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Abstract

In this study, we evaluate various Convolutional Neural Networks based Super-Resolution

(SR) models to improve facial areas detection in thermal images. In particular, we an-

alyze the influence of selected spatiotemporal properties of thermal image sequences

on detection accuracy. For this purpose, a thermal face database was acquired for 40

volunteers. Contrary to most of existing thermal databases of faces, we publish our

dataset in a raw, original format (14-bit depth) to preserve all important details. In our

experiments, we utilize two metrics usually used for image enhancement evaluation:

Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM). In

addition, we present how to design a SR network with a widened receptive field to mit-

igate the problem of contextual information being spread over larger image regions due

to the heat flow in thermal images. Finally, we determine whether there is a relation

between achieved PSNR and accuracy of facial areas detection that can be analyzed

for vital signs extraction (e.g. nostril region). The performed evaluation showed that

PSNR can be improved even by 60% if full bit depth resolution data is used instead of 8

bits. Also, we showed that the application of image enhancement solution is necessary

for low resolution images to achieve a satisfactory accuracy of object detection.
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1. Introduction

High resolution (HR) image restoration from corresponding low resolution (LR)

data is known as image super resolution (SR). Specifically, if a single image is used for

the enhancement, the approach is called single image super resolution (SISR). Inher-

ently, this problem is ill-posed since it’s possible to recover various HR outputs for a5

single LR input. Such inverse problem is usually solved by utilizing the prior knowl-

edge. The prior knowledge can be learned by predicting a pixel value with interpola-

tion methods, e.g. bicubic interpolation [1], edge-guided interpolation [2], or adaptive

non local sparsity-based modeling [3]. Another ways to acquire the knowledge is to

exploit the internal structure of pixels within the same LR image [4][5][6], or learn10

it from corresponding pairs of LR and HR examples, i.e. example-based algorithms

[7][8][9][10][11][12][13][14][15]. The first group, known as interpolation-based SISR

[16], often intend to mitigate a down-sampling process only. Also, the interpolation

techniques are based on generic smoothness priors and therefore are indiscriminate, as

they smooth both edges and object parts, what leads to the blurring effect [7].15

Hence, due to limited applicability of interpolation approaches, the learning-based

methods are becoming more popular and are being further investigated, e.g. by com-

bining learning based gradient regularization with reconstruction approach that aims at

preserving consistency between HR and LR images, while satisfying the prior knowl-

edge [17]. In particular, deep learning based SR algorithms, which allow to establish20

the mapping between LR and HR patches of the image using a stack of convolutional

operations have recently become state-of-the-art solutions. Majority of the conducted

work considered visible light images only. The pioneer research of applying deep learn-

ing to SISR problem for RGB data, conducted by Jain and Seung [18], aimed at image

denoising. In later studies, stacked collaborative local auto-encoders were proved to be25

successful for a low resolution RGB images up-scaling [6]. At each stacked layer, high

frequency components are enhanced using similarity search applied to the input LR

image, that are then fed to auto-encoders in order to suppress the noise and take into

account the correspondence of the overlapping reconstructed patches. To overcome the

disadvantage of independent optimization of the similarity search and the auto-encoder30
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for each layer, as well as the absence of steps other than the learning part in the frame-

work pipeline, Dong et al. proposed to formulate both mapping and feature extraction

as convolutional operations [11]. As a result, proposed SR pipeline, called SR Con-

volutional Neural Network (SRCNN), can be fully obtained through end to end map-

ping. Additional modifications introduced to the SRCNN allowed to further improve35

the Peak Signal-to-Noise Ratio (PSNR) index, a metric usually used for quantitative

evaluation of super-resolution algorithms. Kim et al. at first introduced Very Deep Su-

per Resolution (VDSR) model with residual connections that correlate LR input with

HR output, outperforming SRCNN by 0.87dB PSNR [12] on RGB dataset called Set5

[9] downscaled by a factor of 2. Later same authors proposed Deeply Recursive Convo-40

lutional Network (DRCN) [13], which incorporates recursive supervision to 1) increase

the depth while keeping number of parameters constant; 2) eliminate the vanishing gra-

dient problem. Afterwards, Tai et al. [14] further enhanced the efficiency with Deep

Recursive Residual Network (DRRN) that adopts weight-shared residual connections

both in global and local manner to increase the network depth, achieving PSNR 1.08dB45

higher than SRCNN on RGB data. Generative Adversarial Network (GAN) based so-

lutions have been also already applied to visible light image enhancement, allowing

for successful restoration of high frequency details (e.g. SRGAN [19] or EnhanceNet

[20]).

HR data is especially desired for medical applications in order to make proper diag-50

nosis, as super-resolved image can usually offer more diagnostically important details

[21] [22]. Health care sectors that use imaging techniques can utilize resolution en-

hancement, e.g. for computer-aided diagnosis (CAD) of breast tumors to improve ac-

curacy of malignancy classification [23] or reconstruct computed tomography images

to provide clinicians with important details to make correct decisions [24]. Undoubt-55

edly, providing more detailed HR samples can ease the analysis of medical imaging.

The interesting research question is whether it can also help with improving accuracy

of remote medical diagnostics. Due to global aging, the medicine is expected to deliver

novel solutions that allow for performing basic diagnostic and monitoring tests at home

[25]. Some studies have already proved that basic vital signs can be estimated from a60

single camera stream in a non-contact way, e.g. heart rate from visible light sequences
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[26] or a breathing rate from thermal data [27]. The starting point of image processing-

based vital signs estimation is accurate detection of proper facial regions. Despite

the majority of object detection research focuses on visible light spectrum, some at-

tempts to localize facial features from low resolution thermal imagery have been done65

[28][29], recently also using Deep Learning (DL) techniques [30]. The achieved re-

sults, though, were not satisfactory, giving accuracy of 0.53 ± 0.15 for eyes area and

0.60± 0.18 for nostrils, expressed as Intersection over Union (IoU) metric. Localizing

a proper region is crucial for the robustness of signal processing algorithms aimed at

estimating vital signs [27]. It has already been shown that motion magnification can im-70

prove performance of heart rate estimation at distances above 6 meters [31]. However,

to the best of our knowledge, it hasn’t been evaluated yet whether image enhancement

with DL-based SR has a positive effect on the accuracy of object detectors, especially

in thermal imaging. Simultaneously, analysis of other than visible light image domains

is crucial, as representation of features may differ across them, e.g. thermal images are75

characterized by blurring and lower contrast between adjacent regions due to the heat

flow, hence networks designed for extracting high frequency components (e.g. edges,

lines) from visible light spectrum images may not be sufficient in the thermal domain.

