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Abstract

In this study, the connection between total strain energy density and fracture surface topography 
is investigated in additively manufactured maraging steel exposed to low-cycle fatigue loading. The 
specimens were fabricated using laser beam powder bed fusion (LB-PBF) and examined under fully-
reversed strain-controlled setup at strain amplitudes scale from 0.3% to 1.0%. The post-mortem fracture 
surfaces were explored using a non-contact 3D surface topography measuring system and the entire 
fracture surface method. The focus is on the relationship between fatigue characteristics, expressed by 
the total strain energy density, and the fracture surface topography features, represented by areal, 
volume, and fractal dimension factors. A fatigue life prediction model based on total strain energy 
density and fracture surface topography parameters is proposed. The presented model shows good 
accordance with fatigue test results and outperforms other existing models based on the strain energy 
density. This model can be useful for post-failure analysis of engineering elements under low-cycle 
fatigue, especially for materials produced by additive manufacturing (AM).

Keywords

18Ni300 steel; laser beam powder bed fusion; low-cycle fatigue; strain energy density; surface 
topography; entire fracture surface method.
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Nomenclature and units

Df - fractal dimension

Nf cycles number of cycles to failure

K’ cyclic hardening coefficient

n’ cyclic hardening exponent

R - strain ratio

R2 - coefficient of determination

Sq mm root mean square height

V - box volume 

Vv mm³/mm² void volume

δ - box width

∆W MJ/m3 strain energy density

∆W* MJ/m3 modified strain energy density

∆σ/2 MPa nominal stress amplitude

∆ε/2 - total strain amplitude

∆εp/2 - plastic strain amplitude 

dε/dt s−1 strain rate 

1. Introduction

Metal-based additive manufacturing (AM) represents a group of processes that generally include 
powder bed fusion (PBF), directed energy deposition (DED), sheet lamination, and binder jetting. 
Within this group, laser beam powder bed fusion (LB-PBF) is currently one of the most versatile 
processes (J Li et al., 2019; Milewski, 2017; Newton et al., 2019) for production of complex 3D solid 
parts in a layer-by-layer fashion directly from CAD data (JN Li et al., 2019). So far, different materials 
have been successfully utilized. Among them, the 18Ni300 maraging steel, as a kind of low carbon iron-
nickel alloy with high strength and toughness, has demonstrated to be appropriate for LB-PBF. Materials 
produced by this process have been often studied in order to evaluate not only the microstructure features 
but also the static mechanical response and the fatigue resistance (Avanzini, 2022; Garcias et al., 2021; 
Khosravani et al., 2020; Macoretta et al., 2022). In particular, fatigue durability is critical in most 
engineering applications subjected to cyclic loading. Thus, in order to develop reliable components, 
significant research has been conducted to establish a strong link between manufacturing parameters, 
population of defects, and fatigue performance. The response under low-cycle fatigue (LCF) loading is 
also a key issue because it provides fundamental information on the cyclic deformation maintenance of 
the materials which is pivotal when developing and implementing tuned fatigue life prediction models 
(Abdul-Latif, 2021; Cecchel et al., 2022; Romano et al., 2018; Zhu et al., 2012). 

The fatigue damage is usually related with the load levels through stress-based (Liu and Pons, 
2017; Macek and Mucha, 2017), strain-based (Chan et al., 2000; Skibicki and Pejkowski, 2017), or 
energy-based (stress-strain) models (Ahmadzadeh and Varvani-Farahani, 2019; Macek et al., 2017). 
Energy-based approaches, considering both stress and strain components, have a unifying character. In 
these approaches, fatigue life can be related with the dissipation energy, whose value can be determined 
from the field hysteresis loop in a strain-stress representation. Over the last decades, several interesting 
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attempts have been made to evaluate the fatigue life of metallic materials under strain control mode 
using SED-based models (Branco, J.D. Costa, et al., 2021; Halford, 1966; Lachowicz, 2001; Li et al., 
1998). Halford (Halford, 1966) investigated ferrous and non-ferrous metals and found that the strain 
energy density per cycle decreases as the strain amplitude increases, and that the relationship between 
the SED per cycle and the fatigue life can be established through a power function. Lachowicz 
(Lachowicz, 2001) present a method based on the integration of the history of the strain instantaneous 
power. Previous studies have investigated strain energy density models for evaluating fatigue life in 
metallic materials under strain-controlled conditions (Zhu et al., 2011). Several solutions were also used 
for the energy parameter calculated during a loading cycle and applied as the control signal for fatigue 
testing of the specimens (Macek and Macha, 2015; Mroziński and Boroński, 2007).

