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Abstract. In the paper, some aspects of the convergence of series of dependent
Gaussian sequences problem are solved. The necessary and sufficient conditions for
the convergence of series of centered dependent indicators are obtained. Some strong
convergence results for weighted sums of Gaussian functionals are discussed.

1. Introduction

Let {X;}i>1 be a normalized Gaussian sequence such that X;, ¢ =1,2,...
has the standard normal distribution (N(0;1)) and let the correlation matrix
pij = E(X;X;), i,j=1,2,..., satisfy the following hypothesis:

e}
(1) C:supZ\pij\ < 0.
i>1 =
Zl =1
It is evident that C' > 1. We denote by v the normalized one-dimensional
Gaussian measure i.e.

and use LP (or LP(v)) for LP(R,dr). The main results of this paper depend
on the following lemmas:

LEMMA 1. (|[BC|, Borel-Cantelli lemma for Gaussian sequence) Let the
normalized Gaussian sequence {X;}i>1 satisfy the hypothesis (1) and let
{Bi}i>1 be a sequence of Borel sets in R such that Y- | P{X; € B;} = o0,
then P{X; € B; i.0.} = 1. Moreover, if >,;° | P{X; € B;} < 0, then P{X, €
Bi 10} =0.
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LEMMA 2. (|B|) Let the normalized Gaussian sequence {X;}i>1 satisfy the
hypothesis (1) and let {f;}i>1 = L*(v). Then for each n > 1 we have

n

(2) Z Var(f;(X;)) < Var(Z fi(Xi)) < CE Var(fi(X;)).
i=1 i=1
THEOREM 1. ([BC|, Rademacher-Menchoff theorem for Gaussian function-

als) Let the normalized Gaussian sequence {X;}i>1 satisfy the hypothesis (1)
and {fi}i>1 < L*(v) (Efi(X;) = 0,i > 1). Suppose additionally that

(3) 2 Ini)? X)]? < 0.

Then Sy, = >, fi(X;) converges a.s.

In Section 2, we consider some aspects of the convergence of series of
dependent Gaussian sequences problem. There is also a definite result on the
necessary and sufficient conditions for the convergence of series of centered
dependent indicators. In Section 3, we obtained strong convergence results for
weighted sums of Gaussian functionals f(X;), i=1,2,..., where f € L'(v),
using the same techniques as Xu and Tang [XT| for weighted sums of pairwise
negatively quadrant dependent sequences.

2. Convergence of the normalized Gaussian sequence

THEOREM 2. Let {X;}i>1 be a normalized Gaussian sequence satisfying the
hypothesis (1) and a = {a;}i>1 € la. Then Y.~ | a;X; converges a.s.

Proof. Let us denote
(4) &= a;X; and n, = > bV,
j=1 j=1

where b; = a;v/C, j > 1and {Y}};>1 is a sequence of independent Gaussian
variables with N (0,1) distribution.
By Lemma 2 and hypothesis (1) for arbitrary n > m > 1, we have

n
2
E|€n—§m|2=E( Z aiXi) = Z pijaia; < C Z a;
i=m+1 m<i,j<n m<i<n
2
= > b?:E( > bm) = Bl — nml*.
m<i<n i=m-+1

Hence and by Corollary 3.14 in [LT], we obtain
(5) E max & < 2F max 1, N> 1.

1<i<N 1<i<N
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From (5) and by Levy’s inequality, we conclude that
FE | < FE E i —&i|l=F 2F ;
jmax & < Bl ]+ B max & =& = Bla| +2E max &

< Elg1] + 4E < Bl&)| + 4E »
< Bl + 4B max o; < Bl&| +4E max o

=0J =

E&} + 8E|nn| < A/ B + 8VEnn|2 = (1+8V0)

Hence and by Chebyshev’s inequality, we have
P{iglf [k = &nl > ¢} = lim P{ suwp &tk — &nl| > €}

N—o

< lim E sup |§n+k £n|
N—w € 1<

. 1+8yC | "E
< lim ——— Z az
N—o €
k=n+1

_1+8VC

€

Therefore &, is convergent a.s. and the proof is completed. =

It is well known that in case of independent Gaussian sequence {X;};>1 €
N(0,1), the condition {a;};>1 € l2 is necessary and sufficient for a.s. conver-
gence of series Z;‘il a; X;. We have just proved that this condition is also
sufficient for Gaussian sequences (not necessary independent) satisfying (1).
Necessary condition is satisfied for 1 < C' < 2, what is shown by the remark
below.

