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Abstract: The coastline is the boundary between the water surface in a reservoir or watercourse 

and the land, which is characterised by high instability and functional diversity. For these reasons, 

research on coastal monitoring has been conducted for several decades. Currently, satellite images 

performed with synthetic aperture radars (SARs) are used to determine its course and variability 

together with high-resolution multispectral imagery from satellites such as IKONOS, QuickBird, 

and WorldView, or moderate-resolution multispectral images from Landsat satellites. This paper 

analysed the coastline variability in Sopot (2008–2018) based on Landsat satellite imagery. 

Furthermore, based on multispectral images obtained, it was determined how the beach surface in 

Sopot changed. Research has shown that the coastline keeps moving away from the land every 

year. This was particularly noticeable between 2008 and 2018 when the coastline moved on average 

19.1 m towards the Baltic Sea. Moreover, it was observed that the area of the sandy beach in Sopot 

increased by 14 170.6 m2, which translates into an increase of 24.7% compared to 2008. The probable 

cause of the continuous coastline shift towards the sea and the increase of the beach surface is the 

oceanographic phenomenon called tombolo, which occurred in this area as a result of the 

construction of a yacht marina near the coast. 

Keywords: coastline changes; Sopot; Landsat; satellite imagery 

 

1. Introduction 

The coastline is a dynamically changing boundary between land and water [1], characterized by 

instability and functional diversity depending on the region [2]. This boundary is important for the 

ecological and economic policies of coastal states because areas located in the coastal zone are rich in 

natural resources. This results in about 50% of the world’s population being currently settled in 

zones located within 100 km from the coastline [3]. Therefore, coastal monitoring research is 

currently being conducted in areas such as deltas and estuaries [4,5], wetlands [6], bays [7] and other 

geographical forms along the coast [8]. 

Coastline formation is the result of many factors (both anthropogenic and natural), which 

include, for example, sea erosion, water level rise [9], sediment transport [10], earthquakes [11], sea 

currents, tides, waving, flooding of coastal areas [12], rise in ocean temperature and acidity levels 
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[13], sea water intrusion [14], biological activity and river regulation. According to research [15,16], 

sea erosion has the greatest influence on shoreline shape. As a result, 24–70% of all sandy beaches on 

Earth are moving back into the land [17,18]. In Europe, about 15 100 km of the coastline erodes (out 

of a total of 101 000 km) and the continent shrinks by about 15 km2 yearly [19]. In Europe, this is 

particularly noticeable in countries such as France, Greece and Italy, where 20–30% of the total 

length of the shoreline shifts inland, even by a few meters a year [20]. The process of water erosion 

can be observed in particular in the Gulf of Guinea between Cameroon and Ivory Coast, where the 

coastline moves inland by up to 10 m a year. Since the 1960s, in these areas erosion has posed a 

serious threat to the stability of buildings in the coastal zone and has resulted in the need for 

artificial shore protection [21]. Another example of the negative effects of sea erosion includes the 

Wouri river estuary in Cameroon, which shifts by about 3 m a year and thus poses a great risk of the 

flooding of mangroves, which are among the richest, most complex ecosystems of the Earth with the 

greatest biological production [22]. 

At the end of the 20th century, satellite image analysis became the most popular solution used 

to determine the coastline course in an accurate, fast manner and on a large scale [23]. Among others, 

it uses imagery performed with synthetic aperture radars (SARs), which are assembled on European 

Remote Sensing (ERS) satellites [24], high-resolution multispectral images (0.5–2.5 m) from DubaiSat 

satellites [25], IKONOS, QuickBird [26], WorldView [27] and moderate resolution multispectral 

imagery taken from Landsat satellites [28]. Alternative methods for determining the shoreline course 

are geodetic measurements [29,30], especially with the use of the Global Positioning System (GPS) 

and photogrammetric measurements [31,32] made with the use of manned or unmanned flying 

systems. Although these methods were characterized by high measurement accuracy (up to several 

centimetres), they covered a relatively small area [33]. 

Landsat is one of the most frequently used programs for remote acquisition of Earth 

photographs from space. Currently, these are taken by two Landsat series satellites: Landsat-7 and 

Landsat-8, the former having failed quite a long time ago (in 2003) and generating “damaged” images. 