The experimental evaluation of surface topographies and fracture geometries is crucial for 
enhancing the comprehenasion of failure mechanisms and their relationship with the history of service 
loading. The development of surface metrology offers wide opportunities to investigate the failure 
mechanisms in many fields of engineering (Todhunter et al., 2017) as well as to better understand the 
topography characteristics (Podulka et al., 2023). The integrity valuation (Santus et al., 2022) ground 
on this particular analysis of fracture surfaces can provide valuable information about the damage 
background of the post-failure investigated component. Fracture surfaces caused by fatigue can be 
complex, requiring the analysis through the application of both standard surface topography parameters 
(International Organisation of Standardization, 2010; Podulka, 2021) and non-standard surface 
topography parameters, including fractal dimension (Bouchaud et al., 1990; Macek, 2019; Mandelbrot 
et al., 1984). Limited information exists regarding recommended parameters for characterizing fracture 
surfaces in additively manufactured metals, particularly LB-PBF maraging steel.

The motivation for this research is based on earlier studies that successfully connected different 
fatigue damage quantifiers with fracture surface topography parameters for various metallic materials 
and loading cases. Earlier studies by Macek et al. gave promising estimations of fatigue lifetime by 
correlating the stress amplitude (Macek, Robak, et al., 2022), strain amplitude (Macek et al., 2021; 
Macek, Pejkowski, et al., 2022) and strain energy density (Macek et al., 2023) with the 3D fractographic 
parameters. This paper explores the interdependency between total strain energy density (TSED) (Golos 
and Ellyin, 1988, 1989) and fracture surface topography features as an effective relationship to estimate 
the fatigue lifetime in LB-PBF 18Ni300 maraging steel under low-cycle fatigue (Branco et al., 2018). 
Fatigue life predictions are compared with results obtained from other strain energy density models, 
such as Lagoda-Macha (Łagoda, 2001), Neuber (Neuber, 1961), Molski-Glinka (Molski and Glinka, 
1981), and Ye et al. (Ye et al., 2004).

2. Material and methods

The complete research program was organized into three main phases. Firstly, it was performed 
the LCF tests. Then, the SED calculations were performed. Finally, it was examined the fracture 
surfaces. The data gathered at each of these phases allows for a comprehensive investigation of fatigue 
life, considering both SED and fractographic considerations.

2.1. Low-cycle fatigue tests
The material employed in this research was 18Ni300 maraging steel manufactured by LB-PBF. 

Table 1 and Table 2 show, respectively, the elemental composition and the monotonic properties. 
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Table 1. Elemental composition of LB-PBF 18Ni300 steel (Branco et al., 2018) (wt.%).

C Ni Mn Co Mo Ti Al Cr P Si Mn Fe

0.01 18.2 0.65 9.0 5.0 0.6 0.05 0.3 0.01 0.1 0.04 balance

Table 2. Monotonic properties of LB-PBF 18Ni300 steel (Branco et al., 2018).

Porosity Density Hardness Young’s Modulus Tensile Strength Yield Strength Strain at Failure
(%) (g/m3) (HV1) (GPa) (MPa) (MPa) (%)

0.74±0.09 7.42      354±5 168±29 1147±13 910±11 5.12±0.001

The specimen geometry, outlined in Figure 1, was printed through a Concept Laser M3 system. 
All specimens were printed in the same building batch considering a scanning scan speed of 200 mm/s, 
a hatch spacing of 100 μm, and a layer thickness of 40 μm. The deposition of the layers occurred 
vertically on the base plate, aligning with the direction of load application. After that, and prior to the 
fatigue tests, the gauge sections underwent mechanical polishing.

  

Fig. 1. Specimen geometry used in LCF tests (dimensions in mm) (Branco et al., 2018).

