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Spurious Modes in Model Order Reduction in
Variational Problems in Electromagnetics

Valentin de la Rubia , David Young, Grzegorz Fotyga ,

Abstract—In this work, we address an everlasting issue in
model order reduction (MOR) in electromagnetics that has
remained unnoticed until now. Contrary to what has been
previously done, we identify for the very first time spurious
modes in MOR for time-harmonic Maxwell’s equations and
propose a methodology to remove their negative influence on the
reduced order model (ROM) response. These spurious modes
have nonzero resonance frequency and may have shown up
in the past giving rise to spikes in the frequency response,
in effect, deteriorating the accuracy and efficiency of the MOR
process. However, they were never characterized as spurious
mode contributions, rather they were most likely considered
as poor localized approximation issues in the MOR process.
When we try to get further physical insights from the ROM,
rather than simple frequency domain data, we cannot afford
any poorly localized approximation issue, that is, any spurious
mode in the band of analysis. Otherwise, these mathematical,
but nonphysical, modes will mislead the physical behavior of the
device under analysis. A computationally inexpensive variational
divergence condition is established to identify spurious modes in
the band of analysis, since any physical in-band mode must be
divergence-free. In addition, once a spurious mode is identified in
the band of analysis, its influence is removed from the ROM by
a physics-based coupling strategy. As a result, a robust spurious
mode contribution-free MOR in electromagnetics is proposed.
Finally, several actual microwave circuits, such as a quad-mode
filter and a triple-mode triple-band filter, will illustrate the
capabilities and efficiency of the proposed approach.

Index Terms— Computer-aided engineering, design
automation, finite-element methods, Galerkin method, microwave
circuits, reduced basis methods, reduced order systems, spurious
modes.

I. INTRODUCTION

PURIOUS modes have been a long-standing issue in
computational electromagnetics (CEM) that nowadays is
considered to be solved [1]. Appropriate approximation spaces
have paved the way to remove any nonphysical solution from
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the numerical approximation to time-harmonic Maxwell’s
equations [2], [3], [4], [5], [6], [7]. However, this issue is
still present and special care should be taken whenever addi-
tional processing is done on top of any robust spurious-free
numerical implementation in CEM. This is indeed the situ-
ation in model order reduction (MOR). Spurious modes are
mathematical solutions that are nonphysical solutions to a
physical problem. These may be the result of not properly
imposing the physical model from a mathematical point of
view. As a result, additional nonphysical solutions may show
up in the mathematical model we are addressing to account for
the physics we are interested in. In electromagnetics, spurious
modes are solutions that do not satisfy Maxwell’s equations,
that is, the spurious solutions violate the divergence equations
(Gauss’ laws), whereas only the curl equations (Ampere’s and
Faraday’s laws) are properly satisfied.

Computer-aided design (CAD) of microwave devices relies
on time-consuming electromagnetic simulations, which have
to be carried out many times until a target electrical response
is obtained. All this turns into a huge computational effort until
a given electromagnetic device can satisfy the specifications.
Current industrial needs cannot afford this CAD methodology
any longer. Different efforts in the CEM community have been
carried out to speed this costly process up, and most of them
follow the MOR philosophy [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18].

A reduced order model (ROM) implies replacing a rather
complex physical model with a much simpler mathematical
one that still maintains certain physical aspects of the original
model within a parameter set. As such, a ROM is simply
a mathematical model, not a physical one. Thus, spurious
modes, which are nonphysical but mathematical solutions, may
show up, and we should be extremely cautious about this. It is
of paramount importance to prevent the following phenomena.

1) Nonphysical artifacts in the circuit transfer function, the
so-called spikes.

2) Distortion in the ROM error estimation, which leads to
the oversized ROMs and may considerably affect the
overall speed-up in CPU time.

3) Additional in-band eigenresonances may significantly
deteriorate any optimization scheme based on the zeros
and poles of the circuit transfer function [15].

Spurious modes in MOR in electromagnetics have remained
completely unnoticed. Some efforts to remove spurious solu-
tions at low frequency were carried out in [19]. By the
same token, using a low-frequency approximation, namely,
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neglecting the displacement current, a MOR is proposed
that takes into account a Helmholtz decomposition in [20]
and [21]. This allows for spurious mode removal since the
divergence equations are properly satisfied. We will go back
to this important point later in this work. In addition, dif-
ferent localized artifacts in the frequency response of an
electromagnetic device were already pointed out in [18] for
geometry parametric MOR (PMOR), that is, a ROM where
different geometry parameters are taken into account and,
as a result, multiple projection bases have to be appended
in the PMOR process to account for the different geometries
under analysis. In this work, we focus on the analysis of these
localized artifacts and show that the spikes in the frequency
response are present in any MOR process, including standard
fast frequency sweep methodologies, if special care is not
taken, and therefore, they are not associated with PMOR using
multiple projection bases. As a result, we identify spurious
mode solutions in MOR in electromagnetics.

Our starting point draws upon the theoretical analy-
sis of time-harmonic Maxwell’s equations, where some
frequency-dependent structure is identified. An infinite-
dimension state-space dynamical system representation of
electromagnetics is discussed, giving rise to a full-wave cou-
pling matrix description in electromagnetics, where the port
to resonant mode couplings in the structure under analysis
can be easily identified [22]. This will be used to properly
process the possible spikes in the frequency response. A ROM
accounts for the electromagnetics in the band of analysis and,
beyond what has been previously done, the appearance of the
so-called spurious solutions is addressed for the very first time
in MOR. Our approach is such that no modification of the
original MOR code needs to be carried out, but only additional
postprocessing is needed to remove any spurious contribution
from the frequency response. However, a different perspective
to the same problem can be proposed, following [23], [24],
[25] in a different physics. A mixed variational formulation
that properly manages all equations included in time-harmonic
Maxwell’s equations can be addressed, avoiding any spurious
solution.