The contribution of our work is threefold: 1) First, we collect and publish a dataset

of raw thermal sequences of a face in the original full 14-bit precision. 2) Second, we80

applied deep learning based super resolution algorithms to thermal image sequences.

We experimentally compared the state of the art algorithms and our algorithm analyz-

ing selected spatiotemporal properties of thermal sequences including temporal frames

averaging and the influence of various bit depths. 3) Finally, we evaluate the effect of

enhancing image resolution (and related PSNR/SSIM measures) on the robustness of85

areas detection in the auditing thermal domain.

Since in our research we focus on facial features detection, we analyse PSNR

changes for both extracted facial areas and images as a whole. In this way, we aim

at determining whether PSNR is sensitive to the change of pixel values caused be the

presence of breathing patterns in the extracted areas (e.g. nostrils). In addition, we90

evaluate how PSNR changes by a) using averaging operation of subsequent frames in a

sequence, what allows for reducing random noise; b) utilizing 16-bit resolution data in
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order to preserve important image components that may be invisible after conversion to

lower bit resolution (e.g. 8-bit). To the best of our knowledge, the majority of existing

publicly available face thermal datasets contain images that were converted to lower95

precision image format with loss of some of the information available in the higher

precision.

Thus, the data collected by us possesses advantages over them, as it is shared in the

raw format that contains unprocessed pixels, what is potentially useful for extracting

intensity changes, caused e.g. by breathing. Collected dataset 1 and supplementary100

materials 2 are publicly available.

The rest of the paper is organized as follows: Section II introduces the problem

statement, including acquired thermal data characteristics. In Section III we describe

the experimental methodology used to evaluate the influence of super-resolution meth-

ods on facial features detection accuracy. Section IV overviews achieved preliminary105

results, further discussed in Section V. Finally, we conclude our work in Section VI.

2. Problem statement and preliminaries

2.1. Data characteristics, collection and processing

In this study, we are focusing on evaluating face hallucination algorithms on images

acquired in thermal spectrum, i.e. intensities of electromagnetic radiation in the range110

of 8-12um (LWIR, Long-Wave Infrared). The intensity is represented as a sequence

of arrays. Each array contains digital values of a bit resolution higher than 8, typically

14 bits. Radiation values may be converted to temperature data in order to form a

final thermal image using data pre-processing algorithms (e.g., radiation to temperature

mapping, data range selection) and a Color Look Up Table (CLUT) to assign colors or115

shades of gray to the digital values.

When 8-bit color models are used for intensities with higher bit resolution, the con-

version from electromagnetic radiation to color palette values is lossy, so the contrast

1Database of thermal image sequences can be obtained by sending an e-mail request to

{alicja.kwasniewska/jacek.ruminski}@pg.edu.pl
2Supplementary materials available at https://github.com/akwasnie/Super-Resolved-Thermal-Imagery

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 1: Color values (green plot) of pixels at the eyes level marked with a black line in RGB

(left) and thermal (right) image collected with a single device FLIR One equipped with the VGA

Visible Camera and the 120x80 IR Sensor

between regions may be reduced, eliminating some important details. Another impor-

tant factor represented in thermal images is related to the heat transfer in objects of120

different temperature. When heat is transferred from one object to another, the temper-

atures equalize, resulting in lower gradient and smoother color change between pixels

within adjacent areas (see Fig. 1). For the thermal image we can observe smoother

color change between pixels within adjacent area. These characteristics of thermal data

should be carefully considered while applying image processing algorithms. Typically,125

CNNs are based on high frequency features (e.g. edges, corners, lines), and trained

on visible light images to extract them. In visible spectrum edges between different

areas are clearly distinguishable, therefore filters based on high frequency patterns lead

to very good recognition results [32]. Smooth representation of areas in thermogra-

phy lead to worse detection accuracy while using high frequency components [30].130

This problem can be partially mitigated by using higher resolution thermal cameras but

then the cost of the solution rapidly grows, what makes it unsuitable for home based
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health care devices. That’s why, in most cases low resolution data is more common.

Although the cost of thermal imaging hardware is still significantly higher than the

price of comparable visual light cameras, the price of thermal cameras is continuously135

decreasing [33]. Recently, thermal cameras have become more affordable and thus

commercially available (e.g. FLIR Lepton camera modules<$175 [34]), what enabled

various practical applications in different industries, e.g. in remote medical diagnostics

(non-contact vital signs estimation [35]), or in studies on autonomous vehicles (detec-

tion of people on roads [36] and classification of challenging road conditions [37]). We140

believe that utilization of hallucinated images can further improve the performance of

proposed solutions by improving distinguishability of the object parts, especially in the

case of thermal images with small spatial resolution (e.g. 80x60, 160x120) and smaller

temperature resolutions.

