus. More
specific descriptions are provided below.

3.1. Smooth Interface

Smooth interface is presented in Figure 1a. It is flat, 60 × 60 mm concrete plate
prepared in square metal mold. The steel plate placed at the bottom of the mold was
covered with an adhesive agent. Then, the concrete mortar was poured to about half of the
mold and densified. In that level the geomesh reinforcement was laid and the mold was
filled with concrete to the final height of 10 mm. The concrete mortar was densified again at
this point. Finished forms were secured with foil overlay and left to bind. After 7 days, the
concrete plates were squeezed out of the mold and the steel plate was separated to obtain
smooth interface. Then, the concrete tile was left to be completely bind within 30 days.
The concrete mortar used in this study consist of cement, mineral fillers and modifiers.
It reaches compressive strength of 33 MPa after 28 days. The surface roughness (Ra) of
smooth concrete interface was varying between 54 and 71 µm.
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Figure 1. (a) Smooth and (b) rough concrete interface with idealized geometric scheme.

3.2. Rough Interface

Rough interface is presented in Figure 1b. It is serrate, 60 × 60 mm concrete plate.
The preparation was analogues as in terms of smooth plate. The only difference is the
application of the serrate steel plate at the bottom of the mold instead of a smooth one.
The measured roughness (Ra) of rough concrete interface was in range between 294 and
390 µm.

3.3. Direct Shear Box Devices

Interface shear tests were conducted in direct shear devices according to ASTM
D3080/D3080M [29]. Three different types of apparatus were used. The first one was
apparatus with an analogue measurement system, the second and third ones were equipped
with digital measurement system. Each device consists of shear box which is divided into
two rigid frames (halves) to prevent distortions during shearing. Direct shear devices
are capable to provide shear force along straight plane determined by a shear box frames.
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The concrete interfaces were placed into the lower frame and soil samples in the upper
frame. After mounting the specimens, the normal force was applied at the top of the
specimen. All samples were submerged in the water during shearing and were tested
according to ASTM D3080/D3080M [29] using 60 × 60mm box and constant normal load
(CNL) procedure. CNL testing is good choice for soils of low stiffness [30]. Direct shear
box exhibits several disadvantages and advantages [31–33]. The shear plane location is
fixed and shear stresses are nonuniformly distributed within specimen. However, it is
advantage in interface testing of normally consolidated soft soils, where failure plane is
fixed at the interface. The samples were sheared with a rate of 0.06 mm/min. This loading
rate is usually achieved during static loading of the piles [34]. One can use Vermeer and
Meier [35] criterion for time factor to evaluate drainage conditions during the test:

Tv =
kEoed

γwl2
t (1)

where: Tv = time factor (Tv > 0.4 indicates drained conditions, Tv < 0.1 indicates undrained
conditions, Tv between 0.1 and 0.4 suggests partially drained conditions), k = coefficient of
permeability, Eoed = oedometric modulus, γw = unit weight of water, l = drainage length,
t = loading time.

All samples were sheared under the drained conditions regarding to Equation (1) with
Tv higher than 0.4. The above guideline was primary used. The very conservative ASTM
D3080 criterion (failure time equal to 50 times t50, where t50 is time required to reach 50%
of consolidation) for drained shear was not meet in every test (ASTM criterion was only
meet in tests with low normal load).

3.4. Testing Program

The testing program is focused on several aspects: (1) the repeatability of interface
shear strength, (2) the interface stiffness degradation, (3) the fatigue of interface shear
strength during backward shearing following forward shearing, (4) the interface shear
strength parameters and failure loads for various type of soils. The summarize of testing
program is presented in Table 4.

Table 4. Interface shear strength testing program.

Soil
Number of Tests (1)

Repeatability Fatigue in
Backward Shearing

Stiffness
Degradation

Silty loam 4 (4) 3 (5) 4 (4)
Organic clay 3 (3) 4 (4) 3 (3)
Organic silt 3 (3) 5 (3) 3 (3)

Peat 4 (3) 5 (4) 3 (3)
(1) number indicate smooth interface and number in bracket denotes rough interface.

3.5. Interface Shear Tests Interpretation

There are few interpretation aspects that should be considered. In this research the
Mohr-Coulomb envelop is used for description of shear behavior:

τmax = σ tan(δ) + ca (2)

where: δ = angle of interface friction; τmax = interface shear stress at failure; σ = normal
stress applied during shearing, ca = adhesion. This is the most popular approach and these
kind of data were reported in Tables 1 and 2. The variability of τmax can be described by

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 2578 6 of 15

residual standard deviation Sτ and the variability of tan(δ) and ca by the standard errors
Stan(δ) and Sca, respectively.