The LCF testing campaign was performed in a previous study designed by the research groups 
(Branco et al., 2018), in accordance with the ASTM E606 standard, on a  conventional servo-hydraulic 
testing machine, 100 kN DARTEC model, under fully-reversed strain-controlled conditions with a strain 
ratio R = −1, sinusoidal waveforms, and a strain rate dε/dt = 8 × 10−3 s−1. The defined strain amplitudes 
were equal to 0.30%, 0.35%, 0.40%, 0.50%, 0.60%, 0.80%, 0.90%, and 1.0%.

The stress–strain data was collected using a mechanical extensometer, Instron 2620-601 model, 
with a gauge length of 12.5 mm, clamped to the gauge section of the specimen with two separated knife-
edge attachements. This extensometer was linked to a digital data acquisition system and about 200 data 
points were recorded per cycle. Each specimen underwent a constant strain amplitude until reaching 
failure, and the fatigue tests finished when the specimens fractured into two separate pieces.

 

2.2. Energy-based approaches

Energy-based approaches represent the dissipated strain energy density per cycle which plays a 
central role in fatigue damage process. Regarding the strain energy density, if it is determined as the 
sum of the plastic SED and the elastic SED, it exhibits a unifying quality allowing the analysis of both 
the LCF and HCF regimes. Within the different approaches found in the literature, one of the most 

Building direction
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popular is the total strain energy density (TSED) concept proposed by Gołoś and Ellyin, see Figure 2 
(Golos and Ellyin, 1988, 1989):

𝛥𝑊𝑇 =  𝛥𝑊𝑝 + 𝛥𝑊𝑒 + =  ∫𝑐𝑦𝑐𝑙𝑒𝜎𝑖𝑗𝑑𝜀𝑝
𝑖𝑗 + ∫𝑐𝑦𝑐𝑙𝑒𝜎𝑖𝑗𝑑𝜀𝑒

𝑖𝑗 =  
1 ― 𝑛′

1 + 𝑛′
(𝛥𝜎 ― 𝛿𝜎0)𝛥𝜀𝑝 + 𝛿𝜎0𝛥𝜀𝑝 +

1
2𝐸

(1)(
𝛥𝜎
2 + 𝜎𝑚)

2

where  is the elastic positive strain energy,  is the plastic strain energy density, and n’ is the 𝛥𝑊𝑒 + 𝛥𝑊𝑝
cyclic hardening exponent. 

The Ramberg-Osgood formula, which are the most common forms of describing the cyclic stress-strain 
response, is generally defined as follows (Ramberg and Osgood, 1943):

                           (2)∆𝜀/2 =
∆𝜎/2

𝐸 + (∆𝜎/2
𝐾′ )

1
𝑛′

where  is strain amplitude, and  is the stress amplitude, and K’ is the cyclic hardening ∆𝜀/2 ∆𝜎/2
coefficient.





Fig. 2. Typical stress-strain hysteresis loop obtained under symmetrical loading conditions.

Other popular SED-based formulations are those introduced by Lagoda-Macha (WLM) (Łagoda, 2001), 

Neuber (WN) (Neuber, 1961), Molski and Glinka (WMG) (Molski and Glinka, 1981), and Ye et al. (WY) 

(Ye et al., 2004). These formulations are briefly addressed below.    

Lagoda-Macha’s model accounts for the strain energy density applied in the component and is defined 
by Eq. (3).

           (3)WLM =
(

∆𝜎
2 )

2

2𝐸 +
1 ― 𝑛′
1 + 𝑛′ 

∆𝜎
2  [

∆𝜎
2

K′]
1
n′

p



Wp We+



e
1
2
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Regarding the Neuber’s model, it assumes that the energies generated in the material considering both   
an elastic and an elastic–plastic behaviour is the same and can be written by following equation.

      (4)WN =
(

∆𝜎
2 )

2

2𝐸 +
∆𝜎
4 [

∆𝜎
2

K′]
1
n′

The equivalent strain energy density (ESED) according to Molski-Glinka (Molski and Glinka, 1981) 
can be determined using Eq. (5).

      (5)WMG =
(

∆𝜎
2 )

2

2𝐸 +
∆𝜎
2

1 + n′[
∆𝜎
2

K′]
1
n′

Ye et al. (Ye et al., 2004) introduced a modified version of the ESED concept, which is defined 
through Eq. (6).  