Figure 2: Examples of thermal images for volunteer 1 and 2 breathing through nose)

Experiments were carried out on a thermal face dataset collected by us from 40145

users (19 male, 21 female, age: 34.11±12 ). The thermal camera FLIR SC3000,
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used for data acquisition, (320x240 spatial resolution, 30 frames per second (FPS),

temperature measurement range from -20°C to +80°C, 20° lens, measurements using

noise reduction mode) was placed on a tripod, 112 centimeters from the ground and

120 centimeters from the volunteer’s head. During data collection, volunteers were150

asked to perform 5 tasks:

1. breathing trough a nose for 2 minutes

2. breathing through a mouth for 1 minute

3. turning a head very slowly from a left to a right side during 1 minute, so that

after 30 seconds the volunteer was looking straight155

4. turning a head very slowly from a top to a bottom during 1 minute, so that after

30 seconds the volunteer was looking straight

5. mimicking 3 emotions, each for 20 seconds (happiness, anger, surprise)

Additionally, in scenario 1 and 2, participants were asked to point their finger up-

ward during inhaling and down during exhaling, so that we were able to calculate the160

reference breathing per minute (BPM) value, by counting the number of finger move-

ments. At the same time, we also collected the ambient temperature inside the labora-

tory room, where experiments were conducted. As a result, we created a relatively big

thermal face dataset (240 minutes of thermal sequences, 78.14 GB), that can be used

for training deep neural networks, since the amount of data that we feed to models is165

crucial for them to succeed in producing accurate predictions on new samples [25]. It

is very important to note that the created dataset consists of original raw 14-bit image

sequences. We haven’t found any other dataset that contains images saved in original

resolution before lossy conversion to other image formats. The entire set consists of 40

2-minute sequences and 160 1-minute sequences. All sequences were recorded with170

30 FPS frequency rate, so after extracting all frames from them, we got 7200 images

in PNG file format with 16-bit depth per channel and 7200 images in PNG file format

with 8-bit depth per channel. Each image is 320 pixels wide and 240 pixels high.

In this study, we utilize data that allow for calculating reference BPM (scenario 1

and 2), as we focus on improving facial feature detection, used for remote estimation175

of breathing rate. From all these sequences, we extracted every 300th data frame to
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ensure proper variability of facial data in the compact training dataset. Radiation data

acquired by us in this study is represented as a sequence of arrays, containing digital

values of a 14-bit resolution. In order to feed data to convolutional-based deep learn-

ing model, it is necessary to convert collected raw data to image formats. Therefore,180

the minimum and maximum values (other than 0) were identified in the selected data

frames. These values were used in linear scaling of original, 14-bit radiometric data

to 8 and 16-bit grayscale images in the PNG file format. Facial regions detection is

typically based on features of a single frame. Since collected dataset contains thermal

sequences instead of single images, utilization of temporal information can be poten-185

tially beneficial to improve desired detection results. For example, temporal average

can potentially remove random noise (e.g. related to image sensor noise, influence of

local environment, etc.) keeping image features important for better detection of facial

regions. On the other hand, it is important to note that averaging operation is possibly

favorable on the assumption that the subject stands still in front of the camera. In case190

of the movement occurrence, the edges of object areas will become blurred after ap-

plying the averaging operation. Our data collection process assumes that the volunteer

stands still, yet some small movements may still be present. Thus, in our research we

evaluate how averaging operator influence image quality enhancement (PSNR) and the

object detection accuracy (IoU). For this, the average of W subsequent frames is calcu-195

lated, where W denotes the size of a window, expressed as a number of neighbouring

frames (-W/2;W/2), used for calculating the average frame. We chose window sizes as 7

(relatively small window insensitive to body movements and respiratory events), 30 (1

image for every 1-second intervals), 90 (1 image for every respiratory event, assuming

the respiration rate for an adult is ~12 while resting, every 2-3 second we can observe200

the inhalation/exhalation event). The used set consisted of 1296 single 8-bit frames,

1296 single 16-bit frames, and 1296 images for each of the window sizes: W=7, W=30,

W=90 both in 8 and 16-bit resolution, named single-{8/16}, avg{7/30/90}-{8/16} re-

spectively. In total, 10368 thermal images are utilized. For all SR networks applied

in this study, we used LR images generated by dowscaling and upscaling original HR205

images with a scale of 2. LR images were used to train and evaluate SR topologies

by comparing enhanced results against original HR data. Examples of thermal images
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and differences between calculated average frame and the middle frame in each win-

dow for two different volunteers breathing through nose are presented in Fig. 2. Odd

rows present images generated using various window sizes for average operation, even210

rows difference between calculated average frame and the middle frame in the window

(from the left: 1, 7, 30, 90 window size).

2.2. Formulation of the research statement

The goal of SISR is to estimate the HR output Ŷ from the corresponding LR image

X , created by downscaling the ground truth (GT) sample Y with a scale s. SR network

S defined by parameters θ has to find the HR output Ŷ as close to Y , as possible:

min(Lθ(Y, Ŷ )), where Ŷ = Sθ(X) (1)

Lθ is the cost function used to optimize the model.

In general, network Sθ realizes 3 tasks: feature extraction Ffe, non-linear mapping

Fnlm and reconstruction Frec. All operation can be formed by convolution operations

(∗), and defined as:

Ŷ = Frec(Fnlm(Ffe(X))) =Wrec∗(σ(Wnlm∗(σ(Wfe∗X+Bfe))+Bnlm))+Brec

(2)

where {Wrec,Wnlm,Wfe, Bfe, Bnlm, Brec = θ} are weights (W) are biases (B) ma-

trices, respectively for each of the network task:fe, nlm, rec and σ is the activation

function. The goal is to optimize network parameters θ, so that end-to-end mapping Sθ

accurately predicts Ŷ = Sθ(X). In the supervised setting, that we utilize in this study,

the relation between reconstructed HR image Ŷ and the ground truth image Y formu-

lates the cost function, that is used for parameters optimization. In SISR, the commonly

used cost function is Mean Squared Error (MSE), averaged across N training samples:

L(θ) =
1

N

N∑
i=1

‖Yi − Sθ(Xi)‖2 (3)

Although lower MSE favors higher Peak Signal to Noise Ratio (PSNR), it has been215

observed that satisfactory performance can be also obtained by using other evaluation

metrics, e.g. Structural Similarity Index (SSIM) [11].
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Please note, that equation (2) is the general form of CNN-based SISR, that contains

only one convolutional layer at each network step, i.e. Wfe,Wnlm,Wrec correspond to

n(fe/nlm/rec) filters of a size w(fe/nlm/rec)×h(fe/nlm/rec)× c(fe/nlm/rec) (w-width,220

h-height, c-input channels ). Yet, as previous studies showed, the deeper the network,

the better performance can be achieved [13][14]. Thus, in this work, we utilize the

novel version of CNN based SR network, designed specifically for thermal data. The

network architecture is explained in details in Section 3.

