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Abstract The total bondage number bt (G) of a graph G with no isolated vertex is
the cardinality of a smallest set of edges E ′ ⊆ E(G) for which (1) G − E ′ has no
isolated vertex, and (2) γt (G − E ′) > γt (G). We improve some results on the total
bondage number of a graph and give a constructive characterization of a certain class
of trees achieving the upper bound on the total bondage number.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph of order n. We denote the open neigh-
borhood of a vertex v of G by NG(v) or just N (v), and its closed neighborhood
by NG [v] = N [v]. For a vertex set S ⊆ V (G), N (S) = ⋃

v∈S N (v) and N [S]
= ⋃

v∈S N [v]. The degree degG(x) (or just deg(x)) of a vertex x denotes the number
of neighbors of x in G. The maximum and minimum degree of a vertex of G are
denoted by �(G) and δ(G), respectively. A set of vertices S in G is a dominating set
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if N [S] = V (G). The domination number of G, denoted by γ (G), is the minimum
cardinality of a dominating set of G. A set of vertices S in a graph G without isolated
vertex is a total dominating set, or just TDS, if N (S) = V (G). The total domination
number of G, denoted by γt (G), is the minimum cardinality of a TDS of G. We refer
to a γt (G)-set in a graph G as a minimum cardinality TDS of G. For references on
domination in graphs see for example [6,7].

With Kn we denote the complete graph on n vertices, with Pn = (v1, v2, . . . , vn)

the path on n vertices, with Cn the cycle of length n, and with K p,q the complete
bipartite graph, which one partite set is of cardinality p and another partite set is of
cardinality q. We also let g(G) be the girth of G, that is the length of a shortest cycle
in G. Denote by dG(u, v) the distance between u and v in G. The diameter of G is
defined as diam(G) = max{dG(u, v) : u, v ∈ V (G)}.

If S is a subset of V (G), then we denote by G[S] the subgraph of G induced by S.
We recall that a leaf in a graph is a vertex of degree one and a support vertex is one
that is adjacent to a leaf. Let S(G) be the set of all support vertices in a graph G. A
pendant edge is an edge incident with a leaf.

The bondage number b(G) of a nonempty graph G is the minimum cardinality
among all sets of edges E ′ ⊆ E(G) for which γ (G − E ′) > γ (G). This concept was
introduced by Bauer, Harary, Nieminen and Suffel in [1], and has been further studied
for example in [4,5,13]. For more information on this topic we refer the reader to the
survey article by Dunbar, Haynes, Teschner and Volkmann [3].

Kulli et al. in [9] introduced the concept of total bondage in graphs. The total
bondage number bt (G) of a graph G with no isolated vertex is the cardinality of a
smallest set of edges E ′ ⊆ E(G) for which (1) G − E ′ has no isolated vertex, and (2)
γt (G − E ′) > γt (G). In the case that there is no subset of edges E ′ such that (1) and
(2) both hold, we define bt (G) = ∞. The total bondage number was further studied
in [12]. Other types of bondage in trees give raise to many interesting problems. This
was studied for example in [10] and [11].

In this paper we continue the study of total bondage in graphs. Since determining
the exact number of the total bondage number for general graphs is a hard problem
[8], in this paper we establish bounds on this number in some classes of graphs. In
Sect. 2 we state some known and preliminary results. In Sect. 3 we first obtain an
improved upper bound for the total bondage number of a tree and then we give an
interesting constructive characterization of a certain class of trees achieving equal-
ity for the upper bound. In Sect. 4 we obtain some upper bounds on bt (G) in terms
of maximum and minimum degrees, which in particular improve similar previous
bounds.

2 Known and Preliminary Results

In this section we give some known and preliminary results which we use in the next
sections. We begin with the following exact values of total bondage number of paths
and cycles.
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Proposition 1 (Kulli et al. [9]) For n ≥ 2,

bt (Pn) =

⎧
⎪⎨

⎪⎩

∞ if n ≤ 3

1 if n ≥ 4, n �≡ 2 (mod 4)

2 if n ≥ 4, n ≡ 2 (mod 4)

.