The Landsat program makes available satellite multispectral imagery of medium spatial and 

temporal resolution which have been available free of charge since 2008. For this reason, they are the 

backbone of many applications (Geocover 2000, i3, NLT, and OnEarth layers in the National 

Aeronautics and Space Administration (NASA) World Wind; TruEarth in Google Earth and Maps; 

TerraColor in Windows Live Maps/Virtual Earth 3D). 

Thanks to universal access to satellite images, Landsat is widely used in many areas, such as 

agriculture [34], forestry [35], environmental protection [36], hydrology [37] and spatial planning 

[38]. Many researchers [39–41] are currently also using Landsat imagery of the Earth in visible light, 

near- and mid-infrared light to monitor the coastline, in particular, in order to determine its spatial 

and temporal variability (from 10 to 30 years). This is possible thanks to an extensive database of 

satellite images, even decades old [39–42]. However, please note that some of them may have a low 

spatial resolution that can directly affect the accuracy of shoreline determination [23]. 

Due to the wide spectrum of application of remote-sensing data, it was decided to determine 

the spatial and temporal coastline variability of the waterbody adjacent to the pier in Sopot (Poland) 

in the years 2008–2018. For this purpose, multispectral images taken by Landsat satellites available 

for free on the Google Earth Pro platform were used. The chosen waterbody is special because a 

unique oceanographic phenomenon, called tombolo, occurs there as a result of the construction of a 

nearby marina. This phenomenon leads to a constant shoreline shift towards the sea, which 

negatively impacts both the aquatic environment and human [43–46]. Therefore, it seems reasonable 

to monitor the coastline variability in this waterbody to prevent it from moving, e.g., by performing 

silting works where appropriate. 

2. Materials and Methods—Vectorization of Satellite Images Taking into Account Hydrological 

Data 

ArcGIS software was used for data processing. Satellite images from Copernicus and Landsat 

were used for the analyses and constituted a source of data on the coastline course. For these images 
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to be cartometric, they had to be given in a specific coordinate system. Therefore, taking into account 

the scale of these images, the first stage of works was undertaken, i.e., georeferencing [47] (Figure 1). 

This process was based on the determination of control (reference) points for both the vector layer 

(pier model), drawn on the basis of a topographic map from the Geoportal website and a satellite 

imagery. Once these were determined, raster calibration was conducted, i.e., transformation and 

recording information about the given spatial reference. For research purposes, the pier model and 

satellite image were fitted into the Universal Transverse Mercator (UTM) system for publishing 

nautical charts [48]. 

 

Figure 1. Control points on the pier in Sopot. 

Prior to the analyses, a reference line was established against which the coastline shifts from 

2010–2018 were calculated against the 2008 shoreline. It was assumed to be 800 m long and to cover 

both the left and right sides of the pier in Sopot. Subsequently, the coastlines were drawn based on 

satellite images from the Google Earth Pro platform to start the vectorization process [47] (Figure 2). 

The waving range and sea levels can cause a coastline shift. Taking into account that the waving 

range is very small along the Polish Baltic coast and the waves are short and steep [49], it was 

decided not to take it for the analysis of the shoreline variability in Sopot. However, it was decided 

to analyse the differences in sea levels (Table 1). The data were obtained from the Institute of 

Meteorology and Water Management-National Research Institute (IMGW-PIB) gauging station in 

Gdynia, which is nearest to the place of measurements [50]. 

Table 1. Sea levels from the Institute of Meteorology and Water Management-National Research 

Institute (IMGW-PIB) gauging station in Gdynia in 2008–2018 [50]. 

Month 

and Year 

Number of 

Measurements 

Minimum 

Value [cm] 

Maximum 

Value [cm] 

Mean 

Value [cm] 

Median 

Value [cm] 

05.2008 8618 492.7 551.3 516.9 514.3 

07.2010 4464 496.4 538.7 513.0 512.5 

04.2011 8618 492.7 551.3 516.9 514.3 

05.2012 4459 476.9 520.3 501.5 501.7 

06.2013 4301 477.8 527.2 503.2 503.1 

07.2014 4432 479.9 520.4 500.1 498.5 

10.2015 4445 459.0 518.0 488.2 487.0 

09.2016 4320 474.0 533.0 506.0 507.0 

08.2017 4464 490.0 536.0 512.9 513.0 

05.2018 4464 472.0 514.0 491.6 492.0 

Based on the sea-level data from the gauging station in Gdynia, it can be seen that in selected 

years the averages and medians are similar. The difference between the minimum and maximum 
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sea-level value in a given month and year is less than 1 m. Therefore, it is not necessary to relate the 

coastlines to the mean level of the Baltic Sea for the Kronstadt mareograph. 