3. Methods225

3.1. Object detection

Previous attempts to facial features detection from low resolution thermal images

using Artificial Neural Networks (ANNs) have shown that achieved accuracy is limited

(0.32 0.38, 0.55 0.42 for eyes and nostril areas respectively, expressed as Intersection

over Union (IoU)) [30]. Thus, in our study, we evaluate the effect of applying SR230

algorithms on object detection accuracy using a relatively large dataset of thermal im-

ages. Specifically, the proposed SR network and other state-of-the-art SR models are

used to generate hallucinated images of a face, that are then used for facial features

detection training. Accuracy is measured using IoU metric and compared across vari-

ous SR algorithms, as well as original HR data, and LR samples generated via bicubic235

interpolation.

To evaluate the influence of applying SR on the detection task, we utilize Inception

based Single Shot Detector (SSD) model [38], the same network as in [30]. SSD is a

simple relative to other deep neural networks, as it does not require generation of object

proposals during the run-time. Instead, it creates a set of default boxes over different240

aspect ratios and scales during training. Then, predictions are performed by assigning

scores for the presence of each object category in default boxes. This makes SSD a real

time solution that can be easily trained for a new task.

Although SSD has more lightweight feature extractor than faster R-CNN, the fast

processing time is not indispensable in our case, as the person is supposed to sit still245

for 10-15 seconds in order to evaluate vital signs at the distance [31].
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Figure 3: Examples of filters learnt by the proposed SR CNN network. On the left 96 filters learnt

if a single convolution is applied for feature extraction. On the right 96 filters of a convolution

after applying 3 residual blocks

3.2. Super resolution

3.2.1. Proposed network architecture

The wider receptive field in the feature extraction step is potentially beneficial for

mitigating the problem of lower contrast of adjacent regions in thermal imagery. As

presented in Fig. 3, we can observe that after applying a set of convolutions filters

learnt by a network represent more complex features that filters in the a single convolu-

tion, what is crucial for reconstructing details in the SR task. The drawback of deeper

networks, though, is increased number of parameters, what leads to huge models sizes

and more difficult optimization process [14]. Therefore, we propose to apply resid-

ual mappings [39] constructed from following operations: conv1fe/nlm, batch norm,

activation function σ (in our case Rectified Linear Unit (ReLU) [40]), conv2fe/nlm,

batch norm to both feature extraction and non-linear mapping steps. Weights of

conv1fe/nlm and conv2fe/nlm are shared across all residual blocks within each net-

work step, i.e. fe and nlm respectively, to avoid the increased number of parameters.

After each residual block, the addition operation ⊕ sums up the shortcut connection

conv0fe/nlm (i.e. input of the residual block that is skipping the convolutional and

batch norm layers) with the output from this block. Operation ⊕ is followed by acti-

vation σ. Output from the feature extraction sub-network Ffe after e-th residual block

can be defined as:

F
(e)
fe =

 gfe(Ife,Wfe) + Ife, e = 1

gfe(F
(e−1)
fe ,Wfe) + Ife, e ∈ (1, E〉

(4)
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where gfe represents residual mapping gfe(x,Wfe) = Wconv2fe
σ(Wconv1fe

∗ x) to

be learnt, and Ife =W0fe ∗X is the LR input convoluted with the first weights matrix250

W0fe. E is the total number of residual blocks used for feature extraction. To simplify

the mathematical formulation biases were skipped.

Following [13], we also introduce recursive supervision to the non-linear mapping

sub-network in order to eliminate vanishing gradient problem. Let’s define an input to

the recursive block d, as I(d)rec:

I(d)rec =

 W0
(d)
nlm ∗ F

(e=E)
fe , d = 1

W0
(d)
nlm ∗ F

(d−1)
nlm , d ∈ (1, D〉

(5)

where D denotes total number of recursions, W0
(d)
nlm is the weight matrix of the first

convolution in the d-th recursive block, and F (d−1)
nlm is the output of the previous (i.e.

d-1) recursive block in the non-linear mapping sub-network. Since residual blocks are

also introduced to recursive blocks, we can define them as:

F
(d)
nlm = B(U)

res =

 gnlm(I
(d)
rec,Wnlm) + I

(d)
rec, u = 1

gnlm(B
(u−1)
res ,Wnlm) + I

(d)
rec, u ∈ (1, U〉

(6)

where U is the number of residual blocks in the recursion d, and gnlm represents resid-

ual mapping gnlm(x,Wnlm) = Wconv2nlm
σ(Wconv1nlm

∗ x) to be learnt. The output

F
(d)
nlm from d-th recursion is simultaneously the output from the last (U-th) residual

blockB(U)
res within this recursion. All D outputs from the nlm sub-network are weighted

in the reconstruction sub-network Frec to produce the final output. Also, additional

identity mapping is added in order to correlate LR input (X) with restored HR data

and, in this way, preserve detailed image components.

Frec =

D∑
d=1

w(d)(F
(d)
nlm +X) (7)

Then, taking into account eq. 3, similarly to [13], the cost function can be defined as:

L(θ) =
1

N

1

D

N∑
i=1

D∑
d=1

∥∥∥∥∥Yi −
D∑
d=1

w(d)(F
(d)
nlm +X)

∥∥∥∥∥
2

(8)

3.2.2. Reference SR solutions

In this subsection, we specify the differences between the proposed network archi-

tecture and state of the art algorithms. The pioneer research of applying CNN to SR255

13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


task (model knows as SRCNN) was conducted by Dong et. al [11]. Yet, it had been

soon confirmed that deeper representation can lead to better results, e.g. in DRCN

[13] and DRRN [14] models. Motivated by these findings, we base our idea on these

solutions, but introduce some additional steps to better fit thermal data. Similarly to

DRCN, we use recursive supervision to reduce the risk of overfitting, while increasing260

the depth of the network. Besides this operation, we propose to further deepen the

model and, in this way, gain more accuracy by applying residual blocks, proved to ease

the optimization process [39]. This approach has been previously utilized by DRRN,

yet, there are some important differences to be noted. First of all, best DRRN results

were achieved for the configuration B1U25, where B denotes number of recursions and265