Proposition 2 (Kulli et al. [9]) For n ≥ 3,

bt (Cn) =

⎧
⎪⎨

⎪⎩

∞ if n = 3

2 if n ≥ 4, n �≡ 2 (mod 4)

3 if n ≥ 4, n ≡ 2 (mod 4)

.

Sridharan et al. in [12] obtained the following upper bounds for the total bondage
number of graphs.

Theorem 1 (Sridharan et al. [12]) Let G be a connected graph of order n ≥ 4. Then,

1. bt (G) ≤ n − 1 if g(G) ≥ 5,
2. bt (G) ≤ n − 2 if g(G) = 4,
3. bt (G) ≤ n − 2 if there is a triangle which at least one of its vertices is a support

vertex in G,
4. bt (G) ≤ n − 1 if there is a triangle which at least one of its vertices is of degree

two in G.

Theorem 2 (Sridharan et al. [12]) If T is a tree on n vertices and T �= K1,n−1, then

bt (T ) ≤ min

{

�(T ),
n − 1

3

}

.

We shall improve Theorems 1 and 2. The following observations are easily verified.

Remark 1 If p non-pendant edges can be removed from a graph G to obtain a graph
H without an isolate vertex and with bt (H) = t , then bt (G) ≤ p + t .

Remark 2 The total bondage number of a graph G does not change if we add a leaf
to a support vertex of G.

Remark 3 Let x be a support vertex of a graph G adjacent to at least two leaves. Then
the total bondage number of G does not change if we remove from G a leaf adjacent
to x .

The following is a direct consequence of Remark 2.2 of [12].

Proposition 3 For a graph G, bt (G) = ∞ if and only if each connected component
of G is either C3 or contains only pendant edges.

Let B be the class of all graphs G with no isolated vertex such that bt (G) �= ∞.
From now on all graphs G considered in the rest of the paper belong to B.
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3 Trees

In this section we study total bondage number of trees T ∈ B. We improve a previous
upper bound for the total bondage number of a tree. Then we present a constructive
characterization for a certain class of trees achieving equality for the upper bound.
Some of the results presented in this section reference to lemmas presented in Sect. 4.
First we have the following upper bound for caterpillars. We recall that a caterpillar
is a tree with the property that the removal of its leaves results in a path.

Proposition 4 For a caterpillar T, bt (T ) ≤ 2.

Proof Let T be a caterpillar. Since T ∈ B, diam(T ) ≥ 3. If diam(T ) ∈ {3, 4}, then
obviously bt (T ) = 1. So assume that diam(T ) ≥ 5. Let (x, x1, x2, x3, . . . , xdiam(T ))

be a diametrical path, where x is a leaf. Surely γt (T − {x1x2, x3x4}) > γt (T ) and the
result follows. 
�

If T is a tree with maximum degree two, then by Proposition 1, bt (T ) ≤ 2. In the
following we give a sharp upper bound for the total bondage number of trees with
maximum degree at least three.

Theorem 3 For any tree T with maximum degree at least three,

bt (T ) ≤ �(T ) − 1.

Proof Let T be a tree on n vertices, and let �(T ) ≥ 3. By Remarks 2 and 3, in
what follows, we simply consider only trees in which every support vertex is adjacent
to exactly one leaf. Since T ∈ B, diam(T ) ≥ 3. If diam(T ) = 3, then obviously
bt (T ) = 1. So assume that diam(T ) ≥ 4. Let P = (x, x1, x2, x3, . . . , xdiam(T )) be
a diametrical path. Note that x is a leaf. Suppose to the contrary that bt (T ) ≥ �(T ).
Since bt (T ) ≥ 3, γt (T − x1x2) = γt (T ). This implies that for any mimimum TDS S
of T − x1x2, x2 �∈ S. As a consequent deg(x2) = 2, since P is the longest path of T .
By Lemma 7, deg(x3) ≥ 3. If diam(T ) = 4, then γt (T ) = 3, and γt (T − x1x2) = 4,
which contradicts bt (T ) ≥ �(T ). So we suppose that diam(T ) ≥ 5. We consider the
following cases.