REMARK 1. Let {X;};>1 be a normalized Gaussian sequence satisfying
the hypothesis (1), 1 < C < 2 and let >,;°; a;X; converge a.s. Then

a = {ai}i21 € l2.

Proof. By Lemma 2 with f;(z) = a;z, =€ R, we have

-0) i a? =(2-0C) z”: Var(a; X;) < Var(i a; X;)
i=1 i=1 i=1

Hence and by implication that Z?il a; X; converge a.s. then
>y Var(a; X;) < oo, the proof is completed. u

For C' > 2 thesis of the Remark 1 is not satisfied. Consider the following
example.
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Let {Yi}i>1 < N(0,1) be a sequence of independent Gaussian random
variables and define

1
ap = ——— and X, = (—1)”YLn7+1J for n>1.
2

1
%5
The series 2211 a; X; converges a.s. to 0, because the sequences of partial
sums S, and Sg,_1 converge a.s. to 0. Namely
2n—1

2n
n = fi(Xi) =0 and Son—1 = fz z =——7Y,—>0 as.
S S k= L.

by Borel-Cantelli lemma, where f;(z) is the same as in the proof of Remark 1.
Then, it is easy to check that

o0
C =sup Y |pyl =2,

> j=1
2n

M=%t 2
. 1 n—w
i=1 i=1
e}
2 _
20 =
i=1

LEMMA 3. Let {By}n>1 < B(R) be a sequence of Borel subsets and {Z}n>1
be a sequence of random variables. Then

(6) > B,(Zn) = P{Zu € Ba}| = ) |Ip,(Z0) — P{Zy € By}

Therefore

n=1
converges a.s. if and only if
o0
(7) > P{Z, € B,}P{Z, € B},} < 0.
n=1

Proof. Let us assume that (7) is satisfied. Then

0¢] o0
E S \I5,(Z0) ~ P{Zu € Ba}l = 3 Ellg, (Za) — P{Zu < B}
n=1
o0
=2 ) P{Z, € B,}P{Zy, € B}}.
n=1
Therefore (6) converges a.s.

On the other hand, (7) is result from the inequality
P{Z, € B,}P{Z, € B,,} < |Ip,(Zn) — P{Z, € Bp}|. =
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THEOREM 3. Let {X,}n>1 be a normalized Gaussian sequence satisfying
the hypothesis (1) and {Bp}n>1 < B(R) be a sequence of Borel subsets. Then
o0
(8) Z (I, (Xn) — P{Xn € By})
n=1
converges a.s. if and only if
o0

(9) 2 Var(Ip,(Xn)) = Y| P{X, € B,}P{X, € B},} < .

n=1
Proof. (9)= (8) results from Theorem 3. So we only need to prove the
implication (8)=> (9). Assume that (8) converges a.s. Then there exists a
measurable set Qy < 2 such that P(y) = 1 and for every w € Qg the series

(10) > (I, (Xn(w)) — P{Xy € By})
1

n—
is convergent. Let w € {2y and denote
D(w)={neN: X,(w) € By,}.

In case if #D(w) < o0 or #D’'(w) < o for some w € Q thesis is obvious. So,
let us assume that #D(w) = o0 and #D’(w) = oo for all w € Q. We can order
them into increasing sequences {ny(wo)}r>1 and {nj(wo)}r>1, respectively
where wg € Qy. Hence and from convergence of series (10), we conclude that

Plwe; X, (wy) (W) € By (wy)} —— 1

k—00
(11) and
P{w € Q; X"%(WO) (w) € Bnk(wo)} m 0.

Let us point out, that for wy,ws € Qp the sets (A means here symmetric
difference of sets)

D(w1)AD(ws) and D'(wy)AD'(ws)
are finite. Indeed, assume that D(w;)AD(w2) is infinite. Then at least one
of the sets D(w1)\D(w2), D(w2)\D(w1) is infinite. Suppose that the first is
infinite. Ordering it into the increasing sequence {j;}i>1, we see that {j;}i>1
is a subsequence of {ny(w1)}r>1. Therefore, from (11) we obtain

P{Xj, € Bj,} — 1.
1—00
On the other hand the sequence {j;};>1 is a subsequence of {n} (w2)}x>1 and
from (11) we see that