This work is organized as follows. In Section II, we review
the time-harmonic Maxwell’s equations in variational form,
solve for the electromagnetic field to show their frequency
behavior, and detail the infinite dimension state-space dynam-
ical system in electromagnetics. Section III deals with a
standard MOR procedure in electromagnetics, details a phys-
ical representation of the ROM, and finally shows the issue
of spurious modes. In addition, an automatic procedure to
filter out any spurious mode contribution in the ROM is
discussed. Actual microwave circuits illustrate the capabilities
and accuracy of the proposed methodology in Section IV.
Finally, we comment on the conclusions in Section V.

II. PROBLEM STATEMENT

The electromagnetic phenomena in a given device are
described by Maxwell’s equations. Applying the Fourier trans-
form to these, the fields in the transform domain jw can be
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found. They are

VXE=—joujuHin Q (1a)

V xH = jwepe, E in Q (1b)

V- (e0e,E) = 0 in Q (Ic)
V- (uop,H) = 0in Q (1d)
n x E =0 on I'pgc (Te)

n x H = 0 on I'pyc (1f)
nxH=JonTl (1g)

where Q C R? is a source-free sufficiently smooth bounded
domain, n is the unit outward normal vector on the boundary
0Q of Q, the boundary 0Q of Q is divided into perfect
electric conductor (PEC), perfect magnetic conductor (PMC)
and ports, that is, 0Q = I'pgc U I'pyc U T. E and H are
the electric and magnetic fields, respectively, ¢, and u, are,
respectively, the relative permittivity and permeability of the
medium, which is assumed to be lossless, ¢y and ug are,
respectively, the relative permittivity and permeability of a
vacuum, and the tangential field J is the excitation current at
the ports. By the same token, we use the wavenumber, namely,
k = w(uoeo)'?. Throughout this work, we will indistinctly
refer to wavenumber as frequency. Time-harmonic Maxwell’s
equations can be written in a classical weak formulation over
an appropriate admissible function space H, viz.,

find E € H such that a(E,v) = f(v) VveH. 2)

The bilinear form being

1
a(E,v):/(—VxE-va—kza,E-v)dx 3)
Q\Hr

and the linear form
f(v)=jkno/ J-Vds:jkno/J-vds )
oQ r

where 7o is the intrinsic impedance in a vacuum. Here,
the admissible space H is a subspace in the Hilbert space
H (curl, Q) defined by

Hcur, @) = {u e L2(Q,C%) | V xu e L*(Q,CY)} (5)

since H should take the boundary condition (le) into account,
namely,

H={ue H(curl,Q) | n x u=0 on Ipgc}. 6)
Let us refer to the trace spaces, namely,
H’%(Div, 0Q) ={nxuonodQ|ue Hcurl, Q)}
H’%(Curl, 0Q) ={nxuxnondQ |ue H((curl Q)}
(7
and point out that they are dual to each other with the
following duality pairing:
(u,v):/ u-vds (8)
oQ

ue H’%(Div, 0Q) and v € H’%(Curl, 0Q). It is now appar-
1
ent that the excitation current J belongs to H 2 (Div, 0Q).
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We refer to [26] and [27] for a thorough explanation of all
these spaces.

Following [28], [29], where some frequency structure is
shown in the solution to the variational problem (2), we intro-
duce the Helmholtz decomposition

H = H(curl0, Q) d V )
where

H(curl0, Q)
={ueH|Vxu=0} (10a)
V={ueH| (ew, V)2 =0 V¥veH(urll,Q)}
(10b)

where (-,-);2q 1is the inner product in L*(Q,CY).
H(curl0, Q) denotes the nullspace of the curl operator,
whereas V stands for its orthogonal complement within the
solution space H in the following inner product:

r

1
W, V), .. = (—V xu, V X v) + (6,0, V) 2(q). (11)
H L2(Q)

It should be noted that both H (curl0, Q) and V spaces satisfy
the PEC boundary condition on ['pgc.

The variational problem (2) can be solved by taking into
account the following splitting E = Eg+e, Ey € H(curl0, Q),
and e € V. We refer to [28] and [29] for the details. As a result,
we can make explicit the frequency dependence in the solution
to time-harmonic Maxwell’s equations (cf. [30], [31])

. Ao L= A
if k> # Kk, E=Eg+e= e +Jknozf’k2en
n=1 1

if k> =k, E=Ey+e
AO . . An
= e+ jkno D tnen+ ki D e
K2=k? k2AR2 T
(12)

ey € H(curl0, Q) is related to the Riesz representative for the
electric field in statics and has unit norm. Ao stands for the
coupling coefficient of the excitation current to the static field,
namely,

Ap = (J,n x ey x n). (13)

The set of eigenmodes {e, | n € N} C V stands for the reso-
nant modes in electrodynamics, along with their corresponding
resonance frequencies k, and forms a complete orthonormal
system in )V with respect to the inner product (11) [28].
It should be pointed out that H(curl0, Q) is orthogonal to
V with respect to the same inner product (11). Getting to
our point, (12) details an orthonormal representation, that is,
a Fourier series for the electric field where the frequency
dependence is explicit [32]. Furthermore, A, are coupling
coefficients for the excitation current J to its corresponding
resonant mode e, and are determined by

A, =k>J,nxe, xn),neN. (14)

Finally, a, are arbitrary coefficients since the electric field is
not unique at resonance.

A. State Space Dynamical System Representation in
Electromagnetics

Taking a closer look at the electric field representation as a
function of frequency detailed in (12), we point out that this
representation actually provides a physical description of the
electromagnetic phenomena within an orthogonal basis, which
includes the eigenmode basis [22]. Indeed, depending on the
electric current excitation at the ports J, different modes in
the analysis domain may or may not be excited, giving rise
to a specific frequency response behavior that stands upon the
corresponding resonant modes excited. No frequency behavior
other than the one shown (12) is allowed in electromagnetics.

