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Abstract 

This article is devoted to investigate the stability of different types of Single Walled Carbon 

Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler 

elastic foundations exposing to both the low and high temperature environments. Also, the Surface 

effects which include surface energy and surface residual stresses, are taken into consideration in 

this study. It may be noted that the surface energy aids in the increase of the flexural rigidity 

whereas the surface residual stresses act as distributed transverse load. Further, the proposed model 

is developed by considering a novel refined beam theory namely one variable first order shear 
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deformation beam theory along with the Hamilton’s principle. Navier’s method has been 

implemented to find out the critical buckling loads for Hinged-Hinged (H-H) boundary condition 

for zigzag, chiral, and armchair types of SWCNTs. A parametric study is also conducted to report 

the influence of various scaling parameters like small scale parameters, change in temperature, 

Winkler stiffness, and length to diameter ratio on critical buckling loads. Also, the present model 

is validated by comparing the results with other published work. 

Keywords 

Stability analysis; Thermal environment; Surface effect; SWCNT; Winkler foundation; Refined 

beam theory. 

1. Introduction 

A single-walled carbon nanotube (SWCNT) consists of shell body with different physical and 

chemical properties. SWCNTs can be considered as long graphite sheets that are wrapped in three 

cylindrical atomic forms which can been seen in Fig. 1(a-c) for armchair, chiral, and zigzag, 

respectively. Based on the rotational axis in the graphite sheet the made carbon nanotube (CNT) 

can be in the form of one of the cases presented in Fig. 1. These three atomic arrangements lead to 

different responses in nanotubes. The electronic, molecular, and structural properties of the 

nanotubes are derived largely from their almost one-dimensional structure. Carbon nanotubes 

(CNTs) are one of the strongest materials ever known to humans, both in terms of tensile resistance 

and elastic coefficients. This strength is derived from covalent bonds between carbon atoms. All 

CNTs have good thermal conductivity along their lengths, while being heat-insulating along their 

width and thus can transfer heat from the conductive paths. The robustness and flexibility of CNTs 

give them the potential to be used in the control of other nanometer structures. So they will play 

an important role in nanotechnology engineering. Therefore, there have been extensively studies 

on the prediction of their mechanical behavior. 
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(a) Armchair  

 

(b) Chiral  

 

(c) Zigzag  

Fig. 1. Schematically presentation of SWCNTs 

Wang et al. (2006) analyzed buckling of a nano and micro tube/rod. They considered shear 

deformation influences based on the Timoshenko beam approach and stress nonlocality on the 

basis of the nonlocal elasticity. Farshi, Assadi, and Alinia-Ziazi (2010) examined effect of surface 

for a nanotube exposed to vibrational situations. The nanotube was assumed in the framework of 
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the Timoshenko beam model. They showed that the effect of surface markedly deviates the results 

of the natural frequency and such an effect can be significant to embed in the analysis of 

nanostructures. Murmu and Pradhan (2010) took effects of thermal environment on the buckling 

of nanotubes. The nanotube was connected on a polymer matrix and the nanoscale behavior was 

simulated by Eringen nonlocal theory. Lee and Chang (2010) evaluated the effects of surface on 

the vibrational behavior of a carbon nanotube based on the kinematic displacement field of the 

Timoshenko model. Pradhan and Reddy (2011) showed a stability analysis of nanotubes with only 

one wall while the tube was rested on a medium. The achieved mathematical relations were solved 

by implementing differential transformation method when different edge conditions were 

considered. Akgöz and Civalek (2011) proposed higher-order elasticity theory in order to analyze 

stability of a cantilever nanotube based on the couple stress and strain gradient models. In a 

brilliant study, Thai (2012) modeled carbon nanotubes as a nanobeam and investigated it 

mechanically in fully dynamic and static situations. The nonlocal elasticity theory, classical beam 

model and Hamilton principle and Navier method brought to help him to study. Wang, Hoffman, 

and Yu (2012) used gradient theory to consider size-dependent influences of a carbon nanotube 

modeled as the Timoshenko beam under mechanical stability condition. Li and Hu (2015) on the 