Sτ =

√√√√√ n
∑

i=1
(τi − τavg)

2

n − 2
(3)

Stan(δ) =
Sτ√

n
∑

i=1
(σi − σavg)

2

(4)

Sca =

√√√√√√√
Sτ2

n
∑

i=1
(σi)

2

n
n
∑

i=1
(σi − σavg)

2
(5)

where: τi = shear stress of i-sample, τavg = average shear sample in population, n = number
of samples, σi = normal stress applied during shearing of i-sample, σavg = average normal
stress applied during shearing in population.

The interface tangent shear stiffness (Ki), can be defined as tangent displacement-
dependent module [22,36]:

Ki =
∆τ

∆u
(6)

where: ∆τ = shear stress increment; ∆u = horizontal displacement increment. As the
interface shear stiffness is usually stress and displacement dependent, in Tables 1 and 2
the corresponding normal stress and displacement level are provided. The interface shear
stiffness can be determined for forward and backward shearing.

4. Interfaces Testing Results and Discussion
4.1. Interface Shear Strength

The repeatability of interface shearing is presented in Figure 2 (smooth interface) and
Figure 3 (rough interface). In terms of smooth interface the best reliability was achieved
for organic silts. Peat, due to its fibrous and strongly anisotropic structure, can produce a
relatively wide range of results. The differences in organic clay and silty loam are usually
seen between intact samples and reconstituted samples. This can be related with the
possible structure damage due to sampling, transportation, and storage. There is no visible
influence of apparatus type on the results. In terms of rough interfaces, the reliability
can be easily seen in organic silts and peats. The results for organic clay and silty loam
significantly vary, usually between intact and reconstituted samples. The reason is the
same as in terms of smooth interface—the differences may be induced by structure damage
due to sampling, transportation and storage. The gap in D3 plot in Figure 4d (organic silt)
is related to unrealistic shear stress variation probably due to stress sensor malfunction. It
was one-time event during lab tests.

Figures 4 and 5 present Mohr-Coulomb failure envelops for smooth and rough inter-
face, respectively. The interface shear strength characteristics obtained from the research
presented in this paper are summarized in Tables 5 and 6. For cohesive soils, intact samples
exhibit lower shear strength than reconstituted samples. For peats, there are no differences
between intact and reconstituted samples. In rough interface the important adhesion
part can be noticed, which is usually larger than for smooth interfaces. This aspect was
seen in other studies related to the rough interface and cohesive soil, where increase in
interface roughness induces increase in adhesion [20]. The obtained angles of interface
friction can be characterized by low standard deviation. However, the adhesion is relatively
variable parameter with coefficient of variation (COV = SD/AVG; SD = standard deviation,
AVG = mean value) usually between 50% and 100%. The variability of adhesion is lower
for rough interfaces than for smooth interfaces.
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Soil 
Interface Shear Strength Parameters 

δf tan(δf) ± Stan(δf) ca ± Sca τf/τb δf/ϕ’max 
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Figure 5. Mohr-Coulomb failure envelope of rough concrete–soil interface for (a) silty loam, (b) or-
ganic clay, (c) peat, (d) organic silt.

Figure 6 presents the examples of forward–backward shear behavior. In all cases the
behavior was quite similar. Shear strength in backward shearing was equal or lower than
in forward shearing. The forward–backward decrease was the largest for organic clay
and the lowest for organic silt. The relation between interface shear stresses in forward to
backward shearing is similar as in reported datasets in Section 1.2.
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Figure 6. Examples of normalized shear strength during forward–backward shearing for (a) smooth
interface and (b) rough interface.

Table 5. Friction characteristics of smooth concrete–soft soil interfaces.

Soil
Interface Shear Strength Parameters

δf tan(δf) ± Stan(δf) ca ± Sca τf/τb δf/φ’max
(◦) (-) (kPa) (-) (-)

Silty loam 24.1 0.448 ± 0.024 5.1 ± 3.7 1.09 ÷ 1.30 0.78
Organic clay 14.4 0.256 ± 0.026 12.6 ± 5.1 0.91 ÷ 143 0.62
Organic silt 31.3 0.607 ± 0.010 3.0 ± 2.9 0.89 ÷ 109 1.00

Peat 26.4 0.490 ± 0.016 6.7 ± 2.4 1.00 ÷ 1.25 0.47
Note: δf = angle of interface friction in forward shearing; Stan(δf) = standard error of tan(δf); ca = adhesion;
Sca = standard error of ca; τf/τb = forward to backward shear strength ratio; φ’max = maximum angle of
internal friction.