P{in € Bji} E’ 0,

is a contradiction. In a similar way we can prove that D'(wi)AD’(wg) is
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finite. Let w € Qp. From assumption the series (10) is convergent. We have
two excluding possibilities

0 ¢]
(12) Z P{X,, () € B, L)) <o and Z P{X () € B (w)} < @

k=1
or
o0 e¢]
(13) Y, P{Xuyw) € Bhyy} =© and > P{X, () € By )} = @
k=1 k=1

First, let us notice that the second case (13) does not occur. Indeed, if
0
Z P{X ) € By} = ®

then by Lemma 1 we have P{Xp, () € B (w) 10 } =1. Let wo € {X,,

k(w
B1’1 L) i.o.} n Qp. Hence, there exists an increasing infinite subsequence

{n; (w)}i>1 such that X, (,y(wo) € B;Lk,(w)’ 1 > 1. It follows that

{nk, (W)}iz1 = D(w) N D'(wo) = D(w)\D(wo).
But the set D(w)\D(wp) is finite, a contradiction. Now, let us return to the
first case (12). Then

Z]IBn — P{X, € B,}| < .

Hence and by the 1nequahty
P{X, € By}P{X, € B} < |Ip,(Xn(w)) — P{X, € Bp}|, n>1

we obtain (9), and the proof is complete. m

3. Strong convergence properties for weighted sums of Gaussian

functionals

This section includes two theorems with some sufficient conditions to
prove the strong convergence for weighted sums of Gaussian functionals
f(X;), i = 1,2,..., where f € L'(v). In the proof, we use the same
techniques as Xu and Tang [XT| for weighted sums of pairwise negatively
quadrant dependent sequences. Hence, here only the main step will be
presented. Throughout the section, a, « b, denotes that there exists a
constant D > 0 such that a,, < Db, for sufficiently large n.

THEOREM 4. Let 1 <r < 2,{X,}n>1 be a normalized Gaussian sequence
satisfying the hypothesis (1) and f € L'(v). Let {an}n>1 be sequence of
positive numbers with A, = Z;‘:l a; 1 0. Denote c; =1, ¢, = an’?ggn for
n > 2 and ¢, — 0 as n — . Assume that
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(14) Ef(X1) =0,  E[f(X)]" <
(15) Nn)=#{i:c;<n}«n", n>1, N(0)=0.
Then
(16) At Z a;f(X;) -0 as n— oo
i=1

Proof. Define
Up = f(Xo)I(|f(Xn)] < cn).
To start the proof of (16) note that

0
Ef|(X1)]" < 0 <= Z P(|f(X1)| > ¢) <0 <= P(|f(X;)| > ¢ i0.)=0.
i=1
Therefore, we have P(f(X;) # U;, i.0.) =0 and in order to prove (16),
we only need to show

(17) At Z a;U; — 0 a.s. n — .

i=1
Using the standard techniques, the same as Xu and Tang [XT], it follows
from (14) and (1 ) that

Za]og szr( ) }:c—?E

=1
Therefore, by the above inequality, RademacherfMenchoff type theorem for
Gaussian functionals (Theorem 1) and Kronecker’s lemma, we have

n
A;l Z ai(Ui — EUl) — 0 a.s.
i=1
In order to prove (17), it suffices to prove that

n
(18) AN 0 BU; >0, n— o
i=1
Note that by the Lebesgue dominated convergence theorem

B (X)I(f(X)| < ei)] = BLf(X)I(f(X0)| < ¢)] —— Ef(X1) = 0.

Therefore
BUI| = [EF(X)I(F(X0)] < ci)] — 0, as.

1—00

By the Toeplitz’s lemma, we have

|A12mHN<Almem——%
i=1 i=1
Hence (18) holds and the proof is completed. =


http://mostwiedzy.pl

A\ MOST

460 A. Walachowska

Let L(x) be a slowly varying function at infinity (i.e. L(z) is a positive
function defined on (0,0) and L(cx)/L(x) — 1 as x — oo for all ¢ > 0). Then
a function Z(x) = L(z)z" varies regularly with exponent 7 (—o0 <y < 0).
Let us define the functions Z%(z) = §" y?Z(y)dy and Z,(z) = {5 y? Z(y)dy,
where z > 0. In the proof of the next theorem, we will need the following
lemma:

LEMmMA 4. (|[FE])
a) If Z wvaries reqularly with exponent v and Zy exists, then

tPTLZ(t)
(19) —" > A,
Zi(t)
where A\ = —(p+v+1) > 0.
b) If Z varies regularly with exponent vy and if p > —v — 1, then

tPTLZ(t)

Z

(20) 0

Y

where A =p+ v+ 1.