basis of the nonlocal theory of strain gradient, analytically studied small scale impacts on the 

stability analysis of a hinged-hinged beam in the framework of the classical beam hypothesis. The 

obtained numerical results were compared with the ones extracted from other size-dependent 

models. Zhen (2017) examined nonlocal and surface effects on the wave propagation of the 

nanotubes with considering the Euler-Bernoulli displacement field and internal viscosity impacts 

into the model. In an interesting study, She et al. (2017) calculated the critical buckling and post-

buckling loads of a carbon nanotube made of functionally grading on the assuming porosity into 

the material. Mehralian, Tadi Beni, and Karimi Zeverdejani (2017) calibrated and validated the 

results of the nonlocal theory of strain gradient with the molecular mechanics in a static stability 

situation of carbon nanotubes whilst the nanotubes were taken into account as a nanoshell. Malikan 

(2019) recently presented a new beam displacement kinematic field and investigated pressurized 

single-walled carbon nanotubes subjected to axial loads. Bedia et al. (2019) studied the effect of 

strain and stress gradient on bending and buckling of nanobeam using a novel two variable shear 

deformation beam theory. In the work of Berghouti et al. (2019), vibration analysis of functionally 

graded porous nanobeam has been carried out using nth order shear deformation theory.  
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Medani et al. (2019) investigated static and dynamic behavior Functionally Graded Carbon  

Nanotubes-reinforced porous sandwich (PMPV) polymer plate using first-order shear deformation 

theory. Draoui et al. (2019) also used first-order shear deformation theory to study both static and 

dynamic characteristics of carbon nanotube-reinforced composite sandwich plates. Semmah et al. 

(2019) analytically investigated thermal stability of zigzag single-walled boron nitride nanotube 

embedded in an elastic medium using first-order shear deformation theory. Draiche et al. (2019) 

used simple first order shear deformation theory to study static behavior of laminated reinforced 

composite plates analytically using both the sinusoidal and uniform loads. Chaabane et al. (2019), 

with the help of hyperbolic shear deformation theory analyzed static and dynamic characteristics 

of functionally graded beam embedded in an elastic foundation. The studies on the mechanical 

analysis of carbon nanotubes are not limited to the mentioned ones and there can be found other 

important works (Chang and Lee 2013, Larbi et al. 2013, Teifouet, Robinson, and Adali 2017, 

Chen, Fang, and Wang 2017, Malikan 2017, Arefi and Arani 2018, Malikan and Nguyen 2018, 

Malikan, Nguyen, and Tornabene 2018a, Malikan, Nguyen, and Tornabene. 2018b, Malikan and 

Dastjerdi 2018, Malikan, Tornabene, and Dimitri 2018, Jena and Chakraverty 2018a, Jena and 

Chakraverty 2018b, Jena and Chakraverty 2018c, Dastjerdi, and Tadi Beni 2019, Malikan, Dimitri, 

and Tornabene 2019, Fattahi, Sahmani, and Ahmed. 2019, Malikan et al. 2019, Sun and Li 2019, 

Jena and Chakraverty 2019a, Jena and Chakraverty 2019b, Jena and Chakraverty 2019c, Jena et 

al. 2019, Jena, Chakraverty, and Tornabene 2019a, Jena, Chakraverty, and Tornabene 2019b, Jena, 

Chakraverty, and Tornabene 2019c, Jena, Chakraverty, and Jena. 2019, Jena, Chakraverty, and 

Malikan 2019). 

In this research, three different frameworks for SWCNTs have been considered, such as chiral, 

armchair, and zigzag carbon nanotubes, which are exposed to thermal environment. In addition to 

this, surface effects of the nanostructures are here taken into investigation. On the other hand, the 

nanotube is embedded in a polymer substrate, namely Winkler foundation. To predict the motion 

of the model’s nodes, the field of displacements along two axes is utilized as a new refined beam 

model. After formulating, there have been obtained the required thermal stability equations in 

order to consider analytically the Hinged-Hinged (H-H) nanotube with presenting outcomes 

numerically. Also, a parametric study has been carried out to witness the impact of various 

parameters such as small scale parameters, change in temperature, Winkler stiffness, and length to 

diameter ratio on critical buckling loads. 
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2. Proposed model 