U number of residual blocks within each recursion. It can be easily observed, that

in fact recursions were not applied in this setup, as B=1. In our network we utilize

recursive approach. Secondly, we propose to widen the receptive field in the feature

extraction sub-network to mitigate the problem of blurring and bigger distances be-

tween interesting components in thermography. Specifically, we utilize residual blocks270

in both feature extraction and non linear mapping steps, contrary to DRRN, which uses

them only in the mapping part. In this way, we design the model that fits other image

domain, apart from visible light, which most of the networks are designed and tested

for. Last but not least, we use shared weights at each network step, i.e. for feature

extraction we use only two weights matrices Wconv2fe
,Wconv1fe

shared across all E275

residual blocks, similarly, for the non linear mapping, we use Wconv2nlm
,Wconv1nlm

shared across all U residual and all D recursive blocks, opposed to DRRN, where

weights are shared across residual blocks but are unique across recursions. Thus, com-

paring to DRRN, the number of parameters is reduced by 2D times in the non-linear

sub-network. Since we utilize residual blocks in both feature extraction (embedding)280

and non-linear mapping sub-networks, our model is called DRESNet - Deep Resid-

ual Embedding and Supervised-recursion. The proposed model architecture and recent

state-of-the-art models are presented in Fig. 4. Weights used in each convolution

or a block are labeled with a capital letter W. Weights that are shared across opera-

tions/blocks are marked with the same background color. Thus, we may easily note285

that weights in recursions in DRRN are not shared, while in DRESNet they are, except
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one convolutional block applied before all following residual blocks.

Figure 4: Architecture of the proposed DRESNet model and comparison with state-of-the-art

networks

3.3. Training

Training is carried on all created sets separately (i.e. single-{8/16}, window{7/30/90}-

{8/16}). At first each of image sets is divided into training, test and validation parts290

using a 70:15:15 split. Training and validation sets are used to optimize SR models.

Next, test sub-sets are fed into the trained SR models in order to generate hallu-

cinated face images. After this step, we have 24 HR sub-sets, 8 for each of the SR

models. Within each model 4 for each of the bit resolution (8/16 bits): avg{7/30/90}

and single. Generated subsets are then again split into training, test and validation295

parts in a 70:15:15 proportion. Object detection network (SSD) is trained using each

of these subsets. In addition, we also use bicubic data and original HR data to train

the models and compare achieved results with results computed for super-resolved ob-

ject detectors. As a result, 40 object detection models are created. The nomenclature

is as follows: {object detection}-{data source}-{data pre-processing}-{resolution}:300

{SSD}-{bicubic/orig/DRCN/DRRN/DRESNet}-{avg{7/30/90}/single}-{8/16}.
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In order to find the most optimal DRESNet architecture, various configurations of

the proposed model are tested. Number of residual blocks in feature extraction sub-

network (E), number of recursions (D), and number of residual blocks within each

recursion (U) are randomly chosen from the range (1-10). For each configuration,305

training is performed using the same set of hyperparameters. Each convolutional layer

contains of 96 3x3 filters with weights initialized using He algorithm [41]. Following

[12], training data is cropped to 41x41 patches with a stride of 21. The model is opti-

mized using back-propagation with the cost function defined by eq. 8, minimized using

Adam optimizer [42], momentum 0.9, and weight decay 0.0001. Initial learning rate310

is set to 10−2 and then we reduce it by an order of magnitude after each 5 subsequent

epochs, for which the decrease of the validation error is not observed. After evaluating

all configurations, we found that the best performing network in terms of PSNR had 3

residual blocks in the feature extraction sub-network (E=3) and 9 recursions (D=9) in

the non-linear mapping sub-network. Both residual and recursive blocks are described315

in details in Section 3.2.1. Contrary to DRRN, it turned out that residual blocks in re-

cursions don’t produce better results. Instead it’s better to place them before recursions.

The final architecture of the introduced SR CNN is presented in Fig. 5. Selected model

has 3 residual blocks with shared weights in the feature extraction part and 9 recursions

in the non-linear mapping part. The final output is constructed as the weighted sum of320

all recursions. This configuration is used in all further experiments and we thereafter

refer to it as DRESNet.

Figure 5: The best configuration of the proposed DRESNet in terms of PSNR

DRCN and DRRN are trained with hyperparameters suggested by their authors

[13][14] using TensorFlow implementation [43] mentioned as the alternative code in

the original DRRN repository [44]. This implementation was DRRN configuration325
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uses 9 residual blocks and 1 recursion, while for DRCN 16 recursions are applied.

For a fair comparison with DRESNet, number of filters in both models was set to 96.

Our motivation is based on results achieved by SRCNN [11], which proved that better

performance is achieved by increasing the number of filters in convolutional layers.

Taking it into account, using different number of filters may affect results, leading to330

false conclusions about the architecture itself, i.e. placement of recursions, residuals

etc. To avoid results being biased by different number of filters, we decided to use the

same filter width for all SR networks.

Since the number of super-resolved data used for training object detection model is

limited, we utilize transfer learning technique [45] to tune publicly available checkpoint335

[46] on our thermal dataset. The random search approach [47] was used to find the

best training configuration. After that, the same hyperparameters were applied to SSD

object detection, i.e. training steps 40000, batch size 32, initial learning rate 0.004,

learning rate decay steps 5000, decay factor 0.95.

