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A numerical stability analysis of an axially compressed multilayered composite shell is presented. 
The authors examine how the stability performance of a panel can be influenced by a centrally located 
square cut-out. The computations are performed within FEM computer program NX-Nastran (ver. 6.0). 
The stability is investigated by means of a linearized buckling analysis as well as of a non-linear large 

deformations incremental analysis. To get more insight into the performance of the layered structure, the 
failure index according to Tsai-Wu criterion is monitored in the study.  
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1. Introduction 
 

Composite materials play very important role in modern building engineering. The 

most attractive advantage of these materials is above all a combination of a light 

weight with a high strength. Most common in use are multilayered composites made 
of fibre-reinforced layers with various orientations of fibres in a stacking sequence 

that determines the global anisotropy of a body. This permits a range of possibilities in 

design process. There is no exaggeration in opinion that composites are most suitable 
materials for modern light structures. The best support for this statement is the fact, 

that the development of composites is strongly connected with the progress of 

aerospace technology. 
On the other side, shells, which we focus on, are in general light thin-walled 

structures or members of other constructions. From this point of view, they are usually 

subjected to instability. Of course, the stability depends on many aspects, i.e. 

slenderness, boundary conditions, imperfections. If the influence of these factors is 
strong enough, the loss of stability can occur before other limit effects like failure or 

delamination arise. This fact should be taken into account during design process and 

analysis of shells. It is however understandable that multilayered composite shells are 
typically slender constructions, so that, in the relation to previous considerations, the 

necessity of stability analysis is fairly evident in this case. 

In the present paper, we examine how the stability of a multilayered panel can be 

influenced by centrally located square cut-outs. Such cut-outs appear quite often in 
practical applications, because holes can serve as doors, windows or input of 

pipelines. The presence of a hole can remarkably change the structural response. Due 
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to the reduction of a material volume significant changes of stiffness occur. A 

predictable decrease of the critical load in such a case is not a rule. Depending on the 
cut-out size, both a decrease as well as an increase of the buckling resistance is 

possible [1]. It is also worth noticing, that due to the more complicated stress states in 

multilayered composite structures than in isotropic media, some tendencies of the 
structure response caused by changes of the cut-out size, that can be observed in the 

case of homogeneous isotropic shells, are not directly applicable to multilayered 

structures [2]. 

 

2. Stability analysis 
 

 There are several ways to analyse the stability of a structure. In present study, two 

methods are used to estimate the critical load level, namely linearized buckling 

analysis and non-linear incremental large deformation analysis. 

 
2.1. Linearized buckling analysis 

 
 The simplest way to get information about the critical load of a structure is to 

examine an appropriate linear eigenvalue problem. The system of equations, which 

has to be resolved, has a form: 

 

[ ]con  K K v 0 , (1) 

 
where K

con
 is the constitutive stiffness matrix, K represents the geometrical stiffness 

matrix,  and v stand for an eigenvalue and the corresponding eigenvector, 

respectively. This approach can be very attractive due to its computational efficiency; 
however, as a linear formulation it is useless when the structure undergoes large 

deformations in the pre-buckling range. 

 
2.2. Non-linear large deformations incremental analysis 

 

 Taking into consideration large deformations one has to carry out an incremental 
analysis, which states: 

 

T[ ( )] ( )K q Δq R q , (2) 

 
where KT(q) is the tangent stiffness matrix depending on actual displacements, Δq is 
the increment of displacement vector and R(q) indicates the vector of residual forces. 

This approach is much more expensive from the computational point of view than 

solving the linear eigenvalue problem; additionally, some experience is usually 

required from the user for a proper handling. On the other hand, non-linear large 
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deformations incremental analysis combined with the arc-length strategy enables the 

examination of structures undergoing large displacements including also the post-
critical behaviour. 

 

3. Composite shell modelling in NX-Nastran 

 

 The computations are performed within the commercial code NX-Nastran (ver. 
6.0). The three-dimensional multilayered body is treated as a single layer with the 

equivalent stiffness of a multilayered cross-section. Such an approach is known as the 

Equivalent Single Layer (ESL) model [3]. As a consequence of this simplification, 
local effects like a delamination, matrix cracking or fibres breaking cannot be 

analysed.  

