Some Progress on Total Bondage in Graphs

Nader Jafari Rad • Joanna Raczek

Received: 25 August 2011 / Revised: 12 February 2013 / Published online: 17 March 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract

The total bondage number $b_{t}(G)$ of a graph G with no isolated vertex is the cardinality of a smallest set of edges $E^{\prime} \subseteq E(G)$ for which (1) $G-E^{\prime}$ has no isolated vertex, and (2) $\gamma_{t}\left(G-E^{\prime}\right)>\gamma_{t}(G)$. We improve some results on the total bondage number of a graph and give a constructive characterization of a certain class of trees achieving the upper bound on the total bondage number.

Keywords Domination number • Total domination • Total bondage • Tree
Mathematics Subject Classification (2000) 05C69•05C05

1 Introduction

Let $G=(V(G), E(G))$ be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_{G}(v)$ or just $N(v)$, and its closed neighborhood by $N_{G}[v]=N[v]$. For a vertex set $S \subseteq V(G), N(S)=\bigcup_{v \in S} N(v)$ and $N[S]$ $=\bigcup_{v \in S} N[v]$. The degree $\operatorname{deg}_{G}(x)$ (or just $\operatorname{deg}(x)$) of a vertex x denotes the number of neighbors of x in G. The maximum and minimum degree of a vertex of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. A set of vertices S in G is a dominating set

[^0]if $N[S]=V(G)$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A set of vertices S in a graph G without isolated vertex is a total dominating set, or just TDS, if $N(S)=V(G)$. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS of G. We refer to a $\gamma_{t}(G)$-set in a graph G as a minimum cardinality TDS of G. For references on domination in graphs see for example [6,7].

With K_{n} we denote the complete graph on n vertices, with $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ the path on n vertices, with C_{n} the cycle of length n, and with $K_{p, q}$ the complete bipartite graph, which one partite set is of cardinality p and another partite set is of cardinality q. We also let $g(G)$ be the girth of G, that is the length of a shortest cycle in G. Denote by $d_{G}(u, v)$ the distance between u and v in G. The diameter of G is defined as $\operatorname{diam}(G)=\max \left\{d_{G}(u, v): u, v \in V(G)\right\}$.

If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. We recall that a leaf in a graph is a vertex of degree one and a support vertex is one that is adjacent to a leaf. Let $S(G)$ be the set of all support vertices in a graph G. A pendant edge is an edge incident with a leaf.

The bondage number $b(G)$ of a nonempty graph G is the minimum cardinality among all sets of edges $E^{\prime} \subseteq E(G)$ for which $\gamma\left(G-E^{\prime}\right)>\gamma(G)$. This concept was introduced by Bauer, Harary, Nieminen and Suffel in [1], and has been further studied for example in $[4,5,13]$. For more information on this topic we refer the reader to the survey article by Dunbar, Haynes, Teschner and Volkmann [3].

Kulli et al. in [9] introduced the concept of total bondage in graphs. The total bondage number $b_{t}(G)$ of a graph G with no isolated vertex is the cardinality of a smallest set of edges $E^{\prime} \subseteq E(G)$ for which (1) $G-E^{\prime}$ has no isolated vertex, and (2) $\gamma_{t}\left(G-E^{\prime}\right)>\gamma_{t}(G)$. In the case that there is no subset of edges E^{\prime} such that (1) and (2) both hold, we define $b_{t}(G)=\infty$. The total bondage number was further studied in [12]. Other types of bondage in trees give raise to many interesting problems. This was studied for example in [10] and [11].

In this paper we continue the study of total bondage in graphs. Since determining the exact number of the total bondage number for general graphs is a hard problem [8], in this paper we establish bounds on this number in some classes of graphs. In Sect. 2 we state some known and preliminary results. In Sect. 3 we first obtain an improved upper bound for the total bondage number of a tree and then we give an interesting constructive characterization of a certain class of trees achieving equality for the upper bound. In Sect. 4 we obtain some upper bounds on $b_{t}(G)$ in terms of maximum and minimum degrees, which in particular improve similar previous bounds.

2 Known and Preliminary Results

In this section we give some known and preliminary results which we use in the next sections. We begin with the following exact values of total bondage number of paths and cycles.

Proposition 1 (Kulli et al. [9]) For $n \geq 2$,

$$
b_{t}\left(P_{n}\right)= \begin{cases}\infty & \text { if } n \leq 3 \\ 1 & \text { if } n \geq 4, n \neq 2(\bmod 4) \\ 2 & \text { if } n \geq 4, n \equiv 2(\bmod 4)\end{cases}
$$

Proposition 2 (Kulli et al. [9]) For $n \geq 3$,

$$
b_{t}\left(C_{n}\right)= \begin{cases}\infty & \text { if } n=3 \\ 2 & \text { if } n \geq 4, n \neq 2(\bmod 4) \\ 3 & \text { if } n \geq 4, n \equiv 2(\bmod 4)\end{cases}
$$

Sridharan et al. in [12] obtained the following upper bounds for the total bondage number of graphs.

Theorem 1 (Sridharan et al. [12]) Let G be a connected graph of order $n \geq 4$. Then,

1. $b_{t}(G) \leq n-1$ if $g(G) \geq 5$,
2. $b_{t}(G) \leq n-2$ if $g(G)=4$,
3. $b_{t}(G) \leq n-2$ if there is a triangle which at least one of its vertices is a support vertex in G,
4. $b_{t}(G) \leq n-1$ if there is a triangle which at least one of its vertices is of degree two in G.

Theorem 2 (Sridharan et al. [12]) If T is a tree on n vertices and $T \neq K_{1, n-1}$, then

$$
b_{t}(T) \leq \min \left\{\Delta(T), \frac{n-1}{3}\right\}
$$

We shall improve Theorems 1 and 2. The following observations are easily verified.
Remark 1 If p non-pendant edges can be removed from a graph G to obtain a graph H without an isolate vertex and with $b_{t}(H)=t$, then $b_{t}(G) \leq p+t$.

Remark 2 The total bondage number of a graph G does not change if we add a leaf to a support vertex of G.

Remark 3 Let x be a support vertex of a graph G adjacent to at least two leaves. Then the total bondage number of G does not change if we remove from G a leaf adjacent to x.

The following is a direct consequence of Remark 2.2 of [12].
Proposition 3 For a graph $G, b_{t}(G)=\infty$ if and only if each connected component of G is either C_{3} or contains only pendant edges.

Let \mathcal{B} be the class of all graphs G with no isolated vertex such that $b_{t}(G) \neq \infty$. From now on all graphs G considered in the rest of the paper belong to \mathcal{B}.

3 Trees

In this section we study total bondage number of trees $T \in \mathcal{B}$. We improve a previous upper bound for the total bondage number of a tree. Then we present a constructive characterization for a certain class of trees achieving equality for the upper bound. Some of the results presented in this section reference to lemmas presented in Sect. 4. First we have the following upper bound for caterpillars. We recall that a caterpillar is a tree with the property that the removal of its leaves results in a path.

Proposition 4 For a caterpillar $T, b_{t}(T) \leq 2$.
Proof Let T be a caterpillar. Since $T \in \mathcal{B}, \operatorname{diam}(T) \geq 3$. If $\operatorname{diam}(T) \in\{3,4\}$, then obviously $b_{t}(T)=1$. So assume that $\operatorname{diam}(T) \geq 5$. Let $\left(x, x_{1}, x_{2}, x_{3}, \ldots, x_{\operatorname{diam}(T)}\right)$ be a diametrical path, where x is a leaf. Surely $\gamma_{t}\left(T-\left\{x_{1} x_{2}, x_{3} x_{4}\right\}\right)>\gamma_{t}(T)$ and the result follows.

If T is a tree with maximum degree two, then by Proposition $1, b_{t}(T) \leq 2$. In the following we give a sharp upper bound for the total bondage number of trees with maximum degree at least three.

Theorem 3 For any tree T with maximum degree at least three,

$$
b_{t}(T) \leq \Delta(T)-1 .
$$

Proof Let T be a tree on n vertices, and let $\Delta(T) \geq 3$. By Remarks 2 and 3, in what follows, we simply consider only trees in which every support vertex is adjacent to exactly one leaf. Since $T \in \mathcal{B}, \operatorname{diam}(T) \geq 3$. If $\operatorname{diam}(T)=3$, then obviously $b_{t}(T)=1$. So assume that $\operatorname{diam}(T) \geq 4$. Let $P=\left(x, x_{1}, x_{2}, x_{3}, \ldots, x_{\operatorname{diam}(T)}\right)$ be a diametrical path. Note that x is a leaf. Suppose to the contrary that $b_{t}(T) \geq \Delta(T)$. Since $b_{t}(T) \geq 3, \gamma_{t}\left(T-x_{1} x_{2}\right)=\gamma_{t}(T)$. This implies that for any mimimum TDS S of $T-x_{1} x_{2}, x_{2} \notin S$. As a consequent $\operatorname{deg}\left(x_{2}\right)=2$, since P is the longest path of T. By Lemma $7, \operatorname{deg}\left(x_{3}\right) \geq 3$. If $\operatorname{diam}(T)=4$, then $\gamma_{t}(T)=3$, and $\gamma_{t}\left(T-x_{1} x_{2}\right)=4$, which contradicts $b_{t}(T) \geq \Delta(T)$. So we suppose that $\operatorname{diam}(T) \geq 5$. We consider the following cases.

1. x_{3} is a support vertex. Let A be the set of all pendant edges incident with x_{3}. Let T_{1} be a graph obtained from $T-x_{1} x_{2}$ by removing each edge incident with x_{3} with exception of $x_{2} x_{3}$ and the edges in A. Let H_{1} be the component of T_{1} containing x_{3}. It is obvious that H_{1} is a star. Let S be a $\gamma_{t}\left(T_{1}\right)$-set, and let $S_{1}=S \cap V\left(H_{1}\right)$. It follows that $\left(S-\left(S_{1} \cup\{x\}\right)\right) \cup\left\{x_{2}, x_{3}\right\}$ is a TDS for T of cardinality less than $\gamma_{t}(T)$, a contradiction.
2. x_{3} is not a support vertex. First suppose that there is a support vertex $y_{1} \neq x_{4}$ where y_{1} is adjacent to x_{3}. Let y_{2} be the leaf adjacent to y_{1}. If y_{1} is adjacent to a support vertex y_{3} and y_{4} is a leaf adjacent to y_{3}, then the path $P^{\prime}=$ $\left(y_{4}, y_{3}, y_{1}, x_{3}, x_{4}, \ldots, x_{\operatorname{diam}(T)}\right)$ is a diametrical path. Then similar to what we observed for $\operatorname{deg}\left(x_{2}\right)$, we obtain $\operatorname{deg}\left(y_{1}\right)=2$, a contradiction. So any vertex of $N\left(y_{1}\right)-\left\{x_{3}\right\}$ is a leaf. Let S_{2} be a $\gamma_{t}\left(T-\left\{x_{3} y_{1}, x_{1} x_{2}\right\}\right)$-set. Since x_{2} is a leaf in

Fig. 1 Tree R_{5}

$T-\left\{x_{3} y_{1}, x_{1} x_{2}\right\}$, we have $x_{3} \in S_{2}$. However, $\gamma_{t}\left(T-\left\{x_{3} y_{1}, x_{1} x_{2}\right\}\right)=\gamma_{t}(T)$. Let T_{2} be the component of $T-\left\{x_{3} y_{1}, x_{1} x_{2}\right\}$ that contains y_{1}. Let $v \neq y_{1}$ be a vertex such that $v \in V\left(T_{2}\right) \cap S_{2}$. Then $\left(S_{2}-\{x, v\}\right) \cup\left\{x_{2}\right\}$ is a TDS for T of cardinality less than $\gamma_{t}(T)$. This contradiction implies that no vertex in $N\left(x_{3}\right)-\left\{x_{4}\right\}$ is a support vertex. Let T_{3} be the component of $T-x_{3} x_{4}$ containing x_{3}, and let T_{4} be obtained from T_{3} by removing all leaves of T_{3}. So any leaf of T_{4} is at distance two from x_{3}. Furthermore, with a similar discussion as in the proof for $\operatorname{deg}\left(x_{2}\right)=2$, we observe that T_{4} is a tree obtained from $K_{1, \operatorname{deg}\left(x_{3}\right)-1}$ by subdividing any edge. It is obvious that $\gamma_{t}\left(T-\left\{x_{1} x_{2}, x_{3} x_{4}\right\}\right)=\gamma_{t}(T)$. Let S_{3} be a $\gamma_{t}\left(T-\left\{x_{1} x_{2}, x_{3} x_{4}\right\}\right)$-set containing as small number of leaves as possible. Then $x_{3} \in S_{3}$, since x_{2} is a leaf in $T-\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$. Further, $V\left(T_{4}\right) \subseteq S_{3}$. Now $\left(S_{3}-\left\{x, x_{3}\right\}\right) \cup\left\{x_{2}\right\}$ is a TDS for T of cardinality less than $\gamma_{t}(T)$, a contradiction.

We note that Theorem 3 improves Theorem 2 in the case when $\Delta(T)<\frac{n(T)+2}{3}$.

3.1 Characterization of Extremal Trees

In this subsection we obtain a constructive characterization for a certain class of trees achieving equality for the upper bound of Theorem 3. We will characterize all trees T_{k}, where each edge is incident with a support vertex, with $k=\Delta(T) \geq 4$ and having $b_{t}(T)=\Delta-1$. By Remarks 2 and 3, in what follows, we simply consider only trees for which every support vertex is adjacent to exactly one leaf. Denote by \mathcal{T}_{k} the set of all trees T_{k} in which every support vertex is adjacent to exactly one leaf, each edge is incident with a support vertex and having $b_{t}(T)=k-1$, where $k=\Delta(T) \geq 4$.

In [12] a tree H_{k} with $\Delta\left(H_{k}\right)=k+1$ and $b_{t}\left(H_{k}\right)=k$ was introduced as follows. Let x be the central vertex of $K_{1, k-1}$ for some $k \geq 4$ and let H_{k} be a tree obtained from $K_{1, k-1}$ by subdividing each edge twice and adding a new vertex y and joining y to x. (Note that y is a leaf in H_{k} and x is a support vertex adjacent to y). In this paper we label H_{k} with vertex labels $\{A, B, C, D, E\}$ to get a labeled tree R_{k} as follows. Let $l(y)=E$, let each leaf except of y has label A, let each support vertex of degree 2 has label B, let the vertex of degree $k-1$ has label D and let every other vertex has label C. It is straightforward to see that $\gamma_{t}\left(R_{k}\right)=2 k-1, k=\Delta\left(R_{k}\right)$ and $b_{t}\left(R_{k}\right)=k-1=\Delta\left(R_{k}\right)-1$. Moreover each edge of R_{k} is incident with a support vertex. See R_{5} in Fig. 1 .

We describe a procedure to build a family \mathcal{R}_{k} of trees T_{k} with vertex labels belonging to the set $\{A, B, C, D, E\}$ and with $k=\Delta\left(T_{k}\right) \geq 4$ as follows. Let $T_{k} \in \mathcal{R}_{k}$ and let $x \in V\left(T_{k}\right)$. We call x an active vertex if $l(x)=D$ and there is a path P_{3} attached to x. Let \mathcal{R}_{k} be such that:

1. Contains R_{k} for $k \geq 4$, described as above;
2. Is closed under the following three operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$:

- Operation \mathcal{O}_{1}. Assume T_{k}^{1} and T_{k}^{2} are two trees belonging to \mathcal{R}_{k}. Let x^{1} and x^{2} be active vertices belonging to T_{k}^{1} and T_{k}^{2}, respectively and let P_{3}^{1} and P_{3}^{2} be the paths on three vertices attached to x^{1} and x^{2}, respectively. Then remove P_{3}^{1} and P_{3}^{2} and add the edge $x^{1} x^{2}$ to obtain a new tree with maximum degree k.
- Operation \mathcal{O}_{2}. Assume T_{k}^{1} and T_{k}^{2} are two trees belonging to \mathcal{R}_{k} and let x_{1}^{1}, x_{1}^{2} be vertices with label C belonging to T_{k}^{1}, T_{k}^{2}, respectively, such that $d_{T_{k}^{1}}\left(x_{1}^{1}\right)+d_{T_{k}^{2}}\left(x_{1}^{2}\right)-1 \leq k$ and $d_{T_{k}^{1}}\left(x_{2}^{1}\right)+d_{T_{k}^{2}}\left(x_{2}^{2}\right)-2 \leq k$, where $l\left(x_{2}^{1}\right)=$ $l\left(x_{2}^{2}\right)=B$ and x_{2}^{1} is adjacent to x_{1}^{1} and x_{2}^{2} is adjacent to x_{1}^{2}. Denote by x_{3}^{1} and x_{3}^{2} the leaves adjacent to x_{2}^{1} and x_{2}^{2}, respectively. Identify vertices x_{j}^{1} and x_{j}^{2} into one vertex x_{j} for each $j \in\{1,2,3\}$ to obtain a new tree with maximum degree k. Let $l\left(x_{1}\right)=C, l\left(x_{2}\right)=B$ and $l\left(x_{3}\right)=A$.
- Operation \mathcal{O}_{3}. Assume T_{k}^{1} and T_{k}^{2} are two trees belonging to \mathcal{R}_{k} and let x_{1}^{1}, x_{1}^{2} be vertices with label B belonging to T_{k}^{1}, T_{k}^{2}, respectively, such that $d_{T_{k}^{1}}\left(x_{1}^{1}\right)+d_{T_{k}^{2}}\left(x_{1}^{2}\right)-1 \leq k$. Denote by x_{2}^{1} and x_{2}^{2} the leaves adjacent to x_{1}^{1} and x_{1}^{2}, respectively. Identify vertices x_{j}^{1} and x_{j}^{2} into one vertex x_{j} for each $j \in$ $\{1,2\}$ to obtain a new tree with maximum degree k. Let $l\left(x_{1}\right)=B, l\left(x_{2}\right)=A$.
We first prove that $b_{t}\left(T_{k}\right)=\Delta\left(T_{k}\right)-1$ for each tree T_{k} belonging to \mathcal{R}_{k}. To this aim we first make some observations, which follow immediately from the way in which each tree in the family \mathcal{R}_{k} is constructed.
Remark 4 If $T_{k} \in \mathcal{R}_{k}$ and $v \in V\left(T_{k}\right)$, then

1. $l(v) \in\{A, E\}$ if and only if v is a leaf;
2. $l(v) \in\{B, D\}$ if and only if v is a support vertex;
3. If $l(v)=B$, then exactly one neighbour of v has label A and every other neighbour of v has label C;
4. If $l(v)=C$, then each neighbour of v is a support vertex. Moreover, exactly one neighbour of v has label B and every other neighbour of v has label D;
5. If $l(v)=D$, then exactly one neighbour of v has label E and every other neighbour of v has label C or D. Moreover, v has k neighbours altogether;
6. Each edge of T_{k} is incident with a support vertex, e.g. a vertex with label B or D;
7. If $l(v) \in\{B, D\}$, then v belongs to every minimum TDS of T_{k};
8. If $l(v) \in\{A, C\}$, then v belongs to some minimum TDS of T_{k} and each neighbour of v belongs to every minimum TDS of T_{k};
9. If $l(v)=E$, then v belongs to no minimum TDS of T_{k};
10. $\gamma_{t}\left(T_{k}\right)=2\left|\left\{u \in V\left(T_{k}\right): l(u)=B\right\}\right|+\left|\left\{u \in V\left(T_{k}\right): l(u)=D\right\}\right|$.

Lemma 1 For $k \geq 4$, if a tree T_{k} belongs to the family \mathcal{R}_{k}, then T_{k} without labels on vertices belongs to \mathcal{T}_{k}.

Proof Let T_{k} be a tree belonging to the family \mathcal{R}_{k}. Clearly $\Delta\left(T_{k}\right)=k$ and each edge of T_{k} is incident with a support vertex, so it suffices to justify that $b_{t}\left(T_{k}\right)=k-1$. Suppose $b_{t}\left(T_{k}\right)<k-1$. Let $F \subseteq E\left(T_{k}\right)$ be such that $\gamma_{t}\left(T_{k}\right)<\gamma_{t}\left(T_{k}-F\right)$ and $|F|=b_{t}\left(T_{k}\right) \leq k-2$. By Remark 4, F contains only edges $v w$ of three types:
$-l(v)=l(w)=D$;
$-l(v)=B$ and $l(w)=C$;
$-l(v)=C$ and $l(w)=D$.
For any $v w \in F$ since $|F|=b_{t}\left(T_{k}\right) \leq k-2$, we conclude that $\gamma_{t}\left(T_{k}-(F\right.$ $-\{v w\}))=\gamma_{t}\left(T_{k}\right)$ and $\gamma_{t}\left(T_{k}-F\right)>\gamma_{t}\left(T_{k}-(F-\{v w\})\right)$. We consider three cases for labels of v and w.

Case 1. Assume first that $l(v)=l(w)=D$. Remark 4 implies that both v and w have in $T_{k}-(F-\{v w\})$ at least two neighbours with labels in $\{C, D\}$ such that if a vertex has label C, then is adjacent to a support vertex with label B and if a vertex has label D, then it is adjacent to a vertex with label C or D, which is not a leaf. Thus, $\gamma_{t}\left(T_{k}-F\right)=\gamma_{t}\left(T_{k}-(F-\{v w\})\right)$, which is impossible.

Case 2. Assume now that $l(v)=B$ and $l(w)=C$. Since $|F|=b_{t}\left(T_{k}\right) \leq k-2$, we conclude that $\gamma_{t}\left(T_{k}-(F-\{v w\})\right)=\gamma_{t}\left(T_{k}\right)$ and $\gamma_{t}\left(T_{k}-F\right)>\gamma_{t}\left(T_{k}-(F-\{v w\})\right)$. Since $v w$ is a non-pendant edge, Remark 4 implies that w is adjacent in $T_{k}-(F-\{v w\})$ to at least one vertex with label D, say y, such that y has at least one neighbour in $T_{k}-(F-\{v w\})$, except of w, with label in $\{C, D\}$ such that if it has label C, then it is adjacent to a support vertex with label B and if a vertex has label D, then it is adjacent to a vertex with label C or D, which is not a leaf. Thus, $\gamma_{t}\left(T_{k}-F\right)=\gamma_{t}\left(T_{k}-(F-\{v w\})\right)$, which is impossible.

Case 3. Lastly, assume that $l(v)=C$ and $l(w)=D$. Since $|F|=b_{t}\left(T_{k}\right) \leq k-2$, we conclude that $\gamma_{t}\left(T_{k}-(F-\{v w\})\right)=\gamma_{t}\left(T_{k}\right)$ and $\gamma_{t}\left(T_{k}-F\right)>\gamma_{t}\left(T_{k}-(F-\{v w\})\right)$. Since $v w$ is a non-pendant edge, Remark 4 implies that v is adjacent in $T_{k}-(F-\{v w\})$ to at least one vertex with label in $\{B, D\}$, say $y \neq w$, such that y has at least one neighbour in $T_{k}-(F-\{v w\})$. Moreover, w has at least one neighbour, different from v, with label in $\{C, D\}$ such that if a vertex has label C, then it is adjacent to a support vertex with label B and if a vertex has label D, then is adjacent to a vertex with label C or D, which is not a leaf. Thus, $\gamma_{t}\left(T_{k}-F\right)=\gamma_{t}\left(T_{k}-(F-\{v w\})\right)$, which is impossible.

We conclude that $b_{t}\left(T_{k}\right) \geq k-1$ and Theorem 3 implies the desired result.
Lemma 2 If every support vertex of a tree T is adjacent to exactly one leaf, $\Delta(T) \geq 4$ and $b_{t}(T)=\Delta(T)-1$, then
(a) $\operatorname{deg}_{T}(x)=\operatorname{deg}_{T}(y)=\Delta(T)-1$ for each adjacent support vertices x, y;
(b) $d_{T}(x, y) \geq 3$ for each pair of support vertices x, y of degree 2 .

Proof (a) It is an immediate consequence of Lemma 4.
(b) Let x, y be two support vertices of degree 2 and denote by x^{\prime}, y^{\prime} the two leaves adjacent to x and y, respectively. If x and y are adjacent, then T is a path on 4 vertices, which is a contradiction. Thus suppose $d(x, y)=2$ and let z be the vertex adjacent to both x and y. Since T is not a path, $\operatorname{deg}_{T}(z) \geq 3$. Let S be a smallest TDS of $T-x z-y z$. Then $x, x^{\prime}, y, y^{\prime}$ belong to S, but on the other hand, $\left(S-\left\{x^{\prime}, y^{\prime}\right\}\right) \cup\{z\}$ is a smaller TDS of T.

Lemma 3 If a tree T_{k} belongs to the family \mathcal{T}_{k} for some $k \geq 4$, then it is possible to label vertices of T_{k} with labels $\{A, B, C, D, E\}$ in such a way T_{k} belongs to the family \mathcal{R}_{k}.

Proof Let T_{k} be a tree belonging to the family \mathcal{T}_{k}. Then, by the definition of \mathcal{T}_{k}, every support vertex of T_{k} is adjacent to exactly one leaf, each edge of T_{k} is incident with a support vertex and $b_{t}\left(T_{k}\right)=\Delta\left(T_{k}\right)-1=k-1$, where $k=\Delta\left(T_{k}\right) \geq 4$. Since $b_{t}\left(T_{k}\right)=$ $\Delta\left(T_{k}\right)-1 \geq 3$, clearly $\operatorname{diam}\left(T_{k}\right) \geq 4$. Let $P=\left(x, x_{1}, x_{2}, x_{3}, \ldots, x_{\operatorname{diam}\left(T_{k}\right)}\right)$ be a diametrical path. Since $\gamma_{t}\left(T_{k}-x_{1} x_{2}\right)=\gamma_{t}\left(T_{k}\right)$, we conclude that for any minimum TDS S of $T_{k}-x_{1} x_{2}, x_{2} \notin S$. Since P is a longest path of T_{k} it follows that $\operatorname{deg}\left(x_{2}\right)=2$. By Lemma $7, \operatorname{deg}\left(x_{3}\right) \geq 3$. If $\operatorname{diam}\left(T_{k}\right)=4$, then $\gamma_{t}\left(T_{k}\right)=3$ and $\gamma_{t}\left(T_{k}-x_{1} x_{2}\right)=4$, which contradicts $b_{t}\left(T_{k}\right)=\Delta\left(T_{k}\right)-1$. So we assume that $\operatorname{diam}\left(T_{k}\right) \geq 5$. Since each edge of T_{k} is incident with a support vertex, we conclude that x_{3} is a support vertex. Then by Lemma 5,

$$
\begin{aligned}
\Delta\left(T_{k}\right)-1= & k-1=b_{t}(G) \leq \operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right) \\
& +\operatorname{deg}\left(x_{3}\right)-5=2+2+\operatorname{deg}\left(x_{3}\right)-5 .
\end{aligned}
$$

Hence $\operatorname{deg}\left(x_{3}\right)=\Delta\left(T_{k}\right)$. Moreover, if there is a leaf at distance 3 from x_{3}, say $\left(z, z_{1}, z_{2}, x_{3}\right)$ is the path from the leaf $z \neq x$ to x_{3}, where $z_{2} \neq x_{2}$, then similar to what we observed for x_{1} and x_{2}, we obtain $\operatorname{deg}_{T_{k}}\left(z_{1}\right)=\operatorname{deg}_{T_{k}}\left(z_{2}\right)=2$.

Suppose x_{3} is adjacent to a support vertex, say y^{\prime}, and let $y^{\prime \prime}$ be the leaf adjacent to y^{\prime}. Then $\operatorname{deg}_{T_{k}}\left(y^{\prime}\right)=2$. Let S be a minimum TDS of $T_{k}-x_{3} y^{\prime}$ containing as small number of leaves as possible. Then $S-\left\{y^{\prime \prime}\right\}$ is a TDS of T_{k}, implying $b_{t}\left(T_{k}\right)=1$, which is impossible. For the same reasons, $\operatorname{diam}\left(T_{k}\right) \geq 6$. Hence, the component of $T_{k}-x_{3} x_{4}$ containing x_{3} is the tree R_{k-1} and if $\operatorname{diam}\left(T_{k}\right)=6$, then $T_{k}=R_{k}$ and thus $T_{k} \in \mathcal{R}_{k}$. Therefore in what follows we assume $\operatorname{diam}\left(T_{k}\right) \geq 7$. We follow by induction on the number $s\left(T_{k}\right)$ of vertices of degree $\Delta\left(T_{k}\right)$ in T_{k}. If $s\left(T_{k}\right)=1$, then obviously $T_{k}=R_{k}$. Thus assume that for every tree T_{k}^{\prime} with $s\left(T_{k}^{\prime}\right)<s\left(T_{k}\right)$, if $T_{k}^{\prime} \in \mathcal{T}_{k}$, then it is possible to label the vertices of T_{k}^{\prime} in such a way $T_{k}^{\prime} \in \mathcal{R}_{k}$.

1. If x_{4} is a support vertex, then by our assumptions, x_{4} is adjacent to exactly one leaf and by Lemma 4 we obtain that x_{4} is of degree k. Denote by $T^{x_{3}}$ and $T^{x_{4}}$ the two components of $T_{k}-x_{3} x_{4}$ containing x_{3} and x_{4}, respectively. Attach P_{3} to x_{3} to obtain a tree $T_{k}^{x_{3}}$ and attach $P_{3}: q_{1}-q_{2}-q_{3}$ to x_{4} to obtain a tree $T_{k}^{x_{4}}$. Clearly $T_{k}^{x_{3}}=R_{k}$ and $\Delta\left(T_{k}^{x_{4}}\right)=k$. Moreover, $b_{t}\left(T_{k}^{x_{3}}\right)=k-1$. Suppose $b_{t}\left(T_{k}^{x_{4}}\right)<$ $k-1$. In this situation let $F \subseteq E\left(T_{k}^{x_{4}}\right)$ be such that $\gamma_{t}\left(T_{k}^{x_{4}}\right)<\gamma_{t}\left(T_{k}^{x_{4}}-F\right)$ and $|F|=b_{t}\left(T_{k}^{x_{4}}\right) \leq k-2$.
If $x_{4} q_{3} \in F$, then for $F^{\prime}=\left(F-\left\{x_{4} q_{3}\right\}\right) \cup\left\{x_{3} x_{4}\right\}$ we would obtain $\gamma_{t}\left(T_{k}\right)<$ $\gamma_{t}\left(T_{k}-F^{\prime}\right)$ contradicting that $b_{t}\left(T_{k}\right)=k-1$. Thus $x_{4} q_{3} \notin F$.
If $q_{2} q_{3} \in F$ and $x_{4} q_{3} \notin F$, then since x_{4} is a neighbour of at least two leaves in $T_{k}^{x_{4}}-F$, Remark 3 implies that $b_{t}\left(T_{k}^{x_{4}}-F\right)=b_{t}\left(\left(T_{k}^{x_{4}}-F\right)-q_{3}\right)$. Hence for $F^{\prime \prime}=\left(F-\left\{q_{2} q_{3}\right\}\right) \cup\left\{x_{4} q_{3}\right\}$ we would have $\gamma_{t}\left(T_{k}^{x_{4}}\right)<\gamma_{t}\left(T_{k}^{x_{4}}-F^{\prime \prime}\right)$ and again we would obtain a contradiction.
If $q_{2} q_{3} \notin F$ and $x_{4} q_{3} \notin F$, then clearly $\gamma_{t}\left(T_{k}\right)<\gamma_{t}\left(T_{k}-F\right)$, which is impossible. Therefore, $b_{t}\left(T_{k}^{x_{4}}\right)=k-1$ and by induction hypothesis, $T_{k}^{x_{4}}$ is in \mathcal{R}_{k}. Since x_{4} is
an active vertex in $T_{k}^{x_{4}}$ and x_{3} is an active vertex in $T_{k}^{x_{3}}$, we conclude that T_{k} may be obtained from $T_{k}^{x_{3}}$ and $T_{k}^{x_{4}}$ by Operation \mathcal{O}_{1}.
2. If x_{4} is not a support vertex, then each neighbour of x_{4} is a support vertex since each edge is incident with a support vertex. Thus, x_{5} is a support vertex and let x_{5}^{\prime} be the leaf adjacent to x_{5}.
(a) Assume additionally x_{4} is a neighbour of a support vertex of degree 2, say y, and let y^{\prime} be the leaf adjacent to y. Let $\operatorname{deg}_{T_{k}}\left(x_{4}\right) \geq 4$ and denote by z a neighbour of x_{4} different from x_{3}, x_{5}, y. Since $x_{4} z$ is incident with a support vertex, we obtain that z is a support vertex. Denote by z^{\prime} the leaf adjacent to z. If $\operatorname{deg}_{T_{k}}(z)=2$, then by Lemma $2, b_{t}\left(T_{k}\right)<3$. Hence x_{4} is a neighbour of exactly one support vertex of degree 2 .
Thus assume $\operatorname{deg}_{T_{k}}(z) \geq 3$. Then by Lemma 2, each neighbour of z is not a support vertex and z belongs to a longest path of T_{k}. Moreover, denote by S a minimum total dominating set of $T-\left(A \cup\left\{x_{4} y\right\}\right)$, where A is a set of all nonpendant edges incident with z except for $z x_{4}$. Without loss of generality we may assume that z, x_{4}, y, y^{\prime} belong to S. Further, $S-\left\{y^{\prime}\right\}$ is a smaller TDS of T_{k}, so $b_{t}\left(T_{k}\right) \leq|A|+1$. Since $|A|=\operatorname{deg}_{T_{k}}(z)-2$ and $b_{t}\left(T_{k}\right)=\Delta\left(T_{k}\right)-1$, we conclude that $\operatorname{deg}_{T_{k}}(z)=\Delta\left(T_{k}\right)$. By similar reasoning, $\operatorname{deg}_{T_{k}}\left(x_{5}\right)=\Delta\left(T_{k}\right)$. Denote by T^{z} and $T_{k}^{x_{4}}$ the two components of $T_{k}-z x_{4}$ containing z and x_{4}, respectively. Attach P_{3} to z to obtain a tree T_{k}^{z}. Clearly $T_{k}^{z}=R_{k}$ and $\Delta\left(T_{k}^{x_{4}}\right)=k$. Moreover, $b_{t}\left(T_{k}^{z}\right)=k-1$.
Suppose $b_{t}\left(T_{k}^{x_{4}}\right)<k-1$. In this situation let $F \subseteq E\left(T_{k}^{x_{4}}\right)$ be such that $\gamma_{t}\left(T_{k}^{x_{4}}\right)<\gamma_{t}\left(T_{k}^{x_{4}}-F\right)$ and $|F|=b_{t}\left(T_{k}^{x_{4}}\right) \leq k-2$. Then $\gamma_{t}\left(T_{k}-(F \cup\right.$ $\left.\left.\left\{x_{4} z\right\}\right)\right)>\gamma_{t}\left(T_{k}-F\right)$, so $|F|=k-2$. Let S be a minimum TDS of $T_{k}-F$. Since x_{4} is not isolated in $T_{k}^{x_{4}}-F, x_{4}$ has at least two neighbours in $T_{k}-F$. Further, each such neighbour is a support vertex, so belongs to S. If $x_{4} y \in F$, then $x_{4} \notin S$ and S is also a total dominating set of $T_{k}-\left(F \cup\left\{x_{4} z\right\}\right)$. If $x_{4} y \notin F$, then again S is a TDS of $T_{k}-\left(F \cup\left\{x_{4} z\right\}\right)$. Thus $\gamma_{t}\left(T_{k}\right)=\gamma_{t}\left(T_{k}-F\right)=$ $\gamma_{t}\left(T_{k}-\left(F \cup\left\{x_{4} z\right\}\right)\right)$, which is impossible. Thus $b_{t}\left(T_{k}^{x_{4}}\right)=k-1$ and by induction hypothesis, $T_{k}^{x_{4}}$ is in \mathcal{R}_{k}. Let $l\left(y^{\prime}\right)=A, l(y)=B$ and $l\left(x_{4}\right)=C$. Hence T_{k} may be obtained from R_{k} and $T_{k}^{x_{4}}$ by Operation \mathcal{O}_{2}.
If $\operatorname{deg}_{T_{k}}\left(x_{4}\right)=3$, then we remove $x_{3} x_{4}$ to obtain trees $T^{x_{3}}$ and $T_{k}^{x_{4}}$ and the rest of the proof is similar to the case when $\operatorname{deg}_{T_{k}}\left(x_{4}\right) \geq 4$.
(b) If x_{4} is not a neighbour of a support vertex of degree 2 and $\operatorname{deg}_{T_{k}}\left(x_{4}\right) \geq 3$. Then x_{4} is a neighbour of a support vertex z, where $z \notin\left\{x_{3}, x_{5}\right\}$ and denote by z^{\prime} the leaf adjacent to z. By similar arguing as above, we conclude that $\operatorname{deg}_{T_{k}}(z)=\Delta\left(T_{k}\right)$ and each neighbour of z is not a support vertex and z belongs to a longest path of T_{k}. Denote by T^{z} and $T_{k}^{x_{4}}$ the two components of $T_{k}-x_{4} z$ containing z and x_{4}, respectively. Attach P_{3} to z to obtain a tree T_{k}^{z}. Clearly $T_{k}^{z}=R_{k}$ and $\Delta\left(T_{k}^{x_{4}}\right)=k$. Moreover, $b_{t}\left(T_{k}^{z}\right)=k-1$. By similar arguments as in Case 2 a we conclude that $b_{t}\left(T_{k}^{x_{4}}\right)=k-1$ and by induction hypothesis, $T_{k}^{x_{4}}$ is in \mathcal{R}_{k}. Let $l\left(x_{5}^{\prime}\right)=A, l\left(x_{5}\right)=B$ and $l\left(x_{4}\right)=C$. Hence T_{k} may be obtained from R_{k} and $T_{k}^{X_{4}}$ by Operation \mathcal{O}_{2}.
(c) If x_{4} is of degree 2 , then denote by $T^{x_{4}}$ and $T_{k}^{x_{5}}$ the two components of $T_{k}-x_{4} x_{5}$ containing x_{4} and x_{5}, respectively. Attach P_{2} to x_{4} to obtain a tree $T_{k}^{x_{4}}$. Clearly

Fig. 2 Tree T
$T_{k}^{x_{4}}=R_{k}$ and $b_{t}\left(T_{k}^{x_{4}}\right)=k-1$. If $\Delta\left(T_{k}^{x_{5}}\right)<k$, then only x_{3} and x_{5} are vertices of degree k in T_{k} and x_{5} has similar properties as x_{3} and $\operatorname{diam}\left(T_{k}\right)=8$. However then $b_{t}\left(T_{k}\right)<k-1$, a contradiction. Thus $\Delta\left(T_{k}^{x_{5}}\right)=k$. By similar arguments as in Case 2a we conclude that $b_{t}\left(T_{k}^{x_{5}}\right)=k-1$ and by induction hypothesis, $T_{k}^{x_{5}}$ is in \mathcal{R}_{k}. Let $l\left(x_{5}^{\prime}\right)=A, l\left(x_{5}\right)=B$ and $l\left(x_{4}\right)=C$. Hence T_{k} may be obtained from R_{k} and $T_{k}^{x_{4}}$ by Operation \mathcal{O}_{3}.

As an immediate consequence of Lemmas 1 and 3, we have the following
Theorem 4 For each $k \geq 4$, if we omit vertex labelling of trees in \mathcal{R}_{k},

$$
\mathcal{T}_{k}=\mathcal{R}_{k}
$$

In Fig. 2 is a tree T with $b_{t}(T)=\Delta(T)-1=3$ and containing an edge not incident with a support vertex.

We finish this section with the following open problem.
conjecture $1 T$ is a tree with $\Delta(T) \geq 5$ and $b_{t}(T)=\Delta(T)-1$ if and only if T belongs to the family \mathcal{R}_{k} for $k \geq 5$.

4 Upper Bounds

In this section we obtain some upper bounds for the total bondage number of a graph $G \in \mathcal{B}$ in terms of maximum and minimum degrees.

Lemma 4 If x and y are two adjacent support vertices in a graph G, then

$$
b_{t}(G) \leq \min \{\operatorname{deg}(x), \operatorname{deg}(y)\}-1 .
$$

Proof Remove all edges incident with x with exception of pendant edges to obtain a graph H. Suppose that $\gamma_{t}(H)=\gamma_{t}(G)$. Let S be a $\gamma_{t}(H)$-set. Clearly, $y \in S$. Let H_{1} be the component of H containing x and let $x_{1} \neq x$ be a vertex of H_{1} with $x_{1} \in S$. Then $S-\left\{x_{1}\right\}$ is a TDS for G of cardinality less than $\gamma_{t}(G)$, a contradiction. Therefore, $\gamma_{t}(H)>\gamma_{t}(G)$ and the result follows.

Lemma 5 Let a graph G contain a path (x, y, z) on three vertices such that $\{x, z\} \subseteq$ $S(G)$ and $y \notin S(G)$, then

$$
b_{t}(G) \leq \operatorname{deg}(x)+\operatorname{deg}(y)+\operatorname{deg}(z)-5 .
$$

Proof Remove all edges incident with x, y, z with exception of $x y$ and the pendant edges incident with x or z, to obtain a graph H. It is obvious that $\gamma_{t}(H)>\gamma_{t}(H+y z) \geq$ $\gamma_{t}(G)$ and so the result follows. In case of $G=P_{5}$ the bound is sharp.

Similarly we have the following.
Lemma 6 If a graph G contains a path (x, y, z) on three vertices such that $\{x, y\} \cap$ $S(G)=\emptyset$ and $z \in S(G)$, then

$$
b_{t}(G) \leq \operatorname{deg}(x)+\operatorname{deg}(y)+\operatorname{deg}(z)-4 .
$$

Note that under assumptions of Lemma 5, $b_{t}(G) \leq 3 \Delta(G)-5$ and under assumptions of Lemma $6, b_{t}(G) \leq 3 \Delta(G)-4$.

Theorem 5 Assume that a graph G contains a path $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ has no isolated vertex. If G_{1} is the subgraph induced by v_{1}, v_{2}, v_{3}, v_{4}, then

$$
b_{t}(G) \leq \sum_{i=1}^{4} \operatorname{deg}\left(v_{i}\right)-\left|E\left(G_{1}\right)\right|-2 .
$$

This bound is sharp.
Proof Let G_{1} be the subgraph induced by $v_{1}, v_{2}, v_{3}, v_{4}$. We remove all edges incident with $v_{1}, v_{2}, v_{3}, v_{4}$ except the edges $v_{1} v_{2}$ and $v_{3} v_{4}$ to obtain a graph H. If $\gamma_{t}(H)=$ $\gamma_{t}(G)$, then we let S be a $\gamma_{t}(H)$-set. It follows that $S-\left\{v_{1}, v_{4}\right\}$ is a TDS for G of cardinality less than $\gamma_{t}(G)$, a contradiction. So $\gamma_{t}(H)>\gamma_{t}(G)$ and thus $b_{t}(G) \leq$ $\sum_{i=1}^{4} \operatorname{deg}\left(v_{i}\right)-\left|E\left(G_{1}\right)\right|-2$. The sharpness follows by Proposition 2.

Since the graph G_{1} constructed in previous theorem has at least 3 edges, $b_{t}(G) \leq$ $\sum_{i=1}^{4} \operatorname{deg}\left(v_{i}\right)-5$. Also if $\operatorname{deg}\left(v_{i}\right)=\delta(G)$ for some $1 \leq i \leq 4$, then $b_{t}(G) \leq$ $3 \Delta(G)+\delta(G)-5$.

The following upper bound is also useful.
Lemma 7 Let (x, y, z, w) be a path in a graph G and $\operatorname{let} \operatorname{deg}(w) \leq \operatorname{deg}(x)=$ $\operatorname{deg}(y)=\operatorname{deg}(z)=2$. Then

$$
b_{t}(G) \leq \operatorname{deg}(w)+1
$$

Proof By Propositions 1 and 2, we assume that $G \notin\left\{P_{4}, P_{5}, P_{6}, C_{4}, C_{5}\right\}$. Let $a \neq y$ be a vertex adjacent to x.

Assume first that $\operatorname{deg}(w)=1$. Let S_{1} be a $\gamma_{t}(G-a x-y z)$-set. If $\left|S_{1}\right|=\gamma_{t}(G)$, then $S_{1}-\{w, x\}$ is a TDS for G of cardinality smaller than $\gamma_{t}(G)$, a contradiction. This implies that $\left|S_{1}\right|>\gamma_{t}(G)$ and hence $b_{t}(G) \leq 2=\operatorname{deg}(w)+1$.

Assume next that $\operatorname{deg}(w)=2$. Let $b \neq z$ be a vertex adjacent to w. If $\operatorname{deg}(a)=1$ or $\operatorname{deg}(b)=1$, then the situation is similar to the case when $\operatorname{deg}(w)=1$. Thus we may assume that $\operatorname{deg}(a) \geq 2$ and $\operatorname{deg}(b) \geq 2$. Let S_{2} be a $\gamma_{t}(G-a x-y z-w b)$-set. If $\left|S_{2}\right|=\gamma_{t}(G)$, then $S_{2}-\{x, w\}$ is a TDS for G of cardinality smaller than $\gamma_{t}(G)$. This implies that $\left|S_{2}\right|>\gamma_{t}(G)$ and so $b_{t}(G) \leq 3=\operatorname{deg}(w)+1$.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Bauer, D., Harary, F., Nieminen, J., Suffel, C.L.: Domination alteration sets in graphs. Discrete Math. 47, 153-161 (1983)
2. Domke, G.S., Laskar, R.C.: The bondage and reinforcement numbers of γ_{f} for some graphs. Discrete Math. 167(168), 249-259 (1997)
3. Dunbar, J.E., Haynes, T.W., Teschner, U., Volkmann, L.: Bondage, insensitivity and reinforcement. In: T. W. Haynes, S. T. Hedetniemi, P. J. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 471-489 (1998)
4. Fink, J.F., Jacobson, M.S., Kinch, L.F., Roberts, J.: The bondage number of a graph. Discrete Math. 86, 47-57 (1990)
5. Hartnell, B.L., Rall, D.F.: Bounds on the bondage number of a graph. Discrete Math. 128, 173177 (1994)
6. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998)
7. Henning, M.A.: A survey of selected recent results on total domination in graphs. Discrete Math. 309, 32-63 (2009)
8. Hu, T., Xu, J.-M.: On the Complexity of the Bondage and Reinforcement Problems, Journal of Complexity 28 192-201, (2012). doi:10.1016/j.jco.2011.11.001
9. Kulli, V.R., Patwari, D.K.: The total bondage number of a graph, Advances in Graph Theory, Vishwa International Publication, 227-235 (1991)
10. Lu, Y., Xu, J.-M.: The p-Bondage Number of Trees, Graphs and Combinatorics 27:129-141 (2011). doi:10.1007/s00373-010-0956-3
11. Raczek, J.: Paired bondage in trees. Discrete Math. 308, 5570-5575 (2008)
12. Sridharan, N., Elias, M. D., Subramanian, V. S. A.: Total bondage number of a graph. Akce J. Graphs Combinator. 4, 203-209 (2007)
13. Teschner, U.: New results about the bondage number of a graph. Discrete Math. 171, 249-259 (1997)

[^0]: N. J. Rad

 Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
 e-mail: n.jafarirad@shahroodut.ac.ir
 J. Raczek (\triangle)

 Department of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
 e-mail: Joanna.Raczek@pg.gda.pl