4. Results340

Calculated Peak Signal-to-Noise Ratio and Structural Similarity Index (for each

marked region and the frame as a whole) for 8 and 16-bit images are collected in Table

1 and 2, respectively. We compare results achieved for images enhanced with various

SR algorithms and resized with bicubic interpolation both for extracted single images

and images calculated as the average of 7, 30, and 90 subsequent frames. Table 3345

presents Intersection over Union between regions marked manually (ground-truth) and

regions detected by object detection models (SSD) trained on images with improved

and decreased resolution and evaluated on test sets corresponding to the applied en-

hancement/degradation algorithm, i.e. model trained on bicubic data was evaluated on

bicubic data, etc. Relation between IoU metric (average for all detected regions) and350

PSNR (average for all marked facial areas) is presented in Fig. 6.
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Figure 6: Relation between average IoU calculated for all detected regions and average PSNR

calculated for annotated ground-truth facial areas (resolution enhanced with SR models or de-

creased with bicubic interpolation)

Table 1: Peak Signal-to-Noise Ratio [dB] (for each manually marked region and the frame as a

whole) for 8 and 16-bit LR images, generated by extracting frames from raw thermal sequences

and then downscaling and upscaling them with a scale of 2 using bicubic interpolation. Gener-

ated LR images were then enhanced with DRCN, DRRN or DRESNet (our) SR models. blue -

first best for each region and within each input category (single; window 7, 30, 90) separately,

blue - first best across all input categories

single-8 single-16
region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 27.90

±0.10

29.86

±1.84

41.01

±1.81

43.87

±1.58

27.90

±0.11

51.29

±0.11

52.12

±0.34

53.06

±0.39
face 27.92

±0.10

30.28

±1.86

40.73

±1.65

44.20

±1.78

27.90

±0.05

51.31

±0.09

52.11

±0.53

53.88

±0.56
nose 27.93

±0.21

30.36

±1.52

41.72

±1.55

44.98

±1.86

27.89

±0.14

51.28

±0.13

52.13

±0.30

53.38

±0.63
frame 27.91

±0.16

31.49

±2.37

43.07

±1.06

47.49

±1.28

27.90

±0.11

51.29

±0.11

52.12

±0.39

53.36

±0.61
avg7-8 avg7-16
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region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 27.88

±0.10

30.14

±2.73

41.94

±1.97

44.72

±1.70

27.89

±0.10

51.33

±0.26

52.12

±0.37

53.39

±0.46
face 27.90

±0.03

30.66

±2.30

41.22

±1.50

44.33

±1.64

27.90

±0.02

51.34

±0.16

51.95

±0.47

53.98

±0.48
nose 27.89

±0.14

30.36

±2.54

41.28

±1.71

44.57

±1.62

27.91

±0.15

51.32

±0.24

52.03

±0.26

53.11

±0.51
frame 27.89

±0.10

31.15

±2.67

43.18

±1.01

47.45

±1.21

27.90

±0.11

51.33

±0.23

52.05

±0.38

53.47

±0.58
avg30-8 avg30-16

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 27.91

±0.11

29.44

±2.47

42.11

±2.16

44.85

±2.00

27.90

±0.02

51.33

±0.14

52.12

±0.32

53.44

±0.63
face 27.90

±0.02

30.59

±2.36

41.68

±1.72

44.49

±1.73

27.90

±0.02

51.35

±0.12

51.95

±0.39

54.28

±0.60
nose 27.89

±0.13

30.78

±2.93

42.59

±1.65

45.54

±1.93

27.91

±0.11

51.31

±0.14

52.09

±0.30

53.90

±0.77
frame 27.90

±0.10

31.51

±2.92

43.76

±1.18

47.69

±1.28

27.90

±0.09

51.33

±0.14

52.07

±0.34

53.78

±0.75
avg90-8 avg90-16

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 27.89

±0.10

30.90

±3.32

43.77

±2.29

46.55

±2.08

27.91

±0.15

51.24

±0.21

52.22

±0.46

53.95

±0.82
face 27.90

±0.03

31.64

±2.81

42.84

±1.07

46.00

±1.77

27.90

±0.03

51.26

±0.18

52.02

±0.55

54.64

±0.77
nose 27.90

±0.11

32.34

±3.14

43.82

±1.86

46.54

±1.80

27.90

±0.13

51.26

±0.19

52.13

±0.44

54.13

±0.81
frame 27.89

±0.09

31.81

±3.09

44.62

±1.19

49.02

±1.25

27.90

±0.10

51.25

±0.20

52.14

±0.49

54.18

±0.85
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Table 2: Structural Similarity Index (for each manually marked region and the frame as a whole)

for 8 and 16-bit LR images, generated by extracting frames from raw thermal sequences and

then downscaling and upscaling them with a scale of 2 using bicubic interpolation. Generated

LR images were then enhanced with DRCN, DRRN or DRESNet (our) SR models. blue - first

best for each region and within each input category (single; window 7, 30, 90) separately, blue -

first best across all input categories

single-8 single-16
region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 0.71