In this model, a SWCNT having length L , outer diameter od , inner diameter id , and wall 

thickness t  are considered. The mechanical properties of the SWCNT are ,E , and   which 

denote the Young’s modulus, mass density, and Poisson’s ratio, respectively. iE , and it  denote 

the Young’s modulus and thickness of the inner surface layer whereas oE , and ot  designate the 

Young’s modulus and thickness of the outer surface layer and the schematic diagrams can be seen 

in Figs. (2-3).  Fig. 2. illustrates the schematic presentation of continuum nanotube model whereas 

Fig.3. depicts the atomic model of armchair CNT.  

 

Fig. 2. Schematic presentation of continuum nanotube placed on the Winkler foundation 
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Fig. 3. Schematic presentation of atomic model of armchair CNT placed on the Winkler 

foundation 

In order to study the effects of the both the layers we have assumed that ooii tEtE = , which is equal 

to 0tEs  as a material property of the SWCNT. Surface effects which include surface energy and 

surface residual stresses, influence the dynamical behaviors of nanostructures considerably. 

Moreover, the surface energy aids in the increase of the flexural rigidity whereas the surface 

residual stresses act as distributed transverse load. The flexural rigidity or bending rigidity due to 

surface energy may be stated as (Farshi, Assadi, and Alinia-Ziazi 2010, Zhen 2017) 

( ) ( ),
8

33

0 ios

se
ddtEEI +=


                                                                                                                     (1) 

Now, the effective flexural rigidity of the nanotube is obtained as (Farshi, Assadi, and Alinia-Ziazi 

2010, Zhen 2017) 

( ) ( ) ( ) ( ) ( )33

0
8

ios

seeff
ddtEEIEIEIEI ++=+=


                                                                            (2) 

The distributed transverse load due to surface residual stresses as per Laplace-Young equation, is 

presented as (Farshi, Assadi, and Alinia-Ziazi 2010, Zhen 2017) 
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( )
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


+=                                                                                                                       (3) 

Here  is surface tension due to residual stresses. 

The displacement fields, as per new refined beam theory can be expressed as (Malikan and 

Dastjerdi 2018, Malikan, Nguyen, and Tornabene 2018a, Malikan, Dimitri, and Tornabene 2019)  
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In which ( )txu ,  and ),( txw are the displacements of the neutral axis in axial and transverse 

directions, respectively. 
AG

EI
B = , where E  is the Young’s modulus, =

A

dAzI 2
 is the moment 

of area, A  is the area of cross-section, and G  is the shear modulus. Considering Von Kármán 

hypothesis, the strain displacement relations are given as   
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Here Tx  is the thermal axial strain along x-axis and x  is the coefficient of thermal expansion. 

The virtual strain energy ( )U  may be written as  
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where =
A

xxxx dAzM  , =
A

xxxx dAN  , and =
A

xzxz dAQ   are the local stress resultants of the 

beam. 

The virtual work done ( )W  by external loads is defined as  
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where wk  is the Winkler modulus, x  is the coefficient of thermal expansion, T  is the change 

in temperature, and    is the Poisson’s ratio of the nanotube. 

Substituting Eqs. (6-7) in the Hamilton’s principle ( ) ,
0

dtWU

t

 +=   and assigning   to 

zero, we obtain the equations of motion as 
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The local stress resultants, using Hookean stress-strain elasticity relation can be rewritten as  
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From the Eringen's nonlocal elasticity theory (Eringen 1972), we have  
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In which klij  , and ijklC  are stress tensor, strain tensor and elastic modulus constant, respectively.  