 The resulting two-dimensional model of a layered shell can be analysed adopting 

one of the theories established for homogeneous isotropic shells. In NX-Nastran, the 
so-called First Order Shear Deformation Theory (FOSD) is applied. It means that the 

straight line, normal to the reference surface, remains straight but not necessarily 

normal during the deformation. Such an approach can be also called Reissner-Mindlin 
type theory when comparing with the shell theories.  

 Another essential assumption with a reference to composites in NX-Nastran is the 

linear elastic material model. Nevertheless, according to previous considerations, the 

instability of slender structures can occur in elastic range; therefore, the NX-Nastran 
composite model seems to be sufficient for the present study. 

 In most common displacement formulations of finite elements, the assumption of a 

linear displacement profile through the shell thickness causes a necessity of a shear 
stiffness correction. This can be achieved by means of several ways. The simplest 

approach consists in using of pre-defined shear correction factors for each layer or for 

whole cross-section. It is however inconvenient to set the values of such pre-defined 
factors for laminated medium. More accurate for laminated bodies seem to be 

formulations in which shear factors for the whole cross-section or even the shear 

stiffness matrix are evaluated numerically. On the other hand, it is worth to mention, 

that such a method requires some essential presumptions. Very often, the basis for 
such an approach is an assumption of a cylindrical bending mode. This methodology 

is implemented also in NX-Nastran, and in the authors’ opinion, this technique is very 

efficient due to its accuracy and simplicity [4]. 
 For composite multilayered shells, only four-node flat elements are offered in NX-

Nastran. The element possesses 6 degrees of freedom at each node. As a remedy for 

the locking phenomenon, the assumed strain field approach is applied. Stress recovery 
is possible only at the Gauss-point, which is located in the centre of element. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4. Tsai-Wu criterion 
 

 According to the previous sections, the load capacity of a structure can be very 

often strongly determined by other aspects than the strength of the material; hence, the 
stability study becomes the most important part of the analysis. Nevertheless, one 

should not forget of the stress state monitoring. In multilayered composites, due to the 

orthotropy of layers and various fibres orientations in the stacking sequence, a 

complicated stress state can appear, consequently appropriate  strength or failure [5] 
criteria are required. 

 Similarly to homogeneous isotropic media, there exist several strength criteria for 

multilayered composites. The following theories are available in NX-Nastran: the 
maximum strain criterion, the Hill (or Tsai-Hill [5]) criterion, the Hoffmann criterion, 

and the Tsai-Wu criterion. The most general hypothesis has been proposed by Tsai 

and Wu [5]. This criterion enables the analysis of materials with different tensile and 

compressive strength. Moreover the theoretical results obtained by using of the Tsai-
Wu hypothesis usually match very well the experimental data. 

 The failure surface of the Tsai-Wu criterion is described by the following equation: 

 

2 2 2

1 2 1 2 12 1 2 122

1 1 1 1 1 1 1
2 1

t c t c t c t c

F
X X Y Y X X YY S

      
   

          
   

, (3) 

 
where Xt, Xc are the longitudinal tensile and compressive strength respectively, Yt, Yc 

stand for the transverse tensile and compressive strength correspondingly, S represents 

the shear strength of a layer, whereas 1, 2, 12 symbolize stress components in the 

principal material coordinates. F12 denotes the factor of an interaction between 1 and 

2. Directly from (3) the formula for the failure index FI can be obtained as: 

 

2 2 2
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1 1 1 1 1 1 1
2

t c t c t c t c

FI F
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      
   

          
   

. (4) 

 
The failure occurs, when the FI index achieve the value equal to or greater than 1.   

 The value of F12 should be determined experimentally in biaxial test. However, it is 
a little bit complicated [5]; therefore, very often F12 is set to zero or evaluated from the 

formula given by Tsai and Hahn [6]: 

 

12

1

2 t c t c

F
X X YY


 . (5) 

 D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


It will be shown later, that in spite of small value, F12 can significantly influence the 

shape of failure surface.  

 

5. Numerical example and discussion 
 

 The analysed example was proposed by Chaplin and Palazotto in [7]. The axially 

compressed cylindrical panel is studied without and with centrally located square cut-
outs, as shown in Figure1. 

 

 
 
Figure 1. Geometry of the shell and cut-outs (a – length of cut-out’s edge). 

 

Due to the specific loading conditions, a rigid movement of the loaded edge is 
enforced. The panel is fixed along the curved edges and the straight edges are free. 