(6)WY =
(

∆𝜎
2 )

2

2𝐸 +
2 ― 𝑛′

2(1 + 𝑛′) 
∆𝜎
2 [

∆𝜎
2

K′]
1
n′

The strain energy density relationships used in this paper (see Eqs. 1, 3-6) are based on the cyclic 
hardening exponent (n’) and the cyclic hardening coefficient (K’) of the cyclic strain curve which is 
often generated under symmetrical tension-compression loading. These constants for the tested LB-PBF 
18Ni300 maraging steel were determined in a previous study conducted by Branco  et al. 33 and are equal 
to n’ = 0.1100 and K’ = 1921.21 MPa. 

2.3. Fracture surface investigation
The fracture surfaces generated in the LCF tests were examined through a 3D non-contact 

measurement system, Mitutoyo Quick Vision Apex 302 model, using a 2× lens and a programmable 
light-emitting diode (LED) stage with coaxial lighting. The analysis was carried out considering a scale 
resolution of 0.1 µm, and it was used a linear encoder scale type. Fracture surface data were examined 
by means of MountainsMap software.

The entire fracture surface area was reduced to eliminate geometric discontinuities or missing 
points. In addition, this task was important to obtain similar dimensions for all specimens. The extracted 
areas are called here Region of Interest (ROI). Figure 3 shows a representative example of the original 
surface and the extracted surface for the fracture surface obtained at a total strain amplitude ∆ε/2 = 
0.30%. The area considered in the analysis is marked with a circle over the entire surface shown on the 
left-hand side. On the right-hand side, it is shown the ROI, or in other words, the extracted area. 
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Fig. 3. Original and extracted fracture surface areas, fracture surface generated at ∆ε/2 = 0.30%.

Fracture topography analysis was performed from fracture surface areas through either height 
parameters, Sx, or volume parameters, Vx. More specifically, in this study, the former was the root mean 
square height Sq, while the latter was the void volume Vv. These two parameters were calculated 
according to the ISO 25178-2 standard (ISO - ISO 25178-2:2012 - Geometrical product specifications 
(GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters, n.d.). The 
fracture surface features were also examined by applying the fractal dimension Df. 

In this study, the Enclosing Boxes Method (EBM) was applied. This method involves portioning 
the area into smaller segments, each with a width δ, and  then determining the volume (Vδ) of all these 
segments covering the entire area. This is an iterative procedure which involves adjusting the width of 
the box, i.e. ln(Vδ)/ln(δ). In this analysis, an extra-fine resolution, with 96 points, was used. 

To estimate the fractal dimension Df, a line is fitted using the least square method (LSM). The 
absolute value of the slope of this fitted line provides the value of the fractal dimension Df. Fig. 4 shows 
a typical plot of the fractal dimension computed using the extra-fine resolution used in this analysis. 
This specific fracture surface corresponds to the specimen tested at  ∆ε/2 = 0.50%. Df is determined 
based on the slope of one of the two regression lines that best fits the data. In this case, it can be seen 
that both regression lines have the same values (-2.220) with coefficients of determination R2 = 1.000.

Fig. 4. Fractal analysis for the extracted area of the specimen tested at ∆ε/2 = 0.50% performed using the EBM 
considering extra-fine resolution.

Another parameter utilized in the analysis fracture surface topography taken into account in this 
research is the texture isotropy. The directivity of the geometric surface texture depends on the fracture 
damage, and it is a consequence of the kinematics of the cracking process. On the other hand, isotropy 
in a material implies that it possesses the same physical or geometric properties in all directions. 
Similarly, isotropy in a surface indicates that the surface maintains the same structure properties in all 
directions. In essence, it exhibits a perfect symmetry in terms of material structure with respect to all 
axes of symmetry. 

D050(l) enclosing boxes method

Fractal dimension Df = 2.220
Slope(1) = -2.220 Slope(2) = -2.220
R²(1) = 1.000 R²(2) = 1.000
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In the case under examination, as depicted in Fig. 5, the assessment of isotropy was carried out  
through an analysis of the autocorrelation function. Texture isotropy was used to gauge the directionality 
and periodicity of the topography, particularly its periodic patterns in two directions. Figure 5 shows the 
largest and the smallest values of the measured texture isotropy, obtained at a strain amplitude ∆ε/2 = 
1.00% (see Fig. 5(a)) and at a ∆ε/2 = 0.50% (see Fig. 5(b)), respectively. For the former case, the circular 
and symmetrical function graph, typical of isotropic surfaces, resulted in an isotropy value exceeding 
89%. On the other hand, in the latter case, the shape of texture isotropy function is asymmetric, slender, 
and elongated in one direction, which is associated with anisotropic surfaces. The isotropy in this case 
was approximately 44%. The results for all specimens are summarized in Table 3.