An impedance matrix transfer function detailing the
input—output behavior of the device under analysis is usually
considered. Taking a waveguide mode representation at the
ports in the analysis domain for the excitation current J and
the resulting tangential electric field n x E x n, we get

i

M
J=2 ipip =1 iu) (152)
p=1 imv
M
anxn:Zv,,e,,, onI. (15b)

p=l1

The waveguide mode fields j, and €, satisty (j,, €4) = 0,q,
where J,,, denotes the Kronecker delta. M is the number of
waveguide modes at the ports taken into account. i, and v, are
the input current and output voltage coefficients at the ports,
respectively. The output voltage coefficients are determined by

04 (ji,n x E x n)

Oym (jm,n x E x n)

Substituting (15a) into the electric field representation (12)
yields

i

o0

. . Ayl o Ay

if k2 # k2 E = jkno Y| %en :
n=0 n iy

if K = k2. E = jkno > one,
k2=k2

i
. Anl to AnM
+jkno (A1 - Aw) e )e,, : (17)

fex £ " i
where ko := 0 is the component associated with statics. Once
again, a, are arbitrary coefficients since the electric field is
not unique at resonance. The coupling coefficients A,, are
determined by

Aop = (jp,n x €y X N)
A,lpzk,zl(j,,,nxenxn),neN (18)

which are associated with couplings in statics and eigenres-
onances, respectively. Finally, putting (16) and (17) together,
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we obtain the impedance matrix transfer function, namely

Anl
(Anl e AnM)

N :
. anMm
= Jkno Z 2 _ k2
n=0 n

Oy im

v = Z(h)i. (19)

01

Coefficients a,, are determined by
app = {jp,mx e, xn),n e NUO. (20)

The coupling coefficients a,, and A,, can be conveniently
arranged to get a simpler impedance matrix representa-
tion (19). Thus,

Cnl

(cnl e ch)

N :
. CnM
= Jkno Z 2 _ k2
n=0 n

Oy im

v = Z(bi 1)

1 i

where the coupling coefficients c,, read

cop = (jp,M X €y x n)

Cnp = kn(jp,mx e, xn),n eN. (22)

It is worth noting that the matrix residue for each pole
k, in the impedance matrix transfer function (21) is a
rank-1 matrix [22]. This property allows us to rearrange the
impedance matrix transfer function in a more suitable way.
As a matter of fact, (21) admits a more insightful state-space
dynamical system matrix representation, namely

(& 4) ) - ()

v = jkno(-D + CA™' (k)C")i = Z(k)i
(23b)

(23a)

where D is an identically zero matrix, A(k) is a diagonal
matrix with entries k> — k%, namely A(k) = K — k°’Id,
K = diag{k2, k%, ...} ,and Id is the identity matrix, the state-
space E stands for the electric field in the resonant mode
basis {e,,n € NUO}, and C matrix entries C,, are already
detailed in (22), thus, Cp, = ¢, which stand for the coupling
coefficients to each state, that is, to each resonant mode in the
analysis domain. As a result, the matrix

(" x) 24)

gives rise to a full-wave coupling matrix description of elec-
tromagnetics in transversal topology [22], where no approxi-
mation is taken into account as it is done in classical coupling
matrix circuit theory [33]. No miracle though, the price to pay
is that the dynamics in electromagnetics stand upon infinitely
many so-called states, that is, resonant modes. MOR will be of
help in this regard. We will go back to this point in Section III
to remove this limitation.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

1)

Fig. 1. Transversal topology coupling diagram describing electromagnetics
in a two-port device.

Fig. 1 details the coupling diagram for the full-wave cou-
pling matrix description of electromagnetics in (24) for a
device with two ports, namely S and L (source and load).
The infinitely many states are represented by gray nodes.
Nodes are connected to account for electromagnetic coupling.
No coupling between states arises since the resonant modes
are orthogonal to each other. Recall K matrix in (24) is a
diagonal matrix with entries k,zl, the resonance frequencies.
Only coupling from the ports to the states is allowed, which
is detailed in matrix C. As a result, we have a so-called
transversal topology coupling matrix with infinitely many
states, that is, resonant nodes, which completely describes
the physics throughout the whole electromagnetic spectrum,
Vk € R. All this is detailed in (23) and (24), which is
nothing but a state space dynamical system representation of
Maxwell’s equations. However, a practical representation is
needed since we cannot afford to deal with an infinitely many
state description of electromagnetics.

III. MODEL ORDER REDUCTION

A ROM replaces a rather complex physical model with a
much simpler mathematical one that still maintains certain
physical aspects of the original model within a parameter set.
The computational complexity of the ROM should be insignif-
icant in contrast to the high computational cost of the original
full order model (FOM). MOR has demonstrated its robustness
in reducing the complexity of parametric systems [34], [35].

Microwave circuits are designed to perform a target electri-
cal response in a frequency band of interest. Thus, microwave
engineers are only focused on this frequency band behav-
ior, rather than the whole electromagnetic spectrum. As a
result, a more suitable representation than the one dis-
cussed in Section II, namely, a ROM, is possible. However,
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special treatment of the original equations should be taken
into account for electromagnetics. Unfortunately, this has
gone completely unnoticed in the MOR community. In this
work, we focus on this subtle topic and point out the pit-
falls upon which MOR has been traditionally standing in
electromagnetics.

Variational formulation to Maxwell’s equations (2) turns
into a frequency-parameter variational problem, viz.,

find E(k) € H such that
a(Ek),v; k) = f(v;k)VveH, VkelB3 (25)

where B = [kmin, kmax] 18 the frequency band of interest, and
the frequency-parameter bilinear and linear forms a(-, -; k) and
f(; k) are already defined in (3) and (4), respectively. This
time, the frequency dependence on k is highlighted.