Combining Eq. (9) with Eq. (10), the nonlocal stress resultants may be given as  
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Implementing Eq. (11) in Eq. (8), the governing equation of motion is expressed as 
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Considering the surface energy, i.e. Eq. (2) in the governing Eq. (12), we obtain 
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In which 
( )

AG

EI
B

eff

=*  and ( ) ( ) ( )seeff
EIEIEI += , where ( )se

EI   is the flexural rigidity due to 

surface  energy.     
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In order to study the stability of SWCNT , the in-plane force resultant ( )xxN is replaced by P−  in  

Eq. (13) and the governing equation is given as 
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3. Analytical Method 

The Navier’s method has been used to solve the governing equation analytically for Simply 

Supported boundary condition. According to  Navier’s approach the transverse displacement ( )w

, may be expressed as (Malikan and Dastjerdi 2018, Malikan, Nguyen, and Tornabene 2018a, 

Malikan, Dimitri, and Tornabene 2019)  

( ) ti
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1

sin,                                                                                                       (15) 

In which ,nW and n  are the displacement and frequency of the beam.  

Substituting Eq. (15) in Eq. (14), the buckling load can be obtained as 
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4. Results and discussion 

Three different types of SWCNTs have been considered in this study which includes zigzag, chiral 

and armchair nanotubes. The diameters of the nanotubes with chirality indices ( )mn,  are given by 
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Zhen (2017) as ( )mnmn
a

d ++= 223


, where ''a  is the internal characteristics length or C-C 

bond length which is equal to nm142.0 . In this regards, we have considered zigzag nanotube 

(Zhen 2017) with chirality indices ( )0,21  and the corresponding diameter is nmd 64.1= , chiral 

nanotube (Zhen 2017) is having chirality indices ( )9,18  with diameter nmd 86.1= whereas the 

chirality indices of the armchair nanotube (Zhen 2017) is assumed as ( )16,16  with diameter 

nmd 17.2= . The natural frequencies ( )  and critical buckling loads ( )crP  of  for the above 

mentioned SWCNTs have calculated by implementing Navier’s methods for Hinged-Hinged (H-

H) boundary condition. Further, the Young’s modulus TPaE 1= , the wall thickness of the 

nanotube nmt 34.0= , the mass density 3/1370 mKg= , surface tension due to residual stresses 

mN /31.0= , Poisson’s ratio 19.0=  and mNtEs /3.350 =  have been considered from Zhen 

(2017) for the parametric study.  

4.1 Validation  

To validate the proposed model, the critical buckling loads ( )crP  obtained from Eq. (16), has been 

now compared with the results reported in Malikan and Dastjerdi (2018) in special cases which is 

presented Table 1. These tabular results are computed using Navier’s method for Hinged-Hinged 

(H-H) boundary condition by taking Young’s modulus TPaE 1= , Poisson’s ratio ( ) 18.0= , and 

diameter ( ) nmd 1=  with no effect of surface energy, surface residual stresses, and thermal 

environment. Table 1 reveals that the present results obtained by the proposed model is showing 

very good agreement with Malikan and Dastjerdi (2018). 

Table 1 Validation of critical buckling load ( )crP  with Malikan and Dastjerdi (2018) 

ae0  ( )crP (Present) ( )crP (Malikan and Dastjerdi 2018) 

14=L  16=L  18=L  20=L  14=L  16=L  18=L  20=L  

0 2.4905 1.9034 1.5021 1.2156 2.4905 1.9034 1.5021 1.2156 

0.5 2.4595 1.8852 1.4907 1.2082 2.4595 1.8852 1.4907 1.2082 

1 2.3711 1.8327 1.4577 1.1864 2.3711 1.8327 1.4577 1.1864 
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1.5 2.2370 1.7515 1.4057 1.1517 2.2370 1.7515 1.4057 1.1517 

2 2.0729 1.6494 1.3389 1.1064 2.0729 1.6494 1.3389 1.1064 

 

4.2 Effect of small scale parameter 

This subsection is devoted to study the effects of small scale parameters ( )ae0  on the critical 

buckling loads ( )crP for three different types of SWCNTs which include zigzag, chiral and 

armchair. This study is conducted in both the low or room temperature environment with the 

coefficient of thermal expansion 16106.1 −−−= Kx  (Murmu and Pradhan 2010) as well as high 

temperature environment with 16101.1 −−= Kx  (Murmu and Pradhan 2010). In this regards, 

both the tabular and graphical results are presented in Table 2 and Figs. 4-5. These results are 

calculated by assuming the Winkler modulus  GPakw 1= , length to diameter ratio 5=
d