0.200

Fig. 5. Texture isotropy. Specimen subjected to (a) ∆ε/2 = 1.00%  (89.081%); and (b) ∆ε/2 = 0.50% (43.960%).

3. Results and discussion

This section is divided into two subsections. The first subsection is focused on the topography 
characteristics of the fracture surface, considering both standard and fractal parameters. The second 
subsection provides a comprehensive overview of the LCF behaviour and introduces a novel  
fractography-TSED-based model for predicting the fatigue lifetime.

3.1. Fracture surface features after LCF
Figure 6 exhibits the fracture topographies obtained in the LCF tests for the different strain 

amplitudes listed in Table 3.

Table 3. Loading scenarios and results for LCF and fracture surface measurements of the tested specimens.

Specimen

Total 
strain 

amplitude, 
∆ε/2 (%)

Elastic 
strain 

amplitude, 
∆εe/2 (%)

Plastic 
strain 

amplitude, 
∆εp/2 (%)

Stress 
amplitude, 

∆σ/2 
(MPa)

Number 
of 

cycles 
to 

failure, 
Nf

Root 
mean 

square 
height, 

Sq (mm)

Void 
volume, Vv 
(mm³/mm²)

Fractal 
dimension, 

Df

Texture 
isotropy 

(%)
D100 1.005 0.5975 0.4077 1005 33 0.348 0.452 2.262 89.081
D090 0.905 0.5891 0.3163 990.8 64 0.456 0.494 2.234 73.121
D080 0.807 0.5984 0.2087 1006.5 40 0.217066 0.214 2.316 78.962
D060 0.609 0.5442 0.0644 915.3 129 0.378 0.483 2.262 79.78
D050 0.511 0.4764 0.0349 801.3 145 0.321 0.5 2.261 43.96
D040 0.411 0.4035 0.008 678.7 1087 0.162 0.237 2.294 87.375
D035 0.362 0.3584 0.0034 602.8 2399 0.139957 0.166 2.288 85.596
D030 0.304 0.305 0.0012 512.9 5441 0.176 0.173 2.256 86.032

An isotropic surface, as referred to above, is a surface that has a uniform topographic feature in 
all directions. It can be stated that isotropy, if expressed as a percentage, can vary from 0% (completely 

0.200

(a)

(b)
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anisotropic surface) to 100% (fully isotropic surface). Here, for the sake of simplicity, the following 
conventional division of the isotropic degree is assumed: < 20% - anisotropic surface; 20% - 80% - 
mixed structure; and > 80% - isotropic surface. The results indicate isotropic surface for half of the 
investigated specimens. The other four fractures have a mixed surface structure but remain close to the 
conventional isotropic limit.

From Table 3 it is also possible to infer that the Sq, Vv, Df and isotropy results do not correlate 
well with the strain or the fatigue life. A brief analysis relating the above-mentioned parameters with Nf 
will be carried out in Section 3.2 (see Fig. 9).
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Fig. 6. Extracted fracture surfaces of different tested specimens (ROI).

Both ductile and brittle fracture modes, with predominance of brittle fracture, can be noted in 
the material, as well as the existence of defects, which make it easier to develop microcracks. Figure 6 
shows the texture of the fracture surface of the LB-PBF specimens. It is also possible to distinguish the 
shape and orientation of the particles deposited in each layer. This appearance is related to the 
microstructure and is an intrinsic feature of the manufacturing process. The optical micrograph (OM) in 
the longitudinal section of the tested material is exhibited in Figure 7. This figure reveals a coherent 
microstructure composed of elongated grains measuring approximately 150 µm in length and 30–35 µm 
in width.