The electric field in the frequency band of interest does not
arbitrarily vary in the infinite dimension space H. Instead,
it evolves on a simple manifold induced by the frequency
parameter M; = {E(k) € H, k € B}, which can be properly
approximated by a small dimension projection space H . This
is where MOR [34], [35] can be of help to quickly find the
solution to the frequency-parameter variational problem (25)
within a specific tolerance error in a systematic way. For
instance, we use the reduced-basis method (RBM) [36], [37] as
the MOR procedure. Furthermore, special emphasis has been
placed on certifying the accuracy of the ROM in the frequency
band of interest 3 obtained by the reduced-basis approxima-
tion [38], [39], [40], [41], [42]. By the same token, any other
MOR scenario can be taken into account in a similar fashion.
As a result, the frequency-parameter variational problem (25)
turns into a much simpler variational problem, viz.,

find E(k) € Hy such that
a(E(k), vik) = f(v;k) ¥v e Hy, Vk e B (26)

where the small dimension projection space Hy plays the role
of the infinite dimension solution space H, Hy C H. The
question that remains to be answered is the following: Does the
reduced variational problem (26) still provide electromagnetic
field solutions to the original variational problem (25)? The
answer is yes and it is straightforward, since all solutions
to (25) also satisfy (26), provided the projection space Hy
appropriately approximates the solution manifold M. How-
ever, we will soon point out that there may be additional
solutions to (26) that do not satisfy the original variational
problem (25) and, as a result, they are not electromagnetic
fields. These will be referred to as spurious modes. We will
get back to this important point in detail in Section III-A. For
the time being, we still follow traditional reasoning.

For the sake of understanding, we use as a projection basis
‘Hy, that is, reduced-basis space to solve problem (26), the
in-band eigenmodes enriched by whatever snapshots of the
electric field in the frequency band of interest, E(R,), N, €
B, are needed to make the reduced-basis approximation
converge to the right solution [29]. However, simpler snapshot-
based reduced-basis spaces including moments can be con-
sidered [11], [12], [16], [43], [44], [45], [46] and more
complicated proper orthogonal decomposition spaces can be

addressed as well [9], [10], [47]. As a result, a reliable
representation of the electric field in the band of analysis is
obtained, namely, Vk € B

N
. : An
if k2 7& k}zv E = Jk;’/o Z men + Zﬁn(k)E(Rn)

KeB, " n=1

N
if k2 = k,zl € B, E= ]k”]o Z 0n€, + Zﬁn(k)E(Nn)
K2=k? n=1

27)

where B, stands for [k2. , k2. . Coefficients A, and S, (k)
are conveniently determined by the reduced-basis approxi-
mation of problem (25) and can be computed with ease
using the reduced-basis space Hy = span{e,,,kfl € B} +
span{E(R,), R, € B}, as has been detailed earlier.

In an analogous way as in Section II, the field solu-
tion (27) yields the following impedance matrix transfer
function describing electromagnetics, but this time, only in the
band of interest . This is the main reason for its simplicity
in contrast to (21). Thus,

Cnl
Sl (ent - eam) .
[} 121
. CnM .
3 = jkno Z k2 — k2 .
kZEBZ n /
Oym n LM
i
+Z0ut—0f—band (k )
im

V= Z(k)i = (Zin-vand (k) + Zoy-of-band (k))l (28)

See (21) and (22). It should be pointed out that only in-band
modes are considered in Zi,pana, Whereas all the out-of-band
contribution in B is put together under Zgy of-pang- However,
both terms are finite, no infinitely many terms are taken
into account any longer. By the same token, the poles k,
in Ziypand, that is, the resonances for the resonant modes
found in the frequency band of analysis, have rank-1 matrix
residues (cf. (28)). Once again, this property allows us to
find a more insightful state-space dynamical system matrix
representation for Zi, pandg. As regards the poles in Zgyt of-bands
which are not even physical resonances, but pure mathematical
artifacts to account for the in-band contribution from the
infinitely many out-of-band modes by means of a simple
matrix-valued rational function, namely Zgyof-band, Only the
physics prevents these poles from appearing in the band of
analysis . We should expect these mathematical artifacts to be
out of this band B, but as it will become clear in Section III-A,
nothing is done to ensure this physical behavior. As a result,
there may be mathematical artifacts in the band of analysis,
the so-called spurious modes €,, with resonance frequency
xn € B, whose poles once again show a rank-1 matrix residue
property. Taking into account the spurious mode contribution,
Zout—of—band is Split into Zspuﬁous and Zoul—of—band~ Normally»
Z purious should be zero but, as has been previously discussed,
this unwanted spurious term may show up if special care is
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not taken into account in the MOR process. As a result, (28)
turns into

Cnl
: (Cnl e ch) .
V1 1]
. . CnM
: = ]k770 Z k2 — k2
oy k’%EBz n lM
Cnl
(Cat -+ camt) .
131
. CnM
+ikino Z )
12<B; n in
i
+Zout-of—band (k)
im
v = Z(k)i
= (Zin-band (k) + Zspuﬁous (k) + Zoul—of—band (k))i

(29)

Recall that the spurious modes arise in the band of analysis
B. As result, a more insightful dynamical system matrix
representation for the in-band behavior Ziy pana + Z spurious r€ads

(& 4) &) - ()

v = jkno(—D + CA~'(k)C")i
= (Zin-band (k) + Zspurious (k))i (30b)

where D is an identically zero matrix, A(k) is a diagonal
matrix with entries kﬁ — k? and )(f — k2, namely, A(k) =
K — k%Id, K = diag{k? € By} U {y2 € B}, the state-space
E stands for the electric field in the in-band resonant mode
and the spurious mode basis {e,, k> € By} U {€,, x> € Ba},
and C matrix entries C,,, detailed in (22) (Cp, = cyp), stand
for the coupling coefficients to each in-band state, including
the spurious modes. This time, all matrices in the dynamical
system are finite. See (23) and (24). As a result, the finite

matrix
0 C
CT K

gives rise to a full-wave coupling matrix in transversal topol-
ogy describing electromagnetics in the band of interest 5.
Putting everything together, that is, Ziyband> Zspurious, and
Zoutof-band, We have the big picture shown in Fig. 2(a)
for a two-port device. In contrast to what is detailed in
Fig. 1 for the same device, a more compact representation
is obtained in Fig. 2(a). However, spurious modes shown
as red nodes in the diagram may appear in the ROM. The
coupling to these spurious modes is weak since they should
not have any influence on the electromagnetic behavior of the
microwave device. However, their appearance does interfere
with the circuit response, creating some unwanted spikes
around the spurious mode resonance frequencies. As a result,
their influence should be completely filtered out from the

(30a)

€1V
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Fig. 2. Transversal topology coupling diagram describing electromagnetics
in a two-port device. (a) Spurious mode influence. (b) No spurious mode
influence.

circuit response. In this full-wave transversal coupling matrix
setting, this can be carried out with ease in a process that
we call regularization. It is enough to nullify the coupling
coefficients C,, from the ports to the spurious resonances in
order to avoid this unwanted spurious mode influence in the
microwave circuit response. This is shown in Fig. 2(b).

For the sake of understanding, we detail next the coupling
matrix (31) for the two-port device shown in Fig. 2(a)

0 0 Cs1 Csi1 Csp Csp

0 0 Cpr1Cpri Cr2Cra
CsiCi xi 0 0 O

CsiCoy 0 K2 0 0 (32)
C2Cs 0 0 K2 0
Cs2C2 0 0 0 x37

as well as the coupling matrix where any influence from
the spurious modes is filtered out from the electromagnetic
response, as shown in Fig. 2(b), thus

0 0 0 Cs1i Cs2 O
0 0 0CLiC2 0

0 0 x20 0 0
CsiC1 0 k2 0 0 (33)
Cs:Cra 0 0 k5 O
0 0 0 0 0 x?

Remark 1: 1t should be pointed out that no coupling
between the in-band states arises, only coupling from the ports
to each in-band mode is allowed, which is also detailed in
Fig. 2 by means of connected nodes.

Remark 2: The out-of-band contribution Z .y of-pand 1S NOt
neglected at any point in the analysis. The coupling matrix
response is not enough to account for electromagnetics in the
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band of analysis 5. In other words, the out-of-band eigenmode
contribution cannot be neglected from the electromagnetic
response. These higher-order modes are indeed contributing
to electromagnetics and must be taken into account. As a
result, the coupling matrix results themselves do not stand
alone to account for the electromagnetic behavior of the device
under analysis, but higher-order mode contributions must be
considered within the out-of-band contribution Z ,u¢of-band-

A. Spurious Modes

The appearance of the so-called spurious modes in MOR
in electromagnetics still needs to be justified. These spurious
mode solutions have remained unnoticed most probably due
to the fact that whenever artificial spikes in the frequency
response of an electromagnetic device were found by the
ROM, the projection space was enriched to actually get rid
of these unwanted artifacts by pushing them out of the band.
However, spurious modes do appear in the MOR response
and special treatment should be carried out if we do not
wish to pay the costly price of oversampling to avoid their
appearance in the frequency band of analysis B. We mention
oversampling since you can always get rid of these spikes in
the frequency response by sampling the FOM at these spike
frequencies and artificially increasing the order of your ROM.
These artifacts were already reported in [18] for geometry
PMOR; however, these spurious modes are inherent to any
MOR in electromagnetics if special care is not taken.

The main question here is whether the reduced
frequency-parameter variational problem (26) satisfies the
time-harmonic Maxwell’s equations (1) in the band of interest
B, such as it is the case for the original frequency-parameter
variational problem in (25). The only thing that is changed
in both variational problems is the admissible solution space.
In the original problem (25), an infinite dimension space H
is used, whereas a small dimension projection space Hy is
considered in the reduced problem (26) instead. It should be
highlighted that H is an infinite dimension space and, as a
result, the variational problem (25) is completely equivalent
to Maxwell’s equations in (1) in the strong sense. Note that
by taking the divergence in (la) and (1b), we automatically
obtain the divergence equations (lc) and (1d). This is the
reason why, in the continuous level, only the curl equations
[Ampere’s and Faraday’s laws (la) and (1b)] are needed
to impose the divergence equations (1c) and (1d), provided
the frequency w does not vanish. Up to now, the answer
was clear and nobody has reported any issue with MOR
in electromagnetics. However, taking a closer look at the
time-harmonic Maxwell’s equations, we realize that the
divergence-free equation (lc) is not accurately taken into
account in (26). This is in contrast to what is done in (25),
where the divergence-free equation is properly imposed in a
variational sense by means of the infinite dimension H as has
been already pointed out, that is,

(e-w, V) 12(q) = 0 Vv € H(curl0, Q) (34)

is a variational equivalence to the divergence-free equation
V - (e&u) = 0. The infinite dimension space H(curl0, Q)

is replaced in (26) by a rather small dimension reduced-
basis space, even smaller than the dimension of the projection
space Hy. As a matter of fact, (34) turns into

(e:1, V) 12q) = 0 Vv € Hy(curl0, Q) (35)

in the reduced variational problem (26), which unfortunately
is not enough to accurately impose the divergence-free equa-
tion (lc) in the time-harmonic Maxwell’s equations. In other
words, the curl equations (1a) and (1b) are not satisfied in the
strong sense, and these are only satisfied in the weak sense
(variational sense in an approximation space of low dimen-
sion). This does not allow us to take the divergence operator
in the strong sense, just like we have done above, to satisfy the
divergence equations (1c¢) and (1d), provided the frequency w
does not vanish. This is the rationale behind the divergence
equations are not imposed in MOR in electromagnetics in (26).
As a result, spurious mode solutions with a nonvanishing
divergence are expected in the ROM. These are mathematical
solutions to (26) that do not satisfy Maxwell’s equations and
should be conveniently removed from the electromagnetic
spectrum, since they do not account for electromagnetics.
The way to filter out their contribution from the microwave
circuit response has already been discussed in Section III. The
question that still remains is how to efficiently identify these
spurious modes in the MOR setting, so that their negative
influence on the circuit response can be properly removed,
regularizing the ROM. Algorithm 1 is proposed to carry out a
reliable MOR process that automatically removes any spurious
mode contribution, where no a priori knowledge of the in-band
resonant modes is taken into account as it is the case in [16]
and [29], which may be time-consuming depending on the
scenario.