L
, and 

change in temperature KT 50=  for both the low and temperature environments. Here, the small 

scale parameters have been varied from 0 to 2 nm with an increment of 0.5. Table 2 represents the 

variation of critical buckling loads with small scale parameters whereas Figs. 4-5 represent the 

variation of ae0
  which is defined as the ratio of critical buckling load with nonlocal effects and 

critical buckling load without nonlocal effects with ae0 . From these studies, it is observed that 

critical buckling load decreases with the increment of nonlocal effects in both the room and high 

temperature environments. Also, armchair type of carbon nanotubes possesses highest critical 

buckling loads while zigzag possesses the lowest value.    

Table 2 Critical buckling load ( )crP  in nN with GPakw 1= , 5=
d

L
, with KT 50=  

ae0  Low temperature Environment 

( )16106.1 −−−= Kx
 

High temperature Environment 

( )16101.1 −−= Kx  

Zigzag Chiral Armchair Zigzag Chiral Armchair 

0 73.3473 90.0240 114.8223 73.1617 89.8053 114.5563 

0.5 71.1209 87.8961 112.8326 70.9354 87.6774 112.5666 
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1 65.2967 82.1663 107.3253 65.1111 81.9476 107.0593 

1.5 57.7318 74.3509 99.4413 57.5462 74.1321 99.1753 

2 50.0793 65.9811 90.4826 49.8938 65.7623 90.2166 

 

 

Fig. 4. ae0
  Vs. ae0  in low temperature environment 
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Fig. 5. ae0
  Vs. ae0  in high temperature environment 

4.3 Effect of thermal environments 

The impacts of thermal environments and change in temperatures T  on critical buckling loads 

( )crP  have studied through this subsection for zigzag, chiral, and armchair CNTs considering H-

H boundary condition which is depicted in Table 3 and Figs. 6-7. In this regard, we have considered 

the Winkler modulus GPakw 1= , length to diameter ratio 5=
d

L
, and nonlocal parameter

nmae 10 = . The change in temperatures T  are taken as 0 K, 50 K, 100 K, 150 K, and 200 K. 

Table 3 represent the variation of critical buckling loads with change in temperature T  whereas 

Figs. 6-7 illustrate the effect of  T  on T , which is defined as the ratio of critical buckling load 

with change in temperature T  and critical buckling load without considering the effect T  in 

both the room temperature and high temperature environments. From these results, it can be 

concluded that critical buckling loads increase with the rise of change in temperature T  in low 

temperature environments whereas this scenario is completely different in case of high temperature 

environment, i.e. critical buckling loads decrease with the increase of  T . Also, this trend remains 

same for zigzag, chiral, and armchair CNTs.  
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Table 3 Critical buckling load ( )crP  in nN with GPakw 1= , 5=
d

L
, and nmae 10 =  

T  Low temperature Environment 

( )16106.1 −−−= Kx
 

High temperature Environment 

( )16101.1 −−= Kx  

Zigzag Chiral Armchair Zigzag Chiral Armchair 

0 65.1867 82.0367 107.1677 65.1867 82.0367 107.1677 

50 65.2967 82.1663 107.3253 65.1111 81.9476 107.0593 

100 65.4066 82.2960 107.4829 65.0355 81.8585 106.9509 

150 65.5165 82.4256 107.6406 64.9600 81.7693 106.8426 

200 65.6265 82.5552 107.7982 64.8844 81.6802 106.7342 

 

 

Fig. 6. T  Vs. T  in low temperature environment 
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Fig. 7. T  Vs. T  in high temperature environment 

4.4 Effect of Winkler modulus 

Influences of Winkler modulus ( )kw  is reported through this subsection by conducting a 

parametric study for three different types of SWCNTs considering both the surface energy and 

surface residual stresses. Further, the study is conducted in both the room temperature and high 

temperature with KT 50= , 5=
d

L
, nmae 10 =  and the Winkler modulus ( )kw  is taken as 0 GPa, 

1 GPa, 2 GPa, 3 GPa, 4 GPa.  Table 4 and Figs. 8-9 are the tabular and graphical representations 

of the study where Fig. 5 is the graphical results for room temperature while Fig. 6 is for high 

temperature environment. The Critical buckling loads ( )crP , for all the types of chirality indices 

and in low and high temperature, increase with increasing the stiffness of  elastic foundation  which 

can be clearly witnessed from the Table 4 and Figs. 8-9. 