 

Figure 2. The coastline course in the waterbody adjacent to the pier in Sopot in 2008–2018. 

3. Results 

This chapter analyses changes in the beach surface and the coastline variability in Sopot in the 

years 2008–2018. As a measure of change assessment, an increase or decrease of the beach area was 

assumed compared to 2008 (m2) and the standard deviation of the distance between the 2008 

shoreline and the land–water boundary determined between 2010–2018 (m). 
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3.1. Analysis of Beach Surface Changes in Sopot 

After completion of the vectorization for all the coastlines and assessment of factors that may 

affect their location, the beach surface changes in Sopot were analysed. To do so, it was necessary to 

determine the boundaries of the area between the beginning of the beach and the shoreline. Then 

they had to be converted to polygons. Next, with the Calculate Geometry tool, available in ArcGIS 

software, information about the beach surface in specific years was obtained (Figure 3). 

 

Figure 3. Beach surface changes in Sopot between 2010–2018 compared to 2008. 

Based on the results obtained, we can see that the land area adjacent to the waterbody near the 

pier in Sopot had the smallest surface (57 415.2 m2) in May 2008, i.e., before marina construction 

started. The beach area was the largest (71 585.8 m2) in May 2018, i.e., 7 years after the marina was 

commissioned. Note that over the 10 years the beach increased by 14 170.6 m2, which is a 24.7% 

growth compared to 2008. Moreover, from Figure 3 it follows that the beach surface in Sopot kept 

growing every year, except for 2012. Waving, visible in the satellite image of May 2012, which 

worsened the coastline visibility, is the probable cause (Figure 4). The next factor which contributed 

to the coastline visibility on satellite image in 2014 are longshore, rip and undertow currents [51]. 

 

Figure 4. Satellite image showing the Sopot coastline in July 2014. 
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3.2. Analysis of Coastline Variability in Sopot 

Next, coastline variability in the years 2008–2018 was assessed. The distance between the land–

water boundary from 2008 and remaining shorelines determined for the years 2010–2018 was taken 

as a measure of the assessment of changes. To determine them, the Digital Shoreline Analysis 

System (DSAS) extension of the ArcGIS software was used, which allowed the statistics of changes 

in the land-water boundary to be calculated based on time series [52]. The calculation procedure 

starts with defining a reference line in the form: 

RL RL
X b Y a   , (1)

where: 

,
RL RL

X Y —rectangular coordinates PL-UTM of the points that determine the reference line, 

b —slope of the reference line, 

a —x-intercept of the reference line. 

The distance from the reference line to the coastline was then calculated. For this purpose, 

straight lines were drawn perpendicular to the reference line, which can be described by the formula 

(Figure 5a): 

1
i iPL PL i

X Y a
b

    , (2)

where: 

,
i iPL PL

X Y —rectangular coordinates PL-UTM of the points that determine the i-th line 

perpendicular to the reference line, 

i —numbering of perpendicular lines, increasing southwards. 

The formula (2) does not provide the numerical value of parameter 
i

a  because it depends on 

the distance between successive perpendicular lines. It was assumed for this study that the distance 

will be 1 m. 

The distances between the reference line and the coastline  i
d  were calculated from the 

coordinates of these lines intersecting with the perpendicular line drawn to the reference line (Figure 

5b): 

   
2 2

i i i ii RL C RL C
d X X Y Y    , (3)

where: 

,
i iRL RL

X Y —rectangular coordinates PL-UTM of the reference line intersection points with the 

i-th line perpendicular to it, 

,
i iC C

X Y —rectangular coordinates PL-UTM of the coastline intersection points with the i-th line 

perpendicular to the reference line. 

After calculating the distance between the reference line and the coastline from 2008–2018, the 

spatial and temporal variability of the land–water boundary at the pier in Sopot was determined. For 

this purpose, distances were calculated between the 2008 shoreline and the land–water boundary 

determined for 2010–2018  i
d  using the following formula (Figure 5c): 

2010 2018 2008i ii
d d d


   , (4)

where: 

2010 2018i
d


—distance between the coastline determined for the years 2010-2018 and the reference 

line calculated along the i-th line perpendicular to the reference line, 

2008 i
d —distance between the coastline determined for 2008 and the reference line calculated 

along the i-th line perpendicular to the reference line. 
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It was possible to calculate the standard deviation of the distance between the 2008 shoreline 

and the land–water boundary determined between 2010–2018  d

  (Figure 6): 

1

n

i
i

d

d
n





 


, 
(5)

 
2

1

n

i
i

d

d d

n
 



 




, 
(6)

where: 

d —arithmetic mean of the distances between the 2008 shoreline and the land–water 

boundary determined for 2010-2018, 

n —the number of lines perpendicular to the reference line. 