Fig. 7. OM of the LB-PBF 18Ni300 steel at magnifications of 100×.
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Additionally, in order to verify the identity of the surface topography, the fractures of both sides 
of the broken specimens were juxtaposed. Fig. 8 exhibits the results of selected fracture surface 
topography parameters for the shorter portion of the broken specimens, which are  marked as "S", and 
for the longer portions of the broken specimens, which are marked as "L". The presented data show that 
the measurements of both sides of the broken specimens can be used interchangeably. It is also visible 
that higher values of root mean square height Sq (Fig. 8(a)) and void volume Vv (Fig. 8(b)) are associated 
with lower values of ∆ε/2. On the contrary,  the values of fractal dimension Df  (Fig. 8(c)) and isotropy 
parameters (Fig. 8(e)) are lower at higher values of ∆ε/2.  
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Fig. 8. Reciprocal relationship of the used surface topography parameters evaluated from the fracture surfaces of 
the shorter side and the longer sides of the broken specimens: (a) Sq; (b) Vv; (c) Df; and (d) isotropy. S denotes 
the shorter part of broken specimen and L denotes the longer part.

3.2. Fatigue life prediction
Figure 9 presents the relationship between the total strain amplitude ∆ε/2 and the fatigue life Nf 

(Figure 9(a)), as well the relationship between the stress amplitude ∆σ/2 and the fatigue life Nf  (Figure 
9(b)). By examining the scatter bands (SB), we can draw the conclusion that the stress amplitude ∆σ/2 
fits more closely the data than the total strain amplitude ∆ε/2. Nevertheless, this scatter is in line with 
the typical results found for additively manufactured metals under LCF loading. 
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Fig. 9.  Linear fit relationship between: (a) ∆ε/2 and Nf; (b) ∆σ/2 and Nf.

Figure 10 shows the variation of the total strain energy density (TSED) per cycle, see Eq. (1), 
defined by the sum of the plastic and tensile elastic positive components (Branco et al., 2018). The 
TSED values are plotted on a base-10 logarithmic scale while the number of cycles N are presented in 
a dimensionless form, i.e. divided by the fatigue life Nf. Overall, it is clear from the figure that the total 
strain energy density is quite stable throughout the entire lifetime. Only for the specimen D035, for 
which the plastic strain amplitude is quite small, there was a slightly softening response during the first 
10% of the test. Overall, irrespective of strain amplitude, the tested steel exhibited a  saturated region 
up to 90% of the test. In the final stage, it was observed a  decrease of total strain energy density energy 
before the final fracture, particularly at smaller strain amplitudes (specimens D030, D035 and D040). 
Considering this stable response, the mid-life cycle of each test was assumed to representative of the 
stable behaviour at this specific strain amplitude. Table 4 lists the TSED values (see Eq.(1)) obtained 
from the mid-life cycle as well as the values of strain energy density calculated using the other 
approaches (Eqs. 3-6).

Table 4. Strain energy density values calculated for the mid-life cycle
Specimen ∆WT (MJ/m3) ∆WLM (MJ/m3) ∆WN (MJ/m3) ∆WMG (MJ/m3) ∆WY (MJ/m3)

D100 14.803 5.234 4.396 5.510 5.372

D090 11.743 4.852 4.125 5.090 4.971

D080 8.703 5.277 4.426 5.557 5.417

D060 3.988 3.360 3.034 3.468 3.414

D050 2.501 2.138 2.052 2.166 2.152

D040 1.561 1.413 1.397 1.419 1.416

D035 1.205 1.094 1.089 1.096 1.096

D030 0.863 0.785 0.785 0.786 0.786
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Fig. 10. TSED per cycle against the number of loading cycles at various strain amplitudes (Branco et al., 2018; 
Branco, J. D. Costa, et al., 2021).

Figure 11 plots fracture surface topography parameters against fatigue life. As can be seen, the 
values of Sq (Fig. 11(a), Vv (Fig. 11(b)), Df (Fig. 11(c)), and isotropy (Fig. 11(d)) do not exhibit 
satisfactory correlation for all the tested specimens. 
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Fig. 11. (a) Root mean square height Sq versus fatigue life Nf; (b) Void volume Vv versus fatigue life Nf; 
(c) fractal dimension Df versus fatigue life Nf; (d) isotropy versus fatigue life Nf.