Table 6. Friction characteristics of rough concrete–soft soil interfaces.

Soil
Interface Shear Strength Parameters

δf tan(δf) ± Stan(δf) ca ± Sca τf/τb δf/φ’max
(◦) (-) (kPa) (-) (-)

Silty loam 30.6 0.591 ± 0.029 5.1 ± 2.3 0.92 ÷ 1.15 0.99
Organic clay 21.8 0.400 ± 0.053 7.7 ± 4.4 1.13 ÷ 1.31 0.94
Organic silt 33.8 0.672 ± 0.028 11.7 ± 2.4 0.92 ÷ 0.98 1.08

Peat 29.2 0.559 ± 0.016 11.9 ± 2.6 0.95 ÷ 1.28 0.52
Note: δf = angle of interface friction in forward shearing; Stan(δf) = standard error of tan(δf); ca = adhesion;
Sca = standard error of ca; τf/τb = forward to backward shear strength ratio; φ’max = maximum angle of
internal friction.

4.2. Interface Stifness

The degradation of the interface stiffness (Ki) with displacement is presented in
Figures 7 and 8 for smooth and rough interfaces, respectively. The reliability in stiffness
measurements starts around displacement of approximately 0.01 mm. The interface stiff-
ness almost fades away at the displacement between 0.5 and 1 mm. The initial value of
Ki is the most important one. Here, authors delivered initial value as that corresponding
to displacement equal to approximately 0.05 mm. The reason is that between 0.01 and
0.05 mm the calculated stiffness usually exhibits oscillations and establishing the proper
value has to be done by engineering judgment. The oscillations are induced by different
shear force increase in the same displacement intervals. Consequently, the calculated
tangent stiffness can have higher or lower values.

Interface stiffness–stress dependency is presented in Figure 9. As one can see, the ap-
plication of smooth interface results in larger variability of interface stiffness. The interface
stiffness increases with normal stress. The interface stiffness parameters in forward and
backward shearing are summarized in Tables 7 and 8 for smooth and rough interfaces,
respectively. Authors decided that for typical engineering application and typical stress
range (30 to 100 kPa) the interface stiffness for 0.05 mm can be assumed as the initial
one (Ki0). The variability of Ki also suggests estimation of the one, strict value regardless
interface type. Consequently, the values of Ki0 in Tables 7 and 8 are chosen by engineering
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judgment. The interface stiffness in backward shearing (for the same range of displacement)
is generally 2 to 4 times higher. However, large variability of that value was observed.
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Table 7. Interface stiffness characteristics for smooth concrete–soil interfaces.

Soil

Interface Stiffness
Ki0 ≈ Kif0 (u ≈ 0.05mm,

σ ≈ 50kPa) Kif0/Kib0

(kPa/mm) (-)

Silty loam 50 ± 10 2.8 ÷ 3.0
Organic clay 60 ± 20 2.7 ÷ 4.0
Organic silt 100 ± 20 1.2 ÷ 2.3

Peat 50 ± 20 1.3 ÷ 1.8
Note: Ki0 = initial interface stiffness; Kif0 = interface stiffness in forward shearing; Kib0 = interface stiffness in
backward shearing.

Table 8. Interface stiffness characteristics for rough concrete–soil interfaces.

Soil

Interface Stiffness
Ki0≈Kif0 (u ≈ 0.05mm,

σ ≈ 50kPa) Kif0/Kib0

(kPa/mm) (-)

Silty loam 50 ± 10 2.2 ÷ 2.6
Organic clay 60 ± 20 2.9 ÷ 4.2
Organic silt 100 ± 20 2.4 ÷ 4.0

Peat 50 ± 20 1.4 ÷ 2.3
Note: Ki0 = initial interface stiffness; Kif0 = interface stiffness in forward shearing; Kib0 = interface stiffness in
backward shearing.