1. x3 is a support vertex. Let A be the set of all pendant edges incident with x3. Let T1
be a graph obtained from T − x1x2 by removing each edge incident with x3 with
exception of x2x3 and the edges in A. Let H1 be the component of T1 containing
x3. It is obvious that H1 is a star. Let S be a γt (T1)-set, and let S1 = S ∩ V (H1).
It follows that (S − (S1 ∪ {x})) ∪ {x2, x3} is a TDS for T of cardinality less than
γt (T ), a contradiction.

2. x3 is not a support vertex. First suppose that there is a support vertex y1 �= x4
where y1 is adjacent to x3. Let y2 be the leaf adjacent to y1. If y1 is adja-
cent to a support vertex y3 and y4 is a leaf adjacent to y3, then the path P ′ =
(y4, y3, y1, x3, x4, ..., xdiam(T )) is a diametrical path. Then similar to what we
observed for deg(x2), we obtain deg(y1) = 2, a contradiction. So any vertex of
N (y1) − {x3} is a leaf. Let S2 be a γt (T − {x3 y1, x1x2})-set. Since x2 is a leaf in
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Fig. 1 Tree R5

T − {x3 y1, x1x2}, we have x3 ∈ S2. However, γt (T − {x3 y1, x1x2}) = γt (T ). Let
T2 be the component of T − {x3 y1, x1x2} that contains y1. Let v �= y1 be a vertex
such that v ∈ V (T2) ∩ S2. Then (S2 − {x, v}) ∪ {x2} is a TDS for T of cardinality
less than γt (T ). This contradiction implies that no vertex in N (x3) − {x4} is a
support vertex. Let T3 be the component of T − x3x4 containing x3, and let T4 be
obtained from T3 by removing all leaves of T3. So any leaf of T4 is at distance two
from x3. Furthermore, with a similar discussion as in the proof for deg(x2) = 2,
we observe that T4 is a tree obtained from K1,deg(x3)−1 by subdividing any edge. It
is obvious that γt (T −{x1x2, x3x4}) = γt (T ). Let S3 be a γt (T −{x1x2, x3x4})-set
containing as small number of leaves as possible. Then x3 ∈ S3, since x2 is a leaf
in T −{x1x2, x3x4}. Further, V (T4) ⊆ S3. Now (S3 −{x, x3})∪ {x2} is a TDS for
T of cardinality less than γt (T ), a contradiction. 
�

We note that Theorem 3 improves Theorem 2 in the case when �(T ) <
n(T )+2

3 .

3.1 Characterization of Extremal Trees

In this subsection we obtain a constructive characterization for a certain class of trees
achieving equality for the upper bound of Theorem 3. We will characterize all trees
Tk , where each edge is incident with a support vertex, with k = �(T ) ≥ 4 and having
bt (T ) = � − 1. By Remarks 2 and 3, in what follows, we simply consider only trees
for which every support vertex is adjacent to exactly one leaf. Denote by Tk the set of
all trees Tk in which every support vertex is adjacent to exactly one leaf, each edge is
incident with a support vertex and having bt (T ) = k − 1, where k = �(T ) ≥ 4.

In [12] a tree Hk with �(Hk) = k + 1 and bt (Hk) = k was introduced as follows.
Let x be the central vertex of K1,k−1 for some k ≥ 4 and let Hk be a tree obtained
from K1,k−1 by subdividing each edge twice and adding a new vertex y and joining
y to x . (Note that y is a leaf in Hk and x is a support vertex adjacent to y). In this
paper we label Hk with vertex labels {A, B, C, D, E} to get a labeled tree Rk as fol-
lows. Let l(y) = E , let each leaf except of y has label A, let each support vertex of
degree 2 has label B, let the vertex of degree k − 1 has label D and let every other
vertex has label C . It is straightforward to see that γt (Rk) = 2k − 1, k = �(Rk) and
bt (Rk) = k − 1 = �(Rk) − 1. Moreover each edge of Rk is incident with a support
vertex. See R5 in Fig. 1.
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We describe a procedure to build a family Rk of trees Tk with vertex labels belong-
ing to the set {A, B, C, D, E} and with k = �(Tk) ≥ 4 as follows. Let Tk ∈ Rk and
let x ∈ V (Tk). We call x an active vertex if l(x) = D and there is a path P3 attached
to x . Let Rk be such that:

1. Contains Rk for k ≥ 4, described as above;
2. Is closed under the following three operations O1,O2,O3:

– Operation O1. Assume T 1
k and T 2

k are two trees belonging to Rk . Let x1 and
x2 be active vertices belonging to T 1

k and T 2
k , respectively and let P1

3 and P2
3

be the paths on three vertices attached to x1 and x2, respectively. Then remove
P1

3 and P2
3 and add the edge x1x2 to obtain a new tree with maximum degree

k.
– Operation O2. Assume T 1

k and T 2
k are two trees belonging to Rk and let

x1
1 , x2

1 be vertices with label C belonging to T 1
k , T 2

k , respectively, such that
dT 1

k
(x1

1) + dT 2
k
(x2

1 ) − 1 ≤ k and dT 1
k
(x1

2) + dT 2
k
(x2

2 ) − 2 ≤ k, where l(x1
2) =

l(x2
2 ) = B and x1

2 is adjacent to x1
1 and x2

2 is adjacent to x2
1 . Denote by x1

3 and
x2

3 the leaves adjacent to x1
2 and x2

2 , respectively. Identify vertices x1
j and x2

j
into one vertex x j for each j ∈ {1, 2, 3} to obtain a new tree with maximum
degree k. Let l(x1) = C, l(x2) = B and l(x3) = A.

– Operation O3. Assume T 1
k and T 2

k are two trees belonging to Rk and let
x1

1 , x2
1 be vertices with label B belonging to T 1

k , T 2
k , respectively, such that

dT 1
k
(x1

1)+dT 2
k
(x2

1 )−1 ≤ k. Denote by x1
2 and x2

2 the leaves adjacent to x1
1 and

x2
1 , respectively. Identify vertices x1

j and x2
j into one vertex x j for each j ∈

{1, 2} to obtain a new tree with maximum degree k. Let l(x1) = B, l(x2) = A.

We first prove that bt (Tk) = �(Tk)−1 for each tree Tk belonging to Rk . To this aim
we first make some observations, which follow immediately from the way in which
each tree in the family Rk is constructed.

Remark 4 If Tk ∈ Rk and v ∈ V (Tk), then

1. l(v) ∈ {A, E} if and only if v is a leaf;
2. l(v) ∈ {B, D} if and only if v is a support vertex;
3. If l(v) = B, then exactly one neighbour of v has label A and every other neighbour

of v has label C ;
4. If l(v) = C , then each neighbour of v is a support vertex. Moreover, exactly one

neighbour of v has label B and every other neighbour of v has label D;
5. If l(v) = D, then exactly one neighbour of v has label E and every other neighbour

of v has label C or D. Moreover, v has k neighbours altogether;
6. Each edge of Tk is incident with a support vertex, e.g. a vertex with label B or D;
7. If l(v) ∈ {B, D}, then v belongs to every minimum TDS of Tk ;
8. If l(v) ∈ {A, C}, then v belongs to some minimum TDS of Tk and each neighbour

of v belongs to every minimum TDS of Tk ;
9. If l(v) = E , then v belongs to no minimum TDS of Tk ;

10. γt (Tk) = 2|{u ∈ V (Tk) : l(u) = B}| + |{u ∈ V (Tk) : l(u) = D}|.
Lemma 1 For k ≥ 4, if a tree Tk belongs to the family Rk , then Tk without labels on
vertices belongs to Tk .
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Proof Let Tk be a tree belonging to the family Rk . Clearly �(Tk) = k and each edge
of Tk is incident with a support vertex, so it suffices to justify that bt (Tk) = k − 1.
Suppose bt (Tk) < k − 1. Let F ⊆ E(Tk) be such that γt (Tk) < γt (Tk − F) and
|F | = bt (Tk) ≤ k − 2. By Remark 4, F contains only edges vw of three types:

– l(v) = l(w) = D;
– l(v) = B and l(w) = C ;
– l(v) = C and l(w) = D.

For any vw ∈ F since |F | = bt (Tk) ≤ k − 2, we conclude that γt (Tk − (F
−{vw})) = γt (Tk) and γt (Tk − F) > γt (Tk − (F − {vw})). We consider three cases
for labels of v and w.