REMARK 2. Let L(x) be a slowly varying function at infinity and let
1 < a < 2. Then
T o0
J L dt « Lz)2>* and J L2 dt < Lz)z'—.
0 T

THEOREM 5. Let {X,}n>1 be a normalized Gaussian sequence satisfying
the hypothesis (1), f € L'(v) and

L(x)x™®, x=>1,

1, r<l,

P(lf(X1)] > ) = {

where L(z) is a slowly varying function at infinity, 1 < o <2 . Let {an}n>1
and {bp}n>1 be sequences of positive constants satisfying b, 1 co. Denote

e = %, Cp = anlfggn forn > 2. Assume that
o0
o) PG > e0) <0,
n=1
(22) Ef(Xy) =0,
then
1 n
(23) 2 af(Xk) >0 as
=1


http://mostwiedzy.pl

A\ MOST

Gaussian functionals 461

Proof. By the Borel-Cantelli lemma for Gaussian functionals, (21) implies
that

(24) bli Hf(X)| > ) =0 as.  n—ow.

Denote

Since
1 & 1 &
o > anf(Xy) = i Y (U — EUy) +o- Z ar EUj,
" k=1 " k=1 bn k=1
1 n
+ = Y apf (X I f(XR)| > cx),
bn k=1

in order to show
1 n
W Z arf(Xg) — 0 a.s.,
" k=1

we only need to show that the first two terms above converge to 0 a.s. as
n — 0.

By E[|X]1] = qggo t971P(]X| > tdt), where q denotes a positive real
number, Remark 2 and (21), we can get

3 log? kVar(“’“U’“> = 3 2B XL (X)) < )]

b
I
—

Ck

P(|f(Xk)| > t)dt

ke 0
L(t)t'~dt « Y L(c
k=1

P(lf(Xk)| > ex) <o

ey

I

—
o

IA
D18
??‘Q|

—

=

Il

—
o

A IA
M8 i [1s
?rﬁ|
[\
[e)

=
Il
—

Therefore, by Rademacher—-Menchoff type theorem for Gaussian functionals
(Theorem 1) and Kronecker’s lemma, we have

1 n
b; k(Ux — EUL) — a.s. n — o0.

Again by Remark 2 and (21) and since (22), we have
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>

k=1

ax(log k) EU,

<
by, -

18

e, [BIF (X)L (1 (Xk)] > )]

x>
Il
—

IN
18

it [ PO > o
1 ck

el
Il

IA
8

o0 o0
c,glf L(t)t*dt < > Lck)e,®
k=1

Ck

b
Il
—

A
s

P(|f(Xk)| > ex) < o0,

x>
Il
—_

which implies that

converges a.s.

i ap EU,
k=1 by

By Kronecker’s lemma, it follows that

1 n
™ Y apEU,—>0  as. n— o,
" k=1

From the statements above we get (23). =

References

[B] M. Beska, Note on the variance of the sum of gaussian functionals, Applicationes
Mathematicae 37(2) (2010), 231-236.

[BC] M. Beska, Z. Ciesielski, Gebelein’s inequality and its consequences, Approximation
Probability, Banach Center Publ., vol. 72, Polish Acad. Sci. (2006), 11-23.

[FE] W. Feller, An Introduction to Probability and Its Applications, vol. I, 2nd edn. Wiley,
New York, 1971.

[HL] G. H. Hardy, J. E. Littlewood, G. Polya Inequalities, Cambridge Univ. Press,
Cambridge, 1967.

[LT] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer Verlag, 1991.

[XT] H. Xu, L. Tang, Some convergence properties for weighted sums of pairwise NQD
sequences, J. Inequal. Appl. (2012), 2012-255.

A. Walachowska

FACULTY OF APPLIED PHYSICS AND MATHEMATICS
GDANSK UNIVERSITY OF TECHNOLOGY
NARUTOWICZA 11/12

80-233 GDANSK, POLAND

E-mail: awalachowska@mif.pg.gda.pl

Received March 24, 2015; revised version August 4, 2015.


http://mostwiedzy.pl