To address this challenge, it is suggested to combine the most suitable surface topography parameters 
with other fatigue-related quantities, including energy-based parameters. In this manner, a more 
consistent method for estimating fatigue lifetime can be established. The proposed approach 
encompasses both the state of the fracture surface from a fractographic perspective and the stress-strain 
state. It can be expressed as follows:

WT
* = WT ×  (7)

𝑉𝑣 × 𝐷𝑓
𝑆𝑞

WLM
* = WLM ×  (8)

𝑉𝑣 × 𝐷𝑓
𝑆𝑞

WN
* = WN ×  (9)

𝑉𝑣 × 𝐷𝑓
𝑆𝑞

WMG
* = WMG ×  (10)

𝑉𝑣 × 𝐷𝑓
𝑆𝑞

WY
* = WY ×  (11)

𝑉𝑣 × 𝐷𝑓
𝑆𝑞

where Vv is the void volume, Sq is the root mean square height, and Df is the fractal dimension obtained 
for the entire fracture surface. The new post-failure equivalent topographic fracture factor seems to 
reflect the physical failure conditions of this material under fatigue. The modified strain energy density 
aims to identify the main governing quantities in order to reflect the physical meaning of the damaging 
process. The first quantity reflects the low-cycle fatigue loading history by accounting for the strain 
energy density. The second part represents the fracture surface energy through the combination of three 

fracture surface topography parameters ( ). The unit is as follows: . Therefore, the 
𝑉𝑣 × 𝐷𝑓

𝑆𝑞

[
mm3

mm2] × [ ― ]

[mm]
modified strain energy density, ∆W*, maintains the same unit, i.e. MJ/m3.

A similar approach was successfully used by the authors (Macek et al., 2023) to assess the 
fatigue life in EN-AW 2024 aluminum alloys subjected to creep pre-strain and LCF loading. In this 
study, the fatigue life was predicted via the novel fracture surface state parameter, P, defined by the 
following expression:

   (12)𝑃 =
𝑉𝑣𝐷𝑓

𝑆𝑞 𝜀𝑎𝜎𝑎 + 𝜀𝑐𝑟𝑒𝑒𝑝𝜎𝑐𝑟𝑒𝑒𝑝

where  is the strain amplitude,  is the stress amplitude,  is creep strain, and  is creep pre-𝜀𝑎 𝜎𝑎 𝜀𝑐𝑟𝑒𝑒𝑝 𝜎𝑐𝑟𝑒𝑒𝑝
strain stress. The proposed novel fracture surface state parameter P is based on the strain energy (stress-
strain relation). Regarding the physical significance of Eq. (12), it is divided into two main parts: the 
first accounts for the LCF history, including both the strain energy density and the fracture surface 

energy, represented by a combination of three fracture surface topography parameters ( ; the second, 
𝑉𝑣𝐷𝑓

𝑆𝑞 )
related to the creep history, only considers the strain energy density component, because fracture does 
not occur.
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Table 5 presents the results of the modified TSED quantities and other energy parameters determined 
according to Eqs. 7-11.

Table 5. Modified values of SED calculated using fractographic quantities
Specimen ∆WT

* (MJ/m3) ∆WLM
* (MJ/m3) ∆WN

* (MJ/m3) ∆WMG
* (MJ/m3) ∆WY

* (MJ/m3)

D100 43.491 15.378 12.914 16.188 15.783

D090 28.420 11.742 9.984 12.320 12.031

D080 19.871 12.049 10.105 12.687 12.368

D060 11.527 9.714 8.770 10.024 9.869

D050 8.808 7.528 7.228 7.627 7.577

D040 5.239 4.743 4.690 4.761 4.752

D035 3.270 2.970 2.956 2.974 2.972

D030 1.914 1.742 1.740 1.742 1.742

Fig. 12 plots both the SED values and the modified SED values against the fatigue life. The data 
were fitted through linear functions on log-log scales, i.e. through power functions. A statistical 
examination, utilizing the upper and the lower scatter bands, was also conducted. Overall, linear 
functions correlated well with the results of the modified strain energy density W*. It is important to 
highlight that all tested cases led to values within 1.5 scatter bands. On the other hand, the analysis using 
the energy parameters yielded results within 2.1 and 1.7 (1.7 for WT) scatter bands. Concerning the SED-
based models, it is clear that their accuracy levels are rather similar.
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Fig. 12. Linear relationship between strain energy density and fatigue life: (a) WT; (c) WLM; (e) WN; (g) 
WMG; and (i) WY. Linear relationship between modified strain energy density and fatigue life: (b) WT

*; 
(d) WLM

*; (f) WN
*; (h) WMG

*; and (j) WY
*.