Case 1. Assume first that l(v) = l(w) = D. Remark 4 implies that both v and w

have in Tk − (F − {vw}) at least two neighbours with labels in {C, D} such that if a
vertex has label C , then is adjacent to a support vertex with label B and if a vertex has
label D, then it is adjacent to a vertex with label C or D, which is not a leaf. Thus,
γt (Tk − F) = γt (Tk − (F − {vw})), which is impossible.

Case 2. Assume now that l(v) = B and l(w) = C . Since |F | = bt (Tk) ≤ k −2, we
conclude that γt (Tk − (F −{vw})) = γt (Tk) and γt (Tk − F) > γt (Tk − (F −{vw})).
Since vw is a non–pendant edge, Remark 4 implies that w is adjacent in Tk−(F−{vw})
to at least one vertex with label D, say y, such that y has at least one neighbour in
Tk − (F −{vw}), except of w, with label in {C, D} such that if it has label C , then it is
adjacent to a support vertex with label B and if a vertex has label D, then it is adjacent to
a vertex with label C or D, which is not a leaf. Thus, γt (Tk −F) = γt (Tk −(F−{vw})),
which is impossible.

Case 3. Lastly, assume that l(v) = C and l(w) = D. Since |F | = bt (Tk) ≤ k − 2,
we conclude that γt (Tk −(F−{vw})) = γt (Tk) and γt (Tk −F) > γt (Tk −(F−{vw})).
Since vw is a non–pendant edge, Remark 4 implies that v is adjacent in Tk −(F−{vw})
to at least one vertex with label in {B, D}, say y �= w, such that y has at least one
neighbour in Tk − (F −{vw}). Moreover, w has at least one neighbour, different from
v, with label in {C, D} such that if a vertex has label C , then it is adjacent to a support
vertex with label B and if a vertex has label D, then is adjacent to a vertex with label
C or D, which is not a leaf. Thus, γt (Tk − F) = γt (Tk − (F − {vw})), which is
impossible.

We conclude that bt (Tk) ≥ k − 1 and Theorem 3 implies the desired result. 
�
Lemma 2 If every support vertex of a tree T is adjacent to exactly one leaf, �(T ) ≥ 4
and bt (T ) = �(T ) − 1, then

(a) degT (x) = degT (y) = �(T ) − 1 for each adjacent support vertices x, y;
(b) dT (x, y) ≥ 3 for each pair of support vertices x, y of degree 2.

Proof (a) It is an immediate consequence of Lemma 4.
(b) Let x, y be two support vertices of degree 2 and denote by x ′, y′ the two leaves

adjacent to x and y, respectively. If x and y are adjacent, then T is a path on
4 vertices, which is a contradiction. Thus suppose d(x, y) = 2 and let z be the
vertex adjacent to both x and y. Since T is not a path, degT (z) ≥ 3. Let S be
a smallest TDS of T − xz − yz. Then x, x ′, y, y′ belong to S, but on the other
hand, (S − {x ′, y′}) ∪ {z} is a smaller TDS of T . 
�
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Lemma 3 If a tree Tk belongs to the family Tk for some k ≥ 4, then it is possible to
label vertices of Tk with labels {A, B, C, D, E} in such a way Tk belongs to the family
Rk .

Proof Let Tk be a tree belonging to the family Tk . Then, by the definition of Tk , every
support vertex of Tk is adjacent to exactly one leaf, each edge of Tk is incident with a
support vertex and bt (Tk) = �(Tk)−1 = k−1, where k = �(Tk) ≥ 4. Since bt (Tk) =
�(Tk) − 1 ≥ 3, clearly diam(Tk) ≥ 4. Let P = (x, x1, x2, x3, . . . , xdiam(Tk )) be a
diametrical path. Since γt (Tk − x1x2) = γt (Tk), we conclude that for any minimum
TDS S of Tk −x1x2, x2 /∈ S. Since P is a longest path of Tk it follows that deg(x2) = 2.
By Lemma 7, deg(x3) ≥ 3. If diam(Tk) = 4, then γt (Tk) = 3 and γt (Tk − x1x2) = 4,
which contradicts bt (Tk) = �(Tk)− 1. So we assume that diam(Tk) ≥ 5. Since each
edge of Tk is incident with a support vertex, we conclude that x3 is a support vertex.
Then by Lemma 5,

�(Tk) − 1 = k − 1 = bt (G) ≤ deg(x1) + deg(x2)

+ deg(x3) − 5 = 2 + 2 + deg(x3) − 5.