The shell consists of 16 layers with a quasi-isotropic lamination scheme [0/45/-

45/90]2s. All layers have equal thickness h=0.127 mm and they are made of the 

graphite-epoxy composite AS4/3501-6 with the following stiffness parameters: 
E1=135.8·10

3
 MPa, E2=10.9·10

3
 MPa, G12=G13= 6.4·10

3
 MPa, G23= 3.2·10

3
 MPa, 

v12=0.276. In order to investigate the failure indices, also the strength parameters are 

required. Since they were not given in [7], the appropriate data were adopted after [8]: 

Xt=1950 MPa, Xc=1480 MPa, Yt=48 MPa, Yc=200 MPa, S=79 MPa. 

 
5.1. Linearized buckling analysis 

 
 Firstly the linear eigenvalue problem has been analysed. Figures 2-4 illustrate five 

critical modes with the corresponding critical load for the three considered cases. It 

can be observed, that the critical load decreases when the cut-out occurs, moreover, an 
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additional decrease of the critical load takes place for the increasing cut-out size. 

While comparing the obtained eigenmode shapes, one can observe, that they are the 
same for all three cases and that they occur in the same sequence in case 1 and 2; 

however, the presence of large cut-out (case 3) interchanges the order of mode 2 and 

3. 

 

 
 
Figure 2. Linear eigenvalue problem solution, case 1. 

 

 

 
Figure 3. Linear eigenvalue problem solution, case 2. 

 

 
 
Figure 4. Linear eigenvalue problem solution, case 3. 

 
5.2. Nonlinear solutions 

 

 The comparison of the results obtained by the use of linear eigenvalue problem and 
those of the nonlinear incremental analysis is presented in Figures 5-7. The critical 

load levels given by the linearized buckling analysis are depicted in the graphs by the 

horizontal lines. In all three cases, the maximum load limit point lays above the level 

of the first critical load.  D
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Figure 5. Nonlinear incremental analysis; case 1 – comparison with linearized buckling analysis results. 

 

 
Figure 6. Nonlinear incremental analysis; case 2 – comparison with linearized buckling analysis results. 

 

 
Figure 7. Nonlinear incremental analysis; case 3 – comparison with linearized buckling analysis results. 
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It is worth noticing, that in the case 1 the slope of the path arises in the vicinity of the 

first critical load level. This observation justifies the opinion, that there is a bifurcation 
point in the equilibrium path at the load level 24 kN, hence, the obtained path is not a 

fundamental one. 

A more detailed study of this effect can be found in [3]. It has to be state, that the 
fundamental path cannot be obtained with the use NX-Nastran. The direct reason of 

this problem is the approximation of cylinder curvature with flat elements. It causes 

slight numerical imperfections, which the analysed panel, due to free straight edges, is 

sensitive to. On the other hand, the secondary path obtained in the present study is 
much more important for practical purposes. 

One can observe in Figures 5-7, that with the occurring of the cut-out and with its 

growing size, the range of a linear shell response decreases. Only in the case 1 the 
structure behaves linearly up to the first critical force level. In other cases the 

nonlinear effects arise below the first critical force value, so the results computed in a 

linear eigenvalue problem are useless. 
The cut-out influence on the limit load level is demonstrated in Figure 8. Likewise in 

the linear solution, the critical loads decrease with increase of the hole size. With dot-

lines in Figure 8 the reference solution of Chaplin and Palazotto [7] is depicted. The 

observable quantitative discrepancies between the results of [7] and those of the 
present study can be explained by a too sparse FE discretization applied in [7]. 

 

 
Figure 8. Influence of cut-out, nonlinear solutions. Comparison with [7]. 

 
5.3. Strength analysis 

 
 The range of the analysis can be further increased by taking into consideration the 

monitoring of the failure index FI for the three studied cases of the shell. The value of 

FI is calculated according to formula (4) resulted from the Tsai-Wu failure criterion.  D
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Figure 9 shows the projection of failure surface on the 1-2 plane for two values of 
interaction parameter F12, namely F12= 0.0 and F12= -3.004·10

-6
 (the second value 

evaluated according to formula (5)). As one can observe in Figure 9, the value of F12 

significantly influenced the shape of the failure surface.  

 

 
Figure 9. Influence of Tsai-Wu interaction parameter F12 on Tsai-Wu failure surface. 