5. Interface Hyperbolic Model and Instrumented Pile Tests
5.1. Hyperbolic Model

Hyperbolic model captures the soil and interface non-linear behavior and stress-
dependency. It also predicts in easy way the interface stiffness degradation. The classic
hyperbolic model for pile–soil interface can be written as [9,37]:

τ =
u

1
Ki0

+ u
τmax

(7)

where: τ = shear stress on pile-soil interface; u = displacement; Ki0 = initial interface
stiffness; τmax = maximum shear stresses on the interface. In present study, the τmax can be
assumed with Mohr-Coulomb envelopes presented in Figures 4 and 5.

5.2. Instrumented Pile Tests

Instrumented piles are widely used to determine pile shaft and base unit resistances
and load transfer characteristics [38–41]. Instrumented pile is equipped with strain gauges
located at several depths in order to measure axial strain. This allows to calculate the axial
forces in each pile section under different load levels [42]. Consequently, the skin friction–
displacement behavior can be obtained. In the trail fields located in the Vistula Marshlands,
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four instrumented controlled modulus columns (CMC) with lengths of 17.5–18.5 m (3 piles)
and 5.5 m (1 pile) were tested in compression static loading tests. The piles were equipped
with 7 (2 piles) or 8 (also 2 piles) vibrating wire strain gauges at different depth to measure
the skin friction in each soil layer, see Figure 10. Based on these measurements, the skin
friction mobilization and load transfer curves for silty loam, organic clay, peat (5.5 m length
pile), and organic silt (17.5–18.5 m length piles) were determined.
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5.3. Comparison between Hyperbolic Model and Instrumented Pile Tests

The comparisons between interface testing and hyperbolic interface model on the one
side, and results from static loading tests of instrumented piles on the other, are presented
in Figure 11. Authors shown the average values for rough and smooth interfaces and
variability based on standard errors of parameters (see Tables 7 and 8 for initial stiffness
interface, and Figures 4 and 5 for maximum interface shear stress). The normal stress
applied in interface shear box for a given soil type corresponds to the normal stress acting
on the pile shaft. The normal load acting on pile shaft is assumed to be equal to horizontal
in-situ stress, which was confirmed by dilatometer soundings conducted 30 cm from the
pile shaft [43].

As one can see, for silty loam, organic clay and peat, the field data are located between
rough interface and smooth interface. However, the error margin is very large for organic
clay, moderate for silty loam, and relatively low for peat. In terms of organic silt, the field
data are characterized by large scatter and they barely fit the hyperbolic curve model. Two
field results seem to fit the data from lab tests while one is significantly higher than others.
It can be related to specific conditions: e.g., unique installation of the CMC, which may
cause higher horizontal stress on the interface itself. The real CMC diameter in organic silt
layer can be also slightly different than nominal value of 400mm (independent construction
event) what results in overestimation of the axial forces in instrumented pile and shear
stresses consequently. In almost all cases the initial stiffness from instrumented piles were
slightly lower than estimated form lab tests. Based on the above comparison, one can
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noticed that lab determination of the soil interface characteristic can be successfully used
in conjunction with hyperbolic model for modeling pile-soil interface behavior.
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6. Conclusions

This paper presents the stiffness and shear characteristics of soft soil–concrete inter-
faces and applicability of hyperbolic interface model to predict load transfer curves for pile
shaft. Presented research provides basic shear and stiffness parameters for selected soft
soils and expands knowledge about variability of interface characteristics. The presented
study allows to following conclusion to be drawn:

1. Intact samples usually exhibit lower interface shear strength then reconstituted ones;
2. There is significant variability on adhesion that influences the hyperbolic interface

model. For instance, organic clay–concrete interface shear strength can vary from 5
to 25 kPa (Figure 10) depending on interface type. The reasons for discrepancies can
be related to the microscopic random arrangement of soil particles and small peats
inserts (also located randomly within the sample);

3. Backward shearing following forward reduces interface shear strength up to 35%
depending on interface and organic soil type;

4. Shear stiffness increases with normal stress and drops with displacement level. It is
also characterized by significant scatter;

5. Shearing in backward following forward direction produces usually 2 or 3 times
higher initial stiffness than shearing directly in forward direction;

6. Organic silts and peats can be characterized by the lowest variability of results while
organic clays by the highest;

7. Shear and stiffness parameters obtained in this research fit the literature data;
8. Interface shear testing with hyperbolic model can be used to determine load transfer

curves that fits the field measurements of instrumented piles during static loading test;
9. The variability and error propagation can be useful in determination of interface shear

strength variability and the upper and lower bound of mobilized skin friction.
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