 

Figure 5. Analysis of coastline variability in Sopot using the Digital Shoreline Analysis System 

(DSAS) model: drawing perpendicular lines to the reference line (a), intersecting perpendicular lines 

between the 2018 coastline and the reference line (b) and calculating distances between the 2008 

shoreline and the land–water boundary determined for 2018 (c). 

 

Figure 6. Coastline variability in Sopot in 2008–2018. 
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From Figure 6 it follows that the coastline keeps moving away from the land every year, with 

the exception of the years 2012, 2014 and 2017. Note that the standard deviations of the distance 

between the 2008 shoreline and the land–water boundary between 2011 and 2012 are very similar. 

This may be due to the fact that the marina construction, which is the main reason for the formation 

of tombolo in Sopot, was commissioned in mid-2011. Thus, within a year of this event, there were no 

significant changes in the coastline shape. The value of the d
  in 2014 is smaller by 1.6 m than for 

the previous year. It is caused by wave motion [53,54] visible on the satellite image from the Google 

Earth Pro platform (Figure 4). Strong waves that occur transverse transport to the shore contribute to 

the sediment movement towards the sea [55]. Another factor that can affect the shoreline shape are 

undertow currents [51]. Moreover, it should be emphasised that the standard deviations of the 

distance between the 2008 coastline and the land-water boundary between 2017 and 2018 are almost 

identical, 19.2 and 19.1 m respectively. This may have been due to silting works carried out in the 

area to extract about 6 000 m3 of sand from the beach around the pier in 2017 [56]. 

4. Discussion 

The paper discusses the analysis of coastline variability in Sopot (2008–2018) based on Landsat 

satellite imagery. Apart from determining the spatial and temporal shoreline variability, the beach 

surface changes in Sopot were also analysed. 

The conducted research indicates that the most effective and optimal method of determining 

the coastline course is currently an analysis of satellite images taken using SAR and multispectral 

imagery from satellites such as IKONOS, QuickBird, WorldView or Landsat. It allows accurate (less 

than 1 m), fast and large-scale determination of the land–water boundary. In addition, this method 

enables the spatial and temporal shoreline variability (from 10 to 30 years) to be determined thanks 

to extensive databases which contain satellite images, even decades old. However, it should be 

noted that historical satellite imagery are characterized by low resolution and may miss hydrological 

data, e.g., sea levels or waving, which are necessary to precisely determine the land–water boundary 

[57]. 

The presented results are clearly indicative of a Sopot coastline shift. This was particularly 

noticeable between 2008 and 2018 when the shoreline moved on average 20 m towards the Baltic 

Sea. As the coastline moves away from the land, a continuous increase in the beach surface in Sopot 

was observed. Based on conducted analyses, the sandy area increased by 14 170.6 m2, which is 24.7% 

more than in 2008. This is very apparent on the right side of the pier, where a strip of land called 

tombolo [43–46] has formed between the shoreline and the yacht marina. The tombolo phenomenon 

forms as a result of the interaction between the hydrotechnical structure and hydrodynamic 

processes [58]. One of the elements that changes its properties when encountering an obstacle (e.g., 

breakwater) is waving. The wave coming to the edge bends around the obstacle, causing change in 

the direction of wave propagation [59]. Refraction is also of key importance for the development of 

the tombolo phenomenon. It consists in the fact that during the wave refraction most of the energy 

transported by it dissipates, while the remaining part causes the formation of currents. In the coastal 

zone, the strongest of them is the longshore current. All the aforementioned factors cause sediment 

transport. Sediments transported by the longshore current accumulate on the up-current side of the 

building, while their erosion occurs on the down-current side of the building [55]. This phenomenon 

causes many negative effects on both the aquatic and human environments, including navigational 

hazards, the blooming of cyanobacteria and other bacteria, and moving sand away from other 

places, e.g., from the Orłowo Cliff. Therefore, it is crucial to monitor coastline variability in this 

waterbody to prevent its shifting. 
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