±0.28

0.88

±0.04

0.98

±0.01

0.99

±0.00

0.71

±0.28

0.85

±0.04

0.97

±0.01

0.99

±0.01
face 0.64

±0.27

0.93

±0.01

0.98

±0.00

0.99

±0.00

0.64

±0.27

0.91

±0.01

0.98

±0.01

0.99

±0.00
nose 0.53

±0.39

0.92

±0.04

0.99

±0.01

0.99

±0.00

0.53

±0.39

0.90

±0.03

0.99

±0.01

0.99

±0.00
frame 0.64

±0.32

0.89

±0.06

0.98

±0.01

0.99

±0.01

0.64

±0.32

0.92

±0.01

0.98

±0.01

0.99

±0.01
avg7-8 avg7-16

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 0.73

±0.25

0.96

±0.01

0.98

±0.01

0.99

±0.01

0.73

±0.25

0.94

±0.0.05

0.98

±0.01

0.99

±0.01
face 0.63

±0.26

0.96

±0.01

0.98

±0.00

0.99

±0.00

0.63

±0.26

0.96

±0.01

0.98

±0.01

0.99

±0.00
nose 0.50

±0.41

0.96

±0.01

0.99

±0.01

0.99

±0.01

0.50

±0.41

0.96

±0.01

0.99

±0.01

0.99

±0.01
frame 0.64

±0.32

0.89

±0.06

0.98

±0.01

0.99

±0.01

0.64

±0.32

0.94

±0.01

0.98

±0.01

0.99

±0.01
avg30-8 avg30-16

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 0.70

±0.25

0.96

±0.01

0.98

±0.01

0.99

±0.01

0.70

±0.25

0.87

±0.06

0.98

±0.02

0.99

±0.01
face 0.61

±0.26

0.96

±0.01

0.98

±0.00

0.99

±0.00

0.61

±0.26

0.93

±0.01

0.99

±0.01

0.99

±0.00
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nose 0.50

±0.36

0.98

±0.01

0.99

±0.01

0.99

±0.00

0.50

±0.36

0.91

±0.03

0.99

±0.01

1.00

±0.00
frame 0.62

±0.30

0.90

±0.06

0.98

±0.01

0.99

±0.01

0.62

±0.30

0.93

±0.01

0.98

±0.01

0.99

±0.01
avg90-8 avg90-16

region bicubic DRCN DRRN DRES bicubic DRCN DRRN DRES
eye 0.75

±0.21

0.97

±0.01

0.99

±0.01

0.99

±0.00

0.75

±0.21

0.96

±0.03

0.99

±0.01

0.99

±0.01
face 0.64

±0.24

0.98

±0.00

0.99

±0.00

0.99

±0.00

0.64

±0.24

0.97

±0.01

0.99

±0.01

0.99

±0.00
nose 0.48

±0.37

0.98

±0.01

0.99

±0.01

0.99

±0.00

0.48

±0.37

0.96

±0.02

0.99

±0.00

1.00

±0.00
frame 0.65

±0.29

0.90

±0.06

0.98

±0.01

0.99

±0.01

0.65

±0.29

0.93

±0.01

0.98

±0.01

0.99

±0.01

Table 3: Intersection over Union for detected facial regions for 8 and 16-bit images ex-

tracted from raw thermal sequences, original, enhanced with Super Resolution algorithms or

resized with bicubic interpolation, evaluated on test sets corresponding to the applied enhance-

ment/degradation algorithm ; blue - first best for each region within each input category (single;

window 7, 30, 90) separately, blue - first best across all input categories

single-8 single-16
region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES
eye 0.90

±0.03

0.79

±0.12

0.91

±0.02

0.90

±0.04

0.91

±0.03

0.91

±0.03

0.85

±0.08

0.91

±0.03

0.90

±0.04

0.91

±0.04
face 0.84

±0.06

0.33

±0.38

0.83

±0.05

0.83

±0.05

0.84

±0.06

0.80

±0.20

0.62

±0.29

0.83

±0.07

0.83

±0.61

0.84

±0.06
nose 0.83

±0.06

0.31

±0.38

0.84

±0.06

0.83

±0.07

0.85

±0.08

0.85

±0.08

0.59

±0.35

0.84

±0.08

0.85

±0.07

0.86

±0.07
avg. 0.86 0.48 0.86 0.85 0.87 0.85 0.69 0.86 0.86 0.87

avg7-8 avg7-16
region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES
eye 0.95

±0.03

0.57

±0.34

0.95

±0.02

0.95

±0.03

0.95

±0.02

0.95

±0.02

0.88

±0.09

0.94

±0.03

0.95

±0.02

0.95

±0.02
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face 0.82

±0.08

0.32

±0.37

0.81

±0.08

0.81

±0.08

0.83

±0.06

0.82

±0.06

0.48

±0.39

0.75

±0.27

0.81

±0.8

0.85

±0.07
nose 0.86

±0.05

0.45

±0.39

0.87

±0.06

0.86

±0.06

0.88

±0.06

0.86

±0.05

0.65

±0.25

0.86

±0.05

0.86

±0.6

0.87

±0.05
avg. 0.88 0.45 0.88 0.87 0.88 0.88 0.67 0.86 0.85 0.89

avg30-8 avg30-16
region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES
eye 0.95

±0.02

0.83

±0.10

0.94

±0.02

0.95

±0.03

0.94

±0.03

0.94

±0.03

0.89

±0.05

0.94

±0.03

0.94

±0.03

0.94

±0.04
face 0.80

±0.09

0.45

±0.33

0.80

±0.10

0.80

±0.08

0.81

±0.09

0.81

±0.09

0.48

±0.34

0.82

±0.07

0.80

±0.80

0.81

±0.08
nose 0.80

±0.08

0.70

±0.21

0.81

±0.07

0.81

±0.10

0.80

±0.09

0.82

±0.07

0.62

±0.32

0.82

±0.09

0.80

±0.10

0.81

±0.08
avg. 0.66 0.85 0.85 0.85 0.85 0.66 0.86 0.86 0.84 0.85

avg90-8 avg90-16
region orig. bicub. DRCN DRRN DRES orig. bicub. DRCN DRRN DRES
eye 0.88

±0.04

0.76

±0.11

0.89

±0.05

0.89

±0.04

0.89

±0.04

0.89

±0.04

0.84

±0.09

0.90

±0.05

0.88

±0.05

0.89

±0.04
face 0.78

±0.20

0.22

±0.36

0.78

±0.19

0.77

±0.20

0.78

±0.20

0.78

±0.20

0.44

±0.39

0.77

±0.19

0.72

±0.26

0.83

±0.07
nose 0.84

±0.10

0.34

±0.39

0.81

±0.07

0.84

±0.07

0.83

±0.09

0.82

±0.09

0.79

±0.06

0.83

±0.07

0.83

±0.08

0.81

±0.08
avg. 0.44 0.83 0.84 0.83 0.84 0.69 0.83 0.83 0.81 0.84

5. Discussion

The extensive benchmark evaluation performed for the collected thermal images

showed that PSNR can be significantly improved if residual blocks are used in the

Feature Extraction part of the network. As shown in Table 1, the presented SR CNN355

model called DRESNet outperformed other state-of-the-art solutions in terms of PSNR

by a large margin (in the best case 21.13dB comparing the to bicubic interpolation,

17.21dB comparing to DRCN and 4.4dB comparing to DRRN). Analysis of the SSIM
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Figure 7: Thermal images after decreasing and increasing image resolution. From the left:

original image with a marked facial area, the enlarged region of the marked facial area and

enlarged chosen facial features in images after applying bicubic interpolation, DRCN, DRRN

and the proposed DRESNet model.

index also proves the robustness of the DRESNet model, but DRRN achieves similar

results. This may be cause by the fact that PSNR is more sensitive to the additive noise360

[48], that even if very small in low resolution sequences may become exceedingly

prevalent. The results confirm that the widened receptive field helps with mitigating

the problem of smooth representation of thermal features by analysing more distant

23

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


dependencies between interesting components.