Remark 3: It should be pointed out that the rationale
for spurious modes in electromagnetics to appear is the
divergence-free equation being not properly satisfied. As a
result, additional mathematical solutions, which are nonphys-
ical, show up as spurious eigenmodes. Since these spurious
modes do not account for electromagnetics, a weak coupling
to the excitation ports in the structure under analysis should be
expected. This is a direct consequence of being a nonphysical
eigenmode. We have taken advantage of this fact to propose
Algorithm 1 and filter out any spurious contribution from the
frequency response without having to modify the MOR code.

Remark 4: These spurious mode solutions are well known
in CEM [1], [5], [6]. They appear whenever a proper
finite-element approximation space H” to the infinite dimen-
sion solution space H is not taken into account. Nédélec
finite elements [2], [3] provide an elegant way to impose
the variational divergence-free condition in (34) by means
of a sufficiently large finite dimension space H’ (curl0, Q),
which is directly contained in the finite-element space H”.
However, we cannot afford large dimension projection spaces
in MOR; otherwise, we deviate from the main goal in a ROM,
which should definitely be of small dimension and quick to
evaluate. A spurious-free variational formulation for MOR in
electromagnetics is currently under investigation and we intend
to report these results in the near future.
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Remark 5: In order to appropriately compute the variational
divergence norm in Step 7 in Algorithm 1, a tree—cotree
splitting of the finite-element approximation space is carried
out [7], [48], giving rise to a discrete Helmholtz decomposition
of the finite-element space. This allows us to appropriately
identify the curl-free space in the finite-element approxima-
tion. By the same token, a fast evaluation of the variational
divergence norm is needed throughout the band of analysis 5.
This can be straightforwardly computed in a similar fashion
as the residual error norm in Step 16, taking advantage of
the affine parameter dependence in the ROM [42], [44], [49].
Further details about the norm in a dual space can be found
in [50]. In any case, since the solution takes place in a discrete
setting, any norm can actually be taken into account to measure
the relevance of the divergence of the eigenmodes. No matter
which norm is used in this numerical computation, the evalua-
tion of the norm of the divergence of the eigenmode, whatever
it is finally used, is computationally cheap by following a
similar procedure as the one used in the residual error norm
in Step 16.

Remark 6: The rank-1 matrix residue property for each in-
band eigenmode, including spurious modes, is double-checked
in Step 9. This allows us to identify when an eigenmode is
accurately approximated in the MOR procedure [51].

Remark 7: Even though it can be thought that spurious
mode identification can actually be accomplished by simply
looking at the coupling of these modes to the ports, which
should be expected to be weak since they do not account
for electromagnetics, this is not enough to properly identify
the appearance of such unwanted nonphysical modes. In fact,
in the structure under analysis, we can also have physical
eigenmodes with a really weak coupling to the excitation ports
and, therefore, we cannot only use this criterion to identify the
spurious solutions. For instance, this situation can happen in a
filter with a small first coupling iris to the cavity modes. These
eigenmodes are physical but show a really weak coupling to
the ports.

Remark 8: In Step 4 in Algorithm 1, we refer to the
eigenproblem resulting from (26) when no excitation is taken
into account. It should be noted that the bilinear and linear
forms in (26) are defined in (3) and (4). As a result, the
eigenproblem coming from (26) turns into matrix form as
follows:

(S—KT)x=0 (36)

and matrices S and T are the ones to diagonalize.

Remark 9: Any physical mode must satisfy Maxwell’s
equations. As a result, any physical mode is divergence-free,
even if it shows a weak coupling to the excitation ports. By the
same token, any eigenmode, even if it is a physical or spurious
mode, must satisfy the rank-1 matrix residue property. The
rationale behind this is being an eigenmode. See (29) and the
derivations that brought this equation up.

Remark 10: It should be pointed out that there are some
scenarios that, even when spurious modes are present, their
negative influence will not show up on the frequency axis and
the spurious solution can remain unnoticed. This is the case in
open problems such as radiation problems, or lossy problems.
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Algorithm 1 Reliable MOR Procedure to Automatically Filter
Out the Spurious Mode Contributions
Input: Frequency band of interest B := [kmin, kmax], tolerance
tol as the acceptable ROM error, and divergence tolerance
tolgaiv as divergence-free threshold.
Output: Spurious mode contribution-free ROM.
1: Initialize Hy = {0}, ¢ = tol + 1. Choose a sample k*
taken from B.
2: while £ > tol do
3:  Solve for E(k*) in (25) and update Hy: Hy = Hy +
span{E(k*)}.
4:  Using Hy, solve for the eigenvalue problem in (26) and
diagonalize it.
5:  Find the in-band eigenvalues and form the dynamical
system (30).
for each in-band eigenmode e, do
7: Compute the variational divergence norm

div =V - (erey) 3¢ (curi0,0)-

Here
, (er€n, V) 12(q)
IV - (eren) o := sup —————
veH(eurl0,) Vil

8: Compute the matrix residue R,, associated with e,.

o: if rank(R,) == 1 and div > tolg;, then

10: Mark as spurious mode.

11: Update the dynamical system (30) by removing this
spurious mode contribution, nullifying its coupling to
the ports.

12: end if

13:  end for

14:  Solve for E(k) in the spurious mode contribution-free
diagonal version of (26).

15:  Other MOR processes are possible but, using RBM,
choose the next sample k* from B as

k* = argmax (), - k) ll7¢-
keB
Here r(E(k), -; k) is the residual functional introduced by
E(k) in (25), namely,
r(Ek), s k) == f(vik) — a(E(k), vi k), Vv € H.

16: &= [rE &), 5 k)l
17: end while

Spurious modes in MOR may show up in the traditional
framework, since the divergence-free equation is not properly
imposed. Nevertheless, in these lossy problems, the resonances
are no longer found on the frequency axis but they are away
from the frequency axis.

IV. NUMERICAL RESULTS

In this section, we apply the proposed methodology to
find a spurious mode contribution-free ROM in time-harmonic
Maxwell’s equations. These kinds of ROMs without spurious
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mode contribution are of paramount importance in getting
physical insights from MOR in electromagnetics [22], where
spurious modes can definitely mislead the physical behavior
description of the device under analysis. By the same token,
whenever PMOR is taken into account, the projection basis is
rich enough to accurately approximate the solution state for the
actual device parameter analysis, but also is large enough to
account for other analyses in the parameter set of interest. This
will definitely find spurious modes in the band of analysis,
which must be conveniently removed from the ROM to avoid
spikes in the frequency response of the device under analysis.
This unwanted behavior has already been pointed out in [18]
for geometry PMOR. Algorithm 1 can appropriately take care
of these spurious modes in all these scenarios.

The proposed approach is applied to actual microwave
circuits, namely, a quad-mode dielectric resonator filter,
a triple-band filter in elliptical cavities, and an inline dielectric
resonator filter with finite transmission zeros. No loss is taken
into account in these circuits under analysis. The operating
frequency band is typical for the analysis of these filtering
structures. We use RBM [36], [37] as MOR procedure.
Throughout these examples, we follow Algorithm 1 to get no
spurious contribution in the frequency response of the devices
under analysis. We run the MOR procedure with tol = 1078
as acceptable error, following the tolerance error detailed
in [29], where a linear independence measure threshold is used
to monitor the accuracy of the ROM. This allows the MOR
procedure to automatically stop whenever this error tolerance
tol is ensured, giving rise to a specific order in the ROM,
which is adaptively and automatically chosen by Algorithm 1.
By the same token, we set tolg;, = 10~!2 to ensure that
the divergence-free condition is held, where the value is
chosen to account for numerically zero divergence values.
The capabilities and reliability of the proposed procedure
will be apparent throughout these examples. The in-house
C++ code for FEM simulations uses a second-order first
family of Nédélec’s elements [2], [52], on meshes provided
by Gmsh [53]. All computations were carried out on a work-
station with a 3.00-GHz Intel Xeon E5-2687W v4 processor
and 256-GB RAM.

A. Quad-Mode Dielectric Resonator Filter

A quad-mode dielectric resonator filter in a single cylin-
drical cavity is proposed in [54]. Fig. 3 shows the geometry
of the filter as well as the mesh used for its analysis. These
structures are extremely attractive since multiple resonant
modes show up in a single cylindrical cavity due to the
dielectric resonator. A wide-band analysis is carried out to
check for higher-frequency pass bands, B := [3.4,4.5] GHz.

An FEM system with 245778 degrees of freedom is used to
solve for the electric field in the band of interest B. Following
Algorithm 1, a ROM is obtained by means of RBM giving rise
to a reduced system of dimension 14 to compute the frequency
response detailed in Fig. 4(a). It should be pointed out that all
steps in Algorithm 1 are run until the final dimension 14 to
ensure the convergence of the ROM is obtained. No spurious
mode was previously identified in this process. By the same

Fig. 3. Quad-mode dielectric resonator filter proposed in [54].

token, it is guaranteed that this ROM is indeed a surrogate of
the FEM model [11], [29], [38], [43], [46]. The comparison
between the FEM and MOR results is depicted in Fig. 4.
The in-band modes found in the band of analysis are also
detailed along the frequency axis in Fig. 4(a). It is clear that
finding the eigenvalues in the ROM system of dimension 14 is
completely straightforward in contrast to the eigenvalues of the
FOM system of dimension 245 778. Furthermore, we find a
spike in the scattering parameter response around 4.372 GHz.
We may think this spike is indeed due to the actual physical
behavior of the quad-mode filter. However, when we carry
out the variational divergence analysis for each of the in-band
modes, shown in Fig. 4(b), we realize this spike is due to a
spurious mode solution, that is, a nonphysical mode, since
it does not show a divergence-free contribution as can be
observed in the remaining in-band modes. As a result, this
spurious mode contribution should be removed from the device
response. This is done by means of the methodology detailed
in Section III and the results are presented in Fig. 4(c). This
time, no spike is observed in the scattering parameter response
since any spurious mode contribution has been filtered out in
Fig. 4(c) and good agreement is found with respect to the
previous spurious mode contribution response in Fig. 4(a).

B. Elliptical-Cavity Triple-Band Filter

A compact triple-band filter with elliptical cavities is
detailed in Fig. 5. This filter is proposed in [55]. The elliptical
cavities are designed to realize triple-mode resonators, thus
significantly reducing the actual size of the triple-band filter.
The 3.7-4.4 GHz band is taken into account for analysis.
An FEM discretization shown in Fig. 5 with 311898 degrees
of freedom is used. Algorithm 1 is run to carry out a spurious
mode contribution-free reliable fast frequency sweep of the
triple-band filter. A ROM of dimension 13 is obtained. The
scattering parameters are depicted in Fig. 6(d) and the in-band
modes are detailed along the frequency axis. The comparison
between the FEM and MOR results is depicted in Fig. 6(d) as
well and good agreement is found. However, in order to get
further insights about this proposed approach, we show the
results, following Algorithm 1, for the ROM of dimension
12 in Fig. 6(a), where the in-band modes are depicted as
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Fig. 4. Quad-mode dielectric resonator filter response. (=) RBM. (o) FEM.
(a) Spurious mode contribution. Note the spike around 4.372 GHz, highlighted
with a red cross on the frequency axis. (b) In-band mode divergence norm
IV - (eren)]. (c) Free of spurious mode contribution. Note there is no longer
a spike around 4.372 GHz.

Fig. 5.

Triple-band filter in elliptical cavities designed in [55].

well along the frequency axis. Taking a closer look at both
Fig. 6(a) and (d), we identify a spike on the frequency response
in Fig. 6(a). In addition, there is an in-band mode around this
spike at 4.392 GHz. We could have straight away identified
this spike as a spurious mode contribution due to the in-band
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Fig. 6. Triple-band filter response. (=) RBM. (o) FEM. (a) Possible

spurious mode contribution. ROM dimension = 12. Note the spike
around 4.392 GHz, highlighted with a red cross on the frequency axis.
(b) In-band mode divergence norm ||V - (g.e,)|. (c) Residual norm in the
ROM. (d) ROM dimension = 13.

mode at 4.392 GHz, which can then be characterized as a
spurious mode. This reasoning would be plausible. However,
when we carry out the variational divergence analysis for
each of the in-band modes, detailed in Fig. 6(b), we realize
this spike is due to a divergence-free contribution, just like
the other in-band modes and, therefore, it is not a spurious
mode. This contribution should not be removed from the
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Fig. 7. Inline dielectric resonator filter designed in [56].

ROM, since this is indeed a physical contribution. If we do so,
we will definitely deteriorate the approximation capabilities in
MOR in electromagnetics. What is going on with this spike is
the following. This in-band mode is the result of a poorly
approximated higher-order physical mode in the structure,
which is out of the band of analysis, but due to the poor
approximation at this step in the MOR, this higher-order mode
shows up in the band of analysis. This is already clear in
the residual behavior of the ROM, shown in Fig. 6(c). In the
case of the ROM of dimension 12, the residual norm of
the ROM ||r(E(k), -; k)|l3¢ is still large nearby 4.392 GHz,
which clearly identifies a poor ROM approximation around
this frequency. Indeed, following the greedy procedure detailed
in Algorithm 1, the reduced-basis space will be enriched by a
snapshot of the electric field at this frequency 4.392 GHz,
giving rise to a ROM of dimension 13, where this poor
approximated higher order mode is pushed away to its right
place out of the band of analysis 5. This is shown in both the
residual norm for the ROM of dimension 13 and the scattering
parameter results in Fig. 6(c) and (d), respectively. It should
be noted that this possible spurious mode, which turned out to
be a physical mode, is no longer present in Fig. 6(d) following
Algorithm 1.

C. Inline Dielectric Resonator Filter

A sixth-order inline dielectric resonator filter with two trans-
mission zeros is depicted in Fig. 7. Cross-coupling between
nonadjacent dielectric resonators, appropriately arranging their
orientations, is obtained by exploiting multiple evanescent
modes in the inline structure. This filter is proposed in [56].
The [2.15, 2.19] GHz band is taken into account for analysis.
An FEM discretization shown in Fig. 7 with 229706 degrees
of freedom is used. Following Algorithm 1, a ROM is obtained
giving rise to a reduced system of dimension 11 to compute
the fast frequency sweep detailed in Fig. 8(a). It should be
pointed out that all steps in Algorithm 1 are run until the
final dimension 11 is obtained to ensure the convergence of
the ROM. No spurious mode was previously identified in this
process. The comparison between the FEM and MOR results
is depicted in Fig. 8 as well and good agreement is found.
The in-band modes found in the band of analysis are also
detailed along the frequency axis in Fig. 8(a). We find a
spike in the scattering parameter response around 2.176 GHz.
We carry out the variational divergence analysis for each of
the in-band modes, shown in Fig. 8(b), and we realize this
spike is due to a spurious mode solution, that is, a nonphysical
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Fig. 8. Inline dielectric resonator filter with finite transmission zeros
response. (—-) RBM. (o) FEM. (a) Spurious mode contribution. Note the
spike around 2.176 GHz, highlighted with a red cross on the frequency axis.
(b) In-band mode divergence norm ||V - (¢.e,)|. (c) Free of spurious mode
contribution.

mode, since it does not show a divergence-free contribution
as can be observed in the remaining in-band modes. As a
result, this spurious mode contribution should be filtered out
from the device response. All this is taken into account in
Algorithm 1. Here, we are just highlighting step by step
the proposed approach detailed in Algorithm 1. As a result,
no spike is observed in the scattering parameter response since
any spurious mode contribution has been removed in Fig. 8(c).
It should be pointed out that, following Algorithm 1, only
physical in-band mode contributions are allowed in the final
reliable ROM response shown in Fig. 8(c).

V. CONCLUSION

A robust reduced-order model for reliable fast frequency
sweep in microwave circuits has been detailed. We have
addressed the everlasting issue of poorly localized approxima-
tion problems in MOR in electromagnetics and spurious modes
have been identified for the very first time in ROMs for time-
harmonic Maxwell’s equations. A computational inexpensive
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variational divergence condition has been proposed to identify
nonphysical spurious modes in the band of analysis since any
in-band physical mode must be divergence-free. An algorithm
has been detailed to completely remove any spurious mode
contribution from the ROM, without having to enrich the
actual reduced-basis approximation space in the MOR process.
This filtering strategy has been based upon physical coupling
to in-band mode arguments. It has to be pointed out that,
in the proposed approach, when a spurious mode is identified,
not only the ROM response itself has been regularized but
also the corresponding error estimator behavior has been
unleashed from any spurious mode contribution. This has
allowed the MOR process to keep going smoothly without
any stagnation. Actual microwave devices, including a quad-
mode filter, a triple-band filter, and an inline filter with finite
transmission zeros, have shown the capabilities and reliability
of the proposed methodology.

Spurious modes are mathematical solutions that are non-
physical solutions to the physical problem under considera-
tion. In electromagnetics, we may think the curl equations
(Ampere’s and Faraday’s laws) are enough to satisfy all
Maxwell’s equations, provided the frequency does not vanish.
However, in MOR, this is not enough since we have shown
that the divergence-free equation is no longer satisfied in the
ROM, giving rise to spurious solutions. As a result, any CEM
problem suffers from spurious solutions whenever standard
MOR techniques are taken into account. We have shown
some filtering structures in this work, as typical examples of
cavity problems in electromagnetics. But this spurious mode
issue also appears in other electromagnetic problems, such
as diplexers, electromagnetic bandgaps, frequency selective
surfaces, power dividers, and so on. Any cavity problem in
electromagnetics will suffer from these spurious modes when
standard MOR techniques are used.

By the same token, in open problems, such as radiation
problems, spurious modes in MOR may show up, since the
divergence-free equation is not appropriately satisfied. How-
ever, in these open electromagnetic problems, the resonances
are no longer found on the frequency axis but are away from
the frequency axis. In this scenario, even though the MOR may
suffer from spurious modes, these will not be noted along the
frequency axis.
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