Hence deg(x3) = �(Tk). Moreover, if there is a leaf at distance 3 from x3, say
(z, z1, z2, x3) is the path from the leaf z �= x to x3, where z2 �= x2, then similar to
what we observed for x1 and x2, we obtain degTk

(z1) = degTk
(z2) = 2.

Suppose x3 is adjacent to a support vertex, say y′, and let y′′ be the leaf adjacent to
y′. Then degTk

(y′) = 2. Let S be a minimum TDS of Tk − x3 y′ containing as small
number of leaves as possible. Then S − {y′′} is a TDS of Tk , implying bt (Tk) = 1,
which is impossible. For the same reasons, diam(Tk) ≥ 6. Hence, the component of
Tk − x3x4 containing x3 is the tree Rk−1 and if diam(Tk) = 6, then Tk = Rk and
thus Tk ∈ Rk . Therefore in what follows we assume diam(Tk) ≥ 7. We follow by
induction on the number s(Tk) of vertices of degree �(Tk) in Tk . If s(Tk) = 1, then
obviously Tk = Rk . Thus assume that for every tree T ′

k with s(T ′
k) < s(Tk), if T ′

k ∈ Tk ,
then it is possible to label the vertices of T ′

k in such a way T ′
k ∈ Rk .

1. If x4 is a support vertex, then by our assumptions, x4 is adjacent to exactly one
leaf and by Lemma 4 we obtain that x4 is of degree k. Denote by T x3 and T x4 the
two components of Tk − x3x4 containing x3 and x4, respectively. Attach P3 to x3
to obtain a tree T x3

k and attach P3 : q1 − q2 − q3 to x4 to obtain a tree T x4
k . Clearly

T x3
k = Rk and �(T x4

k ) = k. Moreover, bt (T
x3

k ) = k − 1. Suppose bt (T
x4

k ) <

k − 1. In this situation let F ⊆ E(T x4
k ) be such that γt (T

x4
k ) < γt (T

x4
k − F) and

|F | = bt (T
x4

k ) ≤ k − 2.
If x4q3 ∈ F , then for F ′ = (F − {x4q3}) ∪ {x3x4} we would obtain γt (Tk) <

γt (Tk − F ′) contradicting that bt (Tk) = k − 1. Thus x4q3 /∈ F .
If q2q3 ∈ F and x4q3 /∈ F , then since x4 is a neighbour of at least two leaves in
T x4

k − F , Remark 3 implies that bt (T
x4

k − F) = bt ((T
x4

k − F) − q3). Hence for
F ′′ = (F − {q2q3}) ∪ {x4q3} we would have γt (T

x4
k ) < γt (T

x4
k − F ′′) and again

we would obtain a contradiction.
If q2q3 /∈ F and x4q3 /∈ F , then clearly γt (Tk) < γt (Tk − F), which is impossible.
Therefore, bt (T

x4
k ) = k − 1 and by induction hypothesis, T x4

k is in Rk . Since x4 is
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an active vertex in T x4
k and x3 is an active vertex in T x3

k , we conclude that Tk may
be obtained from T x3

k and T x4
k by Operation O1.

2. If x4 is not a support vertex, then each neighbour of x4 is a support vertex since
each edge is incident with a support vertex. Thus, x5 is a support vertex and let x ′

5
be the leaf adjacent to x5.

(a) Assume additionally x4 is a neighbour of a support vertex of degree 2, say
y, and let y′ be the leaf adjacent to y. Let degTk

(x4) ≥ 4 and denote by z a
neighbour of x4 different from x3, x5, y. Since x4z is incident with a support
vertex, we obtain that z is a support vertex. Denote by z′ the leaf adjacent to
z. If degTk

(z) = 2, then by Lemma 2, bt (Tk) < 3. Hence x4 is a neighbour of
exactly one support vertex of degree 2.
Thus assume degTk

(z) ≥ 3. Then by Lemma 2, each neighbour of z is not a
support vertex and z belongs to a longest path of Tk . Moreover, denote by S a
minimum total dominating set of T − (A ∪ {x4 y}), where A is a set of all non-
pendant edges incident with z except for zx4. Without loss of generality we
may assume that z, x4, y, y′ belong to S. Further, S − {y′} is a smaller TDS of
Tk , so bt (Tk) ≤ |A|+1. Since |A| = degTk

(z)−2 and bt (Tk) = �(Tk)−1, we
conclude that degTk

(z) = �(Tk). By similar reasoning, degTk
(x5) = �(Tk).

Denote by T z and T x4
k the two components of Tk − zx4 containing z and

x4, respectively. Attach P3 to z to obtain a tree T z
k . Clearly T z

k = Rk and
�(T x4

k ) = k. Moreover, bt (T
z

k ) = k − 1.
Suppose bt (T

x4
k ) < k − 1. In this situation let F ⊆ E(T x4

k ) be such that
γt (T

x4
k ) < γt (T

x4
k − F) and |F | = bt (T

x4
k ) ≤ k − 2. Then γt (Tk − (F ∪

{x4z})) > γt (Tk − F), so |F | = k − 2. Let S be a minimum TDS of Tk − F .
Since x4 is not isolated in T x4

k −F, x4 has at least two neighbours in Tk −F . Fur-
ther, each such neighbour is a support vertex, so belongs to S. If x4 y ∈ F , then
x4 /∈ S and S is also a total dominating set of Tk − (F ∪ {x4z}). If x4 y /∈ F ,
then again S is a TDS of Tk − (F ∪ {x4z}). Thus γt (Tk) = γt (Tk − F) =
γt (Tk − (F ∪ {x4z})), which is impossible. Thus bt (T

x4
k ) = k − 1 and by

induction hypothesis, T x4
k is in Rk . Let l(y′) = A, l(y) = B and l(x4) = C .

Hence Tk may be obtained from Rk and T x4
k by Operation O2.

If degTk
(x4) = 3, then we remove x3x4 to obtain trees T x3 and T x4

k and the
rest of the proof is similar to the case when degTk

(x4) ≥ 4.
(b) If x4 is not a neighbour of a support vertex of degree 2 and degTk

(x4) ≥ 3.
Then x4 is a neighbour of a support vertex z, where z /∈ {x3, x5} and denote
by z′ the leaf adjacent to z. By similar arguing as above, we conclude that
degTk

(z) = �(Tk) and each neighbour of z is not a support vertex and z
belongs to a longest path of Tk . Denote by T z and T x4

k the two components
of Tk − x4z containing z and x4, respectively. Attach P3 to z to obtain a tree
T z

k . Clearly T z
k = Rk and �(T x4

k ) = k. Moreover, bt (T
z

k ) = k − 1. By similar
arguments as in Case 2a we conclude that bt (T

x4
k ) = k − 1 and by induction

hypothesis, T x4
k is in Rk . Let l(x ′

5) = A, l(x5) = B and l(x4) = C . Hence Tk

may be obtained from Rk and T x4
k by Operation O2.

(c) If x4 is of degree 2, then denote by T x4 and T x5
k the two components of Tk−x4x5

containing x4 and x5, respectively. Attach P2 to x4 to obtain a tree T x4
k . Clearly
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Fig. 2 Tree T

T x4
k = Rk and bt (T

x4
k ) = k − 1. If �(T x5

k ) < k, then only x3 and x5 are ver-
tices of degree k in Tk and x5 has similar properties as x3 and diam(Tk) = 8.
However then bt (Tk) < k − 1, a contradiction. Thus �(T x5

k ) = k. By similar
arguments as in Case 2a we conclude that bt (T

x5
k ) = k − 1 and by induction

hypothesis, T x5
k is in Rk . Let l(x ′

5) = A, l(x5) = B and l(x4) = C . Hence Tk

may be obtained from Rk and T x4
k by Operation O3. 
�

As an immediate consequence of Lemmas 1 and 3, we have the following

Theorem 4 For each k ≥ 4, if we omit vertex labelling of trees in Rk ,

Tk = Rk .

In Fig. 2 is a tree T with bt (T ) = �(T ) − 1 = 3 and containing an edge not
incident with a support vertex.

We finish this section with the following open problem.

conjecture 1 T is a tree with �(T ) ≥ 5 and bt (T ) = �(T ) − 1 if and only if T
belongs to the family Rk for k ≥ 5.

4 Upper Bounds

In this section we obtain some upper bounds for the total bondage number of a graph
G ∈ B in terms of maximum and minimum degrees.

Lemma 4 If x and y are two adjacent support vertices in a graph G, then

bt (G) ≤ min{deg(x), deg(y)} − 1.

Proof Remove all edges incident with x with exception of pendant edges to obtain a
graph H . Suppose that γt (H) = γt (G). Let S be a γt (H)-set. Clearly, y ∈ S. Let H1
be the component of H containing x and let x1 �= x be a vertex of H1 with x1 ∈ S.
Then S−{x1} is a TDS for G of cardinality less than γt (G), a contradiction. Therefore,
γt (H) > γt (G) and the result follows. 
�
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Lemma 5 Let a graph G contain a path (x, y, z) on three vertices such that {x, z} ⊆
S(G) and y �∈ S(G), then

bt (G) ≤ deg(x) + deg(y) + deg(z) − 5.

Proof Remove all edges incident with x, y, z with exception of xy and the pendant
edges incident with x or z, to obtain a graph H . It is obvious that γt (H) > γt (H+yz) ≥
γt (G) and so the result follows. In case of G = P5 the bound is sharp. 
�

Similarly we have the following.

Lemma 6 If a graph G contains a path (x, y, z) on three vertices such that {x, y} ∩
S(G) = ∅ and z ∈ S(G), then

bt (G) ≤ deg(x) + deg(y) + deg(z) − 4.

Note that under assumptions of Lemma 5, bt (G) ≤ 3�(G)−5 and under assumptions
of Lemma 6, bt (G) ≤ 3�(G) − 4.

Theorem 5 Assume that a graph G contains a path (v1, v2, v3, v4) such that
G −{v1, v2, v3, v4} has no isolated vertex. If G1 is the subgraph induced by v1, v2, v3,

v4, then

bt (G) ≤
4∑

i=1

deg(vi ) − |E(G1)| − 2.

This bound is sharp.

Proof Let G1 be the subgraph induced by v1, v2, v3, v4. We remove all edges incident
with v1, v2, v3, v4 except the edges v1v2 and v3v4 to obtain a graph H . If γt (H) =
γt (G), then we let S be a γt (H)-set. It follows that S − {v1, v4} is a TDS for G of
cardinality less than γt (G), a contradiction. So γt (H) > γt (G) and thus bt (G) ≤∑4

i=1 deg(vi ) − |E(G1)| − 2. The sharpness follows by Proposition 2. 
�
Since the graph G1 constructed in previous theorem has at least 3 edges, bt (G) ≤∑4
i=1 deg(vi ) − 5. Also if deg(vi ) = δ(G) for some 1 ≤ i ≤ 4, then bt (G) ≤

3�(G) + δ(G) − 5.
The following upper bound is also useful.

Lemma 7 Let (x, y, z, w) be a path in a graph G and let deg(w) ≤ deg(x) =
deg(y) = deg(z) = 2. Then

bt (G) ≤ deg(w) + 1.

Proof By Propositions 1 and 2, we assume that G �∈ {P4, P5, P6, C4, C5}. Let a �= y
be a vertex adjacent to x .
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Assume first that deg(w) = 1. Let S1 be a γt (G − ax − yz)-set. If |S1| = γt (G),
then S1 − {w, x} is a TDS for G of cardinality smaller than γt (G), a contradiction.
This implies that |S1| > γt (G) and hence bt (G) ≤ 2 = deg(w) + 1.

Assume next that deg(w) = 2. Let b �= z be a vertex adjacent to w. If deg(a) = 1
or deg(b) = 1, then the situation is similar to the case when deg(w) = 1. Thus we
may assume that deg(a) ≥ 2 and deg(b) ≥ 2. Let S2 be a γt (G − ax − yz − wb)-set.
If |S2| = γt (G), then S2 − {x, w} is a TDS for G of cardinality smaller than γt (G).
This implies that |S2| > γt (G) and so bt (G) ≤ 3 = deg(w) + 1. 
�

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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