Comparing the TSED values with other energy-based parameters (see Table 4), we notice that 
WT reaches its peak at highest strain amplitude, i.e. ∆ε/2 = 1.00% (D100), while the other parameters 
attain the maximum values at the highest stress amplitude, i.e. ∆ε/2 = 0.80% (D080). However, the same 
analysis performed with the modified strain energy density parameters W* shows that the highest values 
for all modified parameters occurred for the specimen with the largest strain amplitude, i.e. ∆ε/2 = 1.00% 
(D100). Furthermore, it is also evident for all modified parameters, except for WT

*, that the energy-based 
values for the specimen D090, i.e. ∆ε/2 = 0.90%,  are lower than those for the specimen D080, ∆ε/2 = 
0.80%.

Taking into account the characteristics discussed earlier regarding WT (before and after the 
modification with surface topography parameters) and its consistency under constant strain levels over 
time (see Fig. 10), WT

* was chosen for subsequent analysis in predicting the fatigue life. The relationship 
between the fatigue life Nfcal and the proposed modified parameter WT

* can be defined through Eq. (13).

Nfcal = 16290 × (WT
*)-1.676 (13)

Figure 13 compares the relationship between Nf  and WT as well as between the Nfcal and WT
*. It can be 

seen that the values of total strain energy density show higher scatter than those obtained from the 
modified TSED. The fatigue life model Nfcal was validated from the measured data (red circles) and the 
main statistical parameters listed in Table 6.

Table 6. General power model (Eq. 13) goodness of fit.

  SSE  137100
  R2  0.9947
  RMSE 151.2
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Fig. 13. Fit plot WT
* and fatigue life Nfcal (black dots) validated by WT and fatigue life Nf data (red 

circles).

Based on Fig. 14, it is evident that the calculations align closely with the experimental findings. 
This is illustrated by the fact that the values for all the tested cases are contained within a 1.5 scatter 
bands. The fitted data exhibit a variance of 0.0602 and a standard deviation of 0.2454.
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Fig. 14. Experimental fatigue life (Nf) versus calculated fatigue life (Nfcal).
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3.3. Fractographic observations section
It is recommended to use various measurement methods and scales of analysis in the study of 

the shape of fracture surfaces. In this way, it is possible to obtain complete information on fracture 
formation and failure mechanisms. The fracture surfaces of the specimens were investigated by scanning 
electron microscope (SEM). In the observed areas, unmelted particles, cleavage facets and tear ridges 
were found (see Fig. 15). It can be noted, from previous observations, that the crack was initiated at the 
edge of the specimen. The propagation area was mainly dominated by a ductile mode of fracture 
characterized by ductile dimples, microvoids and secondary cracks that occurred due to the joining of 
the pores.

Fig. 15. Fractographs of the specimens tested under 1.00% strain amplitudes with (a) magnitude 300× 
and (b) 1000×.

(a)

Ductile dimples and microvoids Lack of penetration

(b) Unmolten particles
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4. Conclusions

In this paper, it is introduced a LCF life assessment model for LB-PBF 18Ni300 maraging steel 
combining both fracture surface topography parameters and total strain energy density. From the present 
study, the following conclusions can be drawn:

- The total strain energy density per cycle remained rather stable quantity throughout the entire life, 
regardless of the total strain amplitude; 

- The total strain energy density at mid-life cycle combined with the entire fracture surface parameters 
showed a satisfactory relationship with the fatigue life, following a power-law;

- Predictions made using the TSED-based approaches fell within scatter bands of ±1.7, while those 
obtained from the modified TSED-based approach fell within narrower scatter bands of ±1.5;

- The orientation texture of fractures and the building direction resulted in isotropic fracture surface 
structures, with texture isotropy values ranging from 44% to 89%.

Entire fracture surface method has universal application, allowing the analysis of a wide range 
of engineering problems encompassing different materials, geometric configurations and loading 
histories. The same criterion is applied to all specimens. Due to the universality of surface metrological 
values, it is possible to adapt these methods to describe fatigue cracking processes in other material 
groups, such as non-metals. Especially this methodology holds promise for application in LCF life 
assessment for other additive manufactured metallic materials and can contribute to enhance the 
understanding of the fatigue failure kinetics.
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