 

The further results reported in the following were obtained for F12= -3.004·10
-6

. 
The distribution of the failure index FI at the limit load level for the three analysed 

cases are demonstrated in Figure 10. It is noteworthy that in the cases 1 and 2 the 

maximum values of FI occur in the first (bottom) layer, while in the case 3 the highest 

values are achieved in the ply 2.  
In the case 1 the stress concentration takes place in the centre of the shell; however, 

the maximum value of FI is less than 0.5. As expected, the highest values of FI in the 

shells with cut-outs are achieved at the holes’ corners. One can observe a non-
symmetrical distribution of FI with maximum values at the upper right and the bottom 

left corner in the case 2 (FI=0.77) as well as in the case 3 (FI=1.3). The non-

symmetrical distribution of FI (and stresses) is caused mainly by non-symmetrical 
deformation patterns – see Figures 11-13. 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
 
Figure 10. Failure index FI distribution at limit load levels, 3 cases. 

 

 
Figure 11. Deformation of straight edges at limit load level, case 1. 

 

 
Figure 12. Deformation of straight edges at limit load level, case 2. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
Figure 13. Deformation of straight edges at limit load level, case 3. 

 
The increase of the cut-out’s size causes a growth of the FI value. According to the 

obtained FI  results, the failure at the limit point occurs only in the case 3.  

It has to be mention, that NX-Nastran offers just a passive detection of a failure – the 

FI index value greater than 1 indicates the failure; however, the stiffness of the 
structure is not affected, what can be considered as a significant limitation of the 

program. 

Since the failure has been detected for the case 3, an additional study has been 
performed to examine, how the response of the structure would change when the 

corners of the largest cut-out were rounded. The equilibrium paths (axial displacement 

vs. load) obtained for the rounding x=0%, x=5% and x=10% are presented in Figure 
14a. The interpretation of x parameter can be found in Figure 14a. 

One can observe, that with the higher values of x the limit load increases; however, the 

FI values for the limit load are still above 1, as listed in Figure 14a. On the other hand, 

when the failure index is monitored for the constant load level (equal to the limit load 
for the structure without rounded cut-out’s corners), by applying the rounding 

parameter x=10% the value of FI can be cut down to 0.9 (Figure 14b). 

 

 

 

Figure 14a. Case 3, influence of corner’ rounding. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
Figure 14b. Case 3, influence of corner’ rounding. 

 

6. Conclusions 
 

 A numerical stability study of an axially compressed multilayered composite shell 

has been presented. The authors have focused on the influence of a centrally located 
square cut-out on the structure instability. The analysis has been performed within 

NX-Nastran by using the four-node QUAD4 elements. The linearized buckling 

analysis as well as non-linear incremental analysis have been carried out to calculate 
critical load values. Additionally the material strength has been analysed by adopting 

the failure criterion of Tsai and Wu. 

It has been shown, that cut-outs significantly change the structure behaviour. The 

increase of the cut-out’s size reduces the critical load values and decreases the range 
of linear structure response. Furthermore, the presence of a cut-out causes 

considerably stress state changes when compared with a shell without any hole.  

It is also noteworthy, that the analysis of composite failure in NX-Nastran has only a 
passive character, since the stiffness of the structure is not modified according to the 

results of the failure analysis. 
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Analiza stateczności kompozytowych powłok warstwowych z otworami 

 

W pracy analizowana jest stateczność ściskanej osiowo kompozytowej powłoki 

warstwowej. Badany jest wpływ usytuowanego centralnie w powłoce otworu kwadratowego na 
stateczność konstrukcji. Obliczenia wykonano w programie NX-Nastran (wersja 6.0). Poziom 

obciążeń krytycznych wyznaczony został w rozwiązaniu liniowym (liniowy problem własny) 

oraz na drodze analizy przyrostowej z uwzględnieniem dużych przemieszczeń (statyka 

nieliniowa). Dodatkowo analizowano wytężenie konstrukcji wykorzystując kryterium Tsai-

Wu.  

Z analizy rezultatów wynika, że wraz z pojawieniem się otworu i wzrostem jego wymiarów 

obniża się poziom obciążeń krytycznych oraz maleje zakres liniowej odpowiedzi konstrukcji. 

Ponadto obserwowany jest znaczny wzrost wskaźników wytężenia w obszarach koncentracji 

naprężeń.  
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