 

Table 4 Critical buckling load ( )crP  in nN with KT 50= , 5=
d

L
, and nmae 10 =  
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wk  Low temperature Environment 

( )16106.1 −−−= Kx
 

High temperature Environment 

( )16101.1 −−= Kx  

Zigzag Chiral Armchair Zigzag Chiral Armchair 

0 56.9357 71.3212 92.4163 56.7502 71.1025 92.1503 

1 65.2967 82.1663 107.3253 65.1111 81.9476 107.0593 

2 73.6576 93.0114 122.2343 73.4721 92.7927 121.9683 

3 82.0185 103.8566 137.1433 81.8330 103.6378 136.8773 

4 90.3795 114.7017 152.0523 90.1940 114.4829 151.7863 

 

 

Fig. 8. crP  Vs. wk  in low temperature environment 
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Fig. 9. crP  Vs. wk  in high temperature environment 

4.5 Effect of length to diameter ratio 

Length to diameter ratio 








d

L
also influences the critical buckling load significantly. Thus, this 

subsection is devoted to investigate the impacts length to height ratio on critical buckling load. For 

computation purpose, we have considered KT 50= , GPakw 1= , nmae 10 = while 








d

L
 is taken 

as 5, 7.5, 10, 12.5, 15. Table 5 represent the tabular results of the variations of ( )crP  with 
d

L
 

whereas Fig. 10 and Fig. 11 demonstrate the graphical results of variations for low and high 

temperature respectively. From this results, it is very interesting to note that the critical buckling 

loads show some unusual behavior in response to the length to diameter ratio, i.e. at first, the ( )crP

decreases and then it increases steadily. This response remains same for all the SWCNTs which 

includes zigzag, chiral and armchair type with both the environment which can be perceived 

clearly from the study. 

Table 5 Critical buckling load ( )crP  in nN with KT 50= , GPakw 1= , nmae 10 =  
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d

L
 

Low temperature Environment 

( )16106.1 −−−= Kx
 

High temperature Environment 

( )16101.1 −−= Kx  

Zigzag Chiral Armchair Zigzag Chiral Armchair 

5 65.2967 82.1663 107.3253 65.1111 81.9476 107.0593 

7.5 43.3648 54.3396 71.1542 43.1997 54.1458 70.9199 

10 44.4481 56.1852 74.6621 44.2893 55.9991 74.4376 

12.5 54.7100 69.6558 93.5320 54.5540 69.4731 93.3118 

15 70.6775 90.3589 122.0220 70.5230 90.1781 121.8041 

 

 

Fig. 10. crP  Vs. 
d

L
 in low temperature environment 
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Fig. 11. crP  Vs. 
d

L
 in high temperature environment 

5 Concluding remarks 

In this article, stability analysis of zigzag, chiral, and armchair types of CNTs are conducted, 

considering the surface effects and thermal environments, which are embedded in Winkler elastic 

foundations. A new refined beam theory along with Hamilton’s principle have been utilized to 

develop the proposed model for investigations. The critical buckling loads are calculated 

analytically from the governing equation using Navier’s approach for H-H boundary condition. 

Followings are the main comments; 

➢ The armchair carbon nanotubes possess the highest critical buckling loads while the zigzag 

carbon nanotubes are having the lowest critical buckling loads. 

➢ The critical buckling loads decrease with the increment of nonlocal parameters for all types of 

CNT in both the room and high temperature environments. 

➢ The critical buckling loads increase with the rise of change in temperature in low temperature 

environments whereas it is completely opposite in case of high temperature environment. 

➢ The Critical buckling loads increase with increasing the stiffness of elastic foundation for all 

the types of CNTs. 
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➢ The critical buckling loads show some unusual behavior with respect to the length to diameter 

ratio, initially, it decreases and then it increases steadily. This response remains same for all 

the SWCNTs in any environments.  
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