In addition, we also proved that utilization of the average of subsequent frames in-365

stead of single images help to further increase performance. For all tested SR solutions,

the best results were achieved for images calculated as the average of the window cov-

ering 90 adjacent frames. Taking it into account, we believe that analysis of differential

images is potentially a very interesting research area that can lead to new conclusions.

Since it is very hard to avoid uncontrolled movements of volunteers during data collec-370

tion, differential images may contain some important information about the object of

interest (e.g. person) while the rest of the image (e.g background) is removed. Thus,

in the future study we would like to explore whether facial features can be detected

from the image calculated as a difference between a given frame and the average of

subsequent frames (similarly to images presented in even rows in Fig. 2.375

Also, the significant finding of this study is that accuracy can be greatly improved

by preserving the original bit resolution of images. The dataset collected by us con-

tained raw images with 14-bit resolution what allowed for generating 8 and 16-bit

images (16-bit format, but up to 14-bit useful information) that were then used in our

experiments. The performed analysis showed that 16-bit resolution produces PSNR of380

values higher by at least 10% comparing to results achieved for 8-bit images for the

presented DRESNet model. In the best case (single frame, eye area) the difference was

even higher - 25%. For other SR models utilization of higher resolution data was also

helpful. Results achieved by DRCN were improved by ~66%, reducing the PSNR dif-

ference between DRCN and DRESNet from ~15.36dB to ~2.97dB for frames creates385

using 90 subsequent images. For DRRN, the improvement of PSNR was around 10%

if 16-bit images were used. This confirms the need of creating thermal face databases

in raw formats that contain unprocessed data. We believe that the database published

by us may become a very useful reference for further studies on thermal image analy-

sis and processing for e.g. non-contact vital signs estimation [27] from automatically390

detected facial areas [30].

Another important aim of this research was to evaluate whether increased image

quality metrics (PSNR, SSIM) lead to the better accuracy of facial features detection.

As presented in Fig. 6, we observe that to a certain level of PSNR (~30dB), the higher
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Figure 8: Nostril area extracted from image after scaling it down using bicubic interpolation (on

the left) and after applying the proposed DRESNet model (on the right)

PSNR, the better IoU. Yet, once PSNR exceeds this level, the detection model is able to395

learn correct predictions regardless of PSNR values. Also, it saturates and can’t further

outperform its state-of-the-art accuracy (for SSD model ~0.85 [38]).

Theoretically, the universal deep learning model should be able to learn a single

function D(x) (where D denotes the detection network applied to the image x) equally

well as two functions S(D(x)) (S denotes the SR model). Thermal images though are400

characterized by smoothed representation of features. Downscaling leads to even more

blurred version of the image, where edges of facial features are not clear and their

shapes may be distorted (see Fig. 8). Application of CNN-based models, that fre-

quently utilize high frequency component may be not sufficient, as it is hard for the

detector to correctly adjust bounding boxes. Thus, the IoU value decrease. Our exper-405

iments confirmed this assumption. The use of low resolution data (images downscaled

with bicubic interpolation) for facial features detection lead to very poor results (IoU

values around 0.5). This proves the need of enhancing images before feeding them to

object detection models in order to create an accurate solutions that use thermal image

processing.410

To further improve the accuracy of facial areas detection, we plan to train our SR

network with the augmented data to create solution that is able to better generalize

to various databases. Also, we will use gradient clipping that helps to mitigate the

problem of exploding gradients [14].
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Finally, we believe it would be useful to evaluate other image quality metrics as415

well (e.g. Information Fidelity Criterion IFC, Noise Quality Measure NQM, Signal to

Noise Ratio SNR, Universal Quality Index UQI, Visual Information Fidelity VIF, Vi-

sual Signal to Noise Ratio VSNR, etc.). We would like to perform in-depth comparison

of these metrics in future work and determine which one would be the best for thermal

images. This evaluation is very important because thermal data have different char-420

acteristic than RGB images, so maybe different metrics would reflect thermal image

enhancement better.

6. Conclusion

The aim of this study was to evaluate various image enhancement methods in low

resolution thermal imagery of original bit-resolution and after lossy compresion. For425

this, we collected and published a database of raw facial images. Extensive benchmark

evaluation proved that Peak-Signal-to-Noise Ratio can be improved by 60% (in the

best case) if 16-bit resolution data is used instead of 8 bits. Additionally, we presented

how DL-based SR model should be designed to address the issue of contextual infor-

mation being spread over larger image regions due to the heat flow that is visible in430

thermography. The DRESNEt model presented by us outperformed other SR networks

on low resolution thermal images by a margin of ~15dB and ~3dB comparing to DRCN

and DRRN, respectively. Also, we showed that it is important to enhance images to

improve facial features detection, as LR inputs produce IoU of 0.5 at most for 8-bit

images. In the future work we will focus on the detection of facial features from other435

images that are included in the collected dataset, specifically how the proposed model

deals with sequences, where volunteers perform small head movements.
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R. Sarmiento, Medical diagnosis improvement through image quality enhance-505

ment based on super-resolution, in: Digital System Design: Architectures, Meth-

ods and Tools (DSD), 2010 13th Euromicro Conference on, IEEE, 2010, pp. 259–

262.

[23] M. Abdel-Nasser, J. Melendez, A. Moreno, O. A. Omer, D. Puig, Breast tumor

classification in ultrasound images using texture analysis and super-resolution510

methods, Engineering Applications of Artificial Intelligence 59 (2017) 84–92.

[24] Y. Gao, H. Li, J. Dong, G. Feng, A deep convolutional network for medical image

super-resolution, in: Chinese Automation Congress (CAC), 2017, IEEE, 2017,

pp. 5310–5315.

[25] A. Kwaśniewska, A. Giczewska, J. Rumiński, Big data significance in remote515
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[26] M. Lewandowska, J. Rumiński, T. Kocejko, J. Nowak, Measuring pulse rate with

a webcama non-contact method for evaluating cardiac activity, in: Computer Sci-

ence and Information Systems (FedