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Accepted: 14 June 2010 A theory of the Computer Aided Design systems (CAD) has been one of the main targets of
our research for many years. Generally CAD software is used for algorithmic tasks: calculations
(e.g. optimisation or simulation), storage and searching for data in databases and edition of
drawings and texts. However, many tasks are unsupported. Recently, a feasibility of Artificial
Intelligence (AI) to improve CAD systems, especially Artificial Neural Networks (ANN), has
been widely considered.
This paper presents application of ANN: for calculation and selection of pneumatic control
valve in optimisation of pneumatic driving system and in optimisation of seat suspension
system. It is argued that the proposed technique is better than any other commercial method,
since in both the optimisation of pneumatic driving system and the optimisation of seat
suspension system the optimisation process was many times shorter providing equally valuable
optimisation task solutions.
In conclusion, it is postulated that ANNs give an opportunity to create improved CAD
systems.
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Introduction

Computer Aided Design (CAD) is an intensely
developed research and market area. An application
of CAD software can improve quality and reliability
of any project. It can accelerate a design process and
help to solve it.

At present a computer is used for algorithmic
tasks [1]. In CAD software one can recognise fol-
lowing algorithmic tasks: calculations (e.g. optimisa-
tion or simulation), storage and searching for data in
databases and edition of drawings and texts. Recent-
ly Expert Systems (ES) utilised to decision problems
have been created. However, many tasks are not aid-
ed et al. There are many reasons for this fact:

1. all heuristic (intuitive) activities, such as assess-
ment of the design conception, selection of the
criteria for optimisation or looking for new con-
ceptions can be hardly supported because of their

non-algorithmic character. Expert systems based
on the theory of Fuzzy Sets (FS) and on languages
of logic (e.g. PROLOG) could possibly offer solu-
tions to these problems;

2. solutions to many algorithmic tasks are based on
complicated mathematical models (e.g. set of non-
linear partially differential equations). Usage of
these models is too time-consuming and even a
very fast computer cannot assure a cooperation
between the designer and the CAD system;

3. there are substantial resources of information
gathered from experiments or from previous de-
sign processes. There exists a problem of storing
them in computer databases and reusing them.

A design process should be supported in all phas-
es and on all levels, especially in the earliest ones,
which role is the most significant.

For a few years a feasibility of Artificial Neural
Networks (ANN) to improve CAD systems has been
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widely discussed. Some of such ANN applications are
presented in this paper.

Calculation and selection

of a pneumatic control valve

Traditional methods of calculation and selection
of pneumatic control valves pose a problem of low
accuracy and difficulty of computer implementa-
tion [2, 3].

Most of the methods use nomograms and tables.
Their results are of various types: a manifold orifice
diameter, a volume flow rate of air at standard con-
ditions, a flow factor KV (VID/VDE 2173), a sonic
conductance C and a critical pressure ratio b (ISO
6358). They do not always describe a flow character-
istic of a valve and cannot always be found in the
catalogues. It has been also proven that the nomo-
grams and the tables cannot be easily approximat-
ed with a use of the flow theory. Additionally, there
are significant discrepancies between the results ob-
tained by using various methods. A precise method,
based on the Gerc model [4], however, is impractical
because of its complexity.

Hence, one can conclude that a new method for
calculations and selection of control valves is needed.
This method should, by definition, be easy to apply
in CAD systems. Moreover, it should also describe
a flow characteristic of a valve, taking into consid-
eration all the important parameters which have an
influence on selection of a valve. Finally, this new
method must prove that it is valid in a broad selec-
tion of parameters’ values.

Using of an artificial neural network technique
can be one of the possible solutions [5, 6].

The basic objective of ANN was an approxima-
tion of relations among the control valve parameters,
the cylinder parameters and the specifications for the
basic system (the cylinder with the valve). Having
analysed real calculations and selection methods, as
well as the vendor’s catalogues, some variables were
proposed; these were: cylinder diameter, piston di-
ameter, force load on the piston, mass of moving ele-
ments, stroke of the piston, supplying pressure, time
of a stroke as the input signals to the ANN and co-
efficient of the gas mass flow rate, supplying orifice
diameter, time delay of the valve as output signals
from the ANN.

The feed-forward ANN structure (the multi-layer
perceptron) with Levenberg-Marquardt learning al-
gorithm was selected [5]. The selection of the struc-
ture of ANN and the learning algorithm is described
in detail in [6].

A learning data set was created by the computer
simulation, based on E.W. Gerc model. The model
is described in detail in [4]. The mathematical mod-
el was implemented in the MatLab/Simulink pack-
age environment. Input data do not cover all ranges,
but only the possible and existing ones. Finally, the
learning set of 4350 vectors was obtained.
Because of data type in the learning set a learning

strategy similar to that known from learning of neu-
rocontrollers was applied. Firstly, the relation from
the data set was discovered by the first ANN; next
the reverse relation was discovered by the second one
(Fig. 1). The learning process was completed after
1000 epochs.

Fig. 1. Scheme of learning process.

Some tests were completed to determine the qual-
ity of the ANN, especially its capability of generali-
sation. The mean square errors for the test data set
and for the learning data set were nearly the same:
1.93 · 10−4 and 1.90 · 10−4 (the precise results can be
found in [5, 6]).
Percentage vectors fractions in the training and

in the testing sets were computed, where the relative
value of the error exceeded 1, 3, 5 and 10% (Table 1).

Table 1
Percent participation of vectors giving different relative error

after 1000 epochs

Error limit Learning set Testing set

1% 35.0% 40%

3% 4.7% 5%

5% 0.8% 0%

10% 0.02% (1 vector) 0%

The preliminary results are very encouraging. As-
suming that the mathematical model error does not
exceed 3%, and the computing error of the ANN does
not exceed 3%, it is strongly believed that even now
at the current development stage, the proposed tech-
nique is better than any commercial method of cal-
culation and selection of pneumatic control valve.
As opposed to the classical methods, this tech-

nique considers substantial parameters and require-
ments of the basic subsystem. Furthermore, it takes
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into consideration the distribution of the velocity,
and not merely the average value of the that. What is
more, it does not require any additional calculations
to determine the real time of displacement.

Optimisation

of pneumatic driving system

A general description of the thermodynamic phe-
nomena in pneumatics requires an application the
thermodynamic laws of changeable quantity of medi-
um and leads to complicated non-linear differential
models (it can be the set of 6 differential equations
for a single pneumatic cylinder). These models (equa-
tions) are impossible to be solved analytically. A nu-
merical integration with a use of digital computer is
the only practical solution. A lack of fast computer
models, which do not require a time consuming nu-
merical integration, are the main reasons for popu-
larity of optimisation in design of pneumatic driving
systems.

Various criteria can be introduced for optimisa-
tion of pneumatic driving systems. The most impor-
tant and the most popular ones are: absolute and rel-
ative energy consumption (to be minimised), work-
ing medium consumption (to be minimised), total
time of single cycle action (to be minimised), costs
of system creation (to be minimised), cost of system
exploitation (to be minimised), durability and reli-
ability (to be maximised), number of devices in the
system (to be minimised).

A master criterion (target function) of optimisa-
tion (polioptimisation) can be combination of all or
selected from criteria above. A selection of criteria
determinates a set of mathematical models, which
can be applied to solve an optimisation task.

Many decision variables which could be deployed
in the process of optimisation of PDS can be point-
ed out. These variables relate to: the pneumatic
cylinder (cylinder diameter, piston rod diameter, pis-
ton stroke, manifold orifice diameter), the pneumatic
control valve (manifold orifice diameter, time of ac-
tion, flow properties), the supply installation (supply
pressure, diameters and lengths of pipes), the oth-
er pneumatic devices of the supply installation (flow
properties) and the control system (type of control
system and its describing variables).

A set of decision variables in a given optimisa-
tion task is determined by the selected criteria and
constrains. It is also important that the majority of
decision variables has a discrete and limited charac-
ter (e.g. cylinder diameter).

Constrains in optimisation of PDS are an ef-
fect of: technological process requirements (minimum

loaded force, maximum velocity), available financial
means and future costs (maximal costs of creation
and exploitation of the system, a time of creation),
working conditions (e.g. parameters of existing sup-
ply installation – supply pressure, installation capac-
ity) and ranges of validity of applying models.

A description of criteria and constrains ends the
definition of an optimisation task.

In the first phase of the research an optimisation
task was formulated [7] in order to find the value of
parameters of a basic subsystem (a pneumatic cylin-
der with a supply control valve) and to minimise the
following two criteria:

1. consumption of a pneumatic energy (product of
cylinder chambers volume and supplying pres-
sure),

2. total time of single cycle action,

with constrains:

1. maximum velocity of a piston,
2. minimum working load,
3. maximum supplying pressure.

During optimisation process calculations of val-
ues of all criteria and all constrains are required in
each step. Application of a differential model, pro-
posed by Gerc [4], is needed to solve such task but
integration of the model is very time-consuming.

There is a possibility of applying other types of
models to calculate the time of action and the maxi-
mum velocity. Tentative experiments have been per-
formed.

A fast, specialised and parametric model of pneu-
matic cylinder was created by means of neural net-
work technique. The task of this model was to cal-
culate a time of piston action on a base of: pneu-
matic cylinder parameters, supply control valve pa-
rameters, supply installation parameters and require-
ments imposed by designer to pneumatic system.

The feed-forward artificial neural network struc-
ture was used, with the Levenberg-Marquardt me-
thod as a learning algorithm.

A learning set was created by computer simula-
tion based on the model by Gerc. More than 4500
vectors of data were obtained [5].

The learning process was conducted by 700
epochs. Next, various tests were completed in order
to determine the quality of the neural model. The
maximum absolute error of calculated time in sec-
onds was very satisfactory but the relative error was
not (Fig. 2). It forced us to change the learning strat-
egy. The learning set was transformed by a simple
non-linear function and the learning process was re-
peated. The absolute error became a little bit worse
but the relative error improved significantly (Fig. 3,
4 and 5).
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Fig. 2. Relative error v time value for the learning set 1.

Fig. 3. Relative error v time value for the learning set 2.

Fig. 4. Relative error v time value for the test set 1.

Fig. 5. Relative error v time value for the test set 2
(fast cylinders only).

The obtained specialised neural model of a pneu-
matic cylinder had a sufficient precision for typical
pneumatic systems (the precise results can be found
in [7]).

Tentative optimisation calculation utilising
neural model proved advantages of this approach.
A total time of optimisation calculations was many
times shorter even for small systems (it means sys-
tems with low number of cylinders) than the time of
the ones with differential models.

Optimisation

of seat suspension system

The considered seat suspension system consists of
a shear-guidance mechanism, a pneumatic spring and
a hydraulic shock-absorber. The pneumatic spring is
modified by means of an additional, non-deformable
air reservoir; hence its characteristic stiffness can
be modified. Furthermore, an extra damping force
is introduced in the suspension system by throt-
tling of the air-flow between the additional air reser-
voir and the pneumatic spring. Modifying the cir-
cular orifice inside the shock-absorber enables one
to change the damping characteristics of the rela-
tive velocity domain. The non-linear shaping of the
pneumatic spring and of hydraulic shock-absorber
forces is desirable to obtain the best vibro-isolation
properties of the suspension system. In order to en-
able adjusting the force characteristics of passive sus-
pension, two criteria are defined: effective accelera-
tion of isolated body (criterion k1) and maximum
relative displacement of suspension system (criteri-
on k2).
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The effective acceleration on the seat should ap-
proach zero to protect isolated body from harmful vi-
brations; the maximum relative displacement of seat
suspension should approach zero as well, in order to
limit the suspension travel. These criteria are in op-
position to each other. It means that an improve-
ment in one criterion requires a degradation of the
other.
Each criterion can be presented as a function of

five independent decision variables:
x1 – a volume of the additional air reservoir,
x2 – an effective air-flow air between the addi-

tional reservoir and the pneumatic spring,
x3 – a radius of the shear guidance mechanism,
x4 – a diameter of orifice in the shock-absorber’s

piston,
x5 – a length of orifice in the shock-absorber’s

piston.
A precise mathematical description of the plant

as well as some experimental results are presented
in [8–11].
During the preliminary research the optimisation

is conducted separately for each criterion.
Having taken into consideration the object’s de-

gree of complexity and the theoretical basics of ap-
proximation, as well as having carried out several
test runs it has been decided that:
1. two neural models should be created – one for each
criterion,

2. a feed-forward neural network should be utilised
(multi-layer perceptron) with five inputs (for x1

to x5 variables), one output (criterion K1 value or
criterion K2 value) and one hidden layer with 17
and 27 neurones, respectively,

3. the back-propagation learning algorithm based on
the Levenberg- Marquardt optimisation method
seems to be the most suitable.

The learning process of the first network (crite-
rion K1) has been stopped after 1000 epochs with
the maximal relative error (MAE) of 3.41% and the
mean relative error (MRE) of 0.241%. Trials involv-
ing the test set have resulted in the maximal rela-
tive error of 1,52% and the mean relative error of
0.248%.

The learning process of the second network (cri-
terion K2) has been stopped after 2000 epochs with
the maximal relative error of 9.70% and the mean
relative error of 0.587%. Trials involving the test set
have resulted in the maximal relative error of 4.88%
and the mean relative error of 0.547%.

The obtained neural models have been regarded
as capable of substituting the differential models in
optimisation of the seat suspension system.

The optimisation process was conducted ten
times for each criterion and each model – it amount-
ed to a total of forty optimisation runs. The initial
values of the decision variables were randomly se-
lected from a set of defined ranges. The MatLab
Simulink environment was used in all calculations.
A constant step method was applied for an integra-
tion of the differential model because of the specific
requirements of the first calculation criterion (K1).

A comparison of optimisation results for the dif-
ferential and neural models is presented in Table 2
(for the K1 criterion) and Table 3 (for the K2

one).

Precise analysis of the results can be found in [12].
Generally, all of the obtained results are consistent
with the theory of seat suspension systems, other
studies and experimental results. The obtained re-
sults indicate, that the neural models are much faster
than the differential ones, providing equally valuable
optimisation task solutions.

Table 2
Optimisation results for criterion K1: x1 to x5 – optimal values of the decision variables for the differential model (DEM)

and the neural model (ANN), the criterion value and the time of calculation

x1 · 10
3 x2 · 10

5 x3 · 10 x4 · 10
3 x5 · 10

2 K1 · 10 Time [s] TDEM

TANNDEM ANN DEM ANN DEM ANN DEM ANN DEM ANN DEM ANN DEM ANN

8.83 8.33 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 667 1.34 498

8.83 9.03 1.00 1.00 1.30 1.29 3.00 3.00 1.00 1.83 7.23 7.32 847 1.28 662

8.83 8.32 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 608 0.983 619

8.83 8.32 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 615 0.952 646

8.83 8.33 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 616 0.936 658

8.83 8.31 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 572 0.873 655

8.83 8.32 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 1240 1.06 1170

8.82 8.32 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 900 0.921 977

8.83 8.33 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.86 7.23 7.31 817 1.56 524

8.82 8.32 1.00 1.00 1.30 1.26 3.00 3.00 1.00 1.85 7.23 7.31 532 0.951 559
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Table 3
Optimisation results for criterion K2: x1 to x5 – optimal values of the decision variables for the differential model (DEM)

and the neural model (ANN), the criterion value and the time of calculation

x1 · 10
4 x2 · 10

7 x3 · 10
2 x4 · 10

3 x5 · 10 K2 Time [s] TDEM

TANNDEM ANN DEM ANN DEM ANN DEM ANN DEM ANN DEM ANN DEM ANN

1.00 1.00 58.30 52.70 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 576 1.030 559

1.00 1.00 23.30 80.80 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 612 0.437 1400

1.00 1.00 1.23 53.50 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 812 0.811 1001

1.00 1.00 90.00 75.80 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 373 0.936 399

96.20 1.00 1.00 72.90 12.80 5.00 1.50 1.50 1.30 1.30 2.12 2.24 416 0.920 452

1.00 1.00 8.28 79.30 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 440 0.640 688

1.00 1.00 6.41 39.10 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 914 0.671 1362

1.00 1.00 1.63 67.20 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 1040 0.686 1516

1.00 1.00 43.40 82.00 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 888 0.484 1835

1.00 1.00 1.33 75.10 5.00 5.00 1.50 1.50 1.30 1.30 2.24 2.24 662 1.090 607

Conclusions

Some applications of Artificial Neural Networks
to improve CAD system have been presented in this
paper. These are real-life engineering application. It
can be concluded that the use of ANNs in CAD
seems to be a good approach. Especially, application
of neural models for substitution of the differential
models gives very good results. For example in opti-
misation the neural models are much faster than the
differential ones, providing equally valuable optimi-
sation task solutions.

Although the presented examples mostly origi-
nate from Pneumatic Driving Systems the advan-
tages of ANN should be the same in other areas of
engineering activity.

Generally, it seems that artificial intelligence
gives opportunity to create improved next genera-
tion of CAD systems.

References

[1] Tarnowski W., Basis of technical designing, In se-
ries: Computer Aided Design CAD CAM, WNT
Warszawa 1997 (in Polish).

[2] Grymek Sz., Kiczkowiak T., Assessment of feasibili-
ty of traditional methods of calculation of pneumatic

devices in CAD systems, Proceedings of Faculty of
Mechanical Engineering no 23 Technical University
of Koszalin 1998 (in Polish).

[3] Grymek Sz., Kiczkowiak T., Computer module for
aiding calculation and selection of pneumatic de-

vices from the catalogue, Proceedings of XI Confer-
ence “PNEUMA’98”, Koszalin (in Polish).

[4] Gerc E.W., Pneumatic drives, Theory and calcula-
tions, WNT Warszawa 1973 (in Polish).

[5] Grymek Sz., Kiczkowiak T., Application of ANN to
the Selection of a Valve from the Catalogue, Inter-
national Conference on Artificial Neural Networks
ICANN’98, Skovde, Sweden, in Springer – Verlag’s
series: Perspectives in Neural Computing, pp. 851–
856, London 1998.

[6] Grymek Sz., Kiczkowiak T., Selection of a Pneu-
matic Valve. Neural Approach, Proceedings of Tenth
World Congress on the Theory of Machines and
Mechanisms, Oulu, Finland 1999.

[7] Grymek Sz., Kiczkowiak T., Neural Models of
Dynamic Plants in Optimisation, IV Conference
“Neural Networks and Their Applications” Za-
kopane, Poland 1999.

[8] Chamera S., Maciejewski I., Krzyżyński T., Mod-
elling of a vehicle seat suspension system with pneu-

matic spring and viscous dampers, PAMM, Wiley –
VCH publishing house, Volume 7, Issue 1, Date: De-
cember 2007.

[9] Maciejewski I., Kiczkowiak T., Krzyżyński T., On
optimisation of pneumatic circuit of seat suspen-

sion, Logistyka 3/2009 (CD publication).

[10] Maciejewski I., On modelling of working machines
seat suspension, Logistyka 3/2009 (CD publication).

[11] Maciejewski I., Meyer L., Krzyżyński T., Modelling
and multi-criteria optimisation of passive seat sus-

pension vibro-isolating properties, Journal of Sound
and Vibration 2000, doi:10.1016/j.jsv.2009.02.021.

[12] Grymek Sz., Kiczkowiak T., Maciejewski I., Differ-
ential models versus neural models in optimisation,
Polish Journal of Environmental Studies, Vol. 18,
No 4B (2009), ISSN 1230-1485.

Volume 1 • Number 2 • July 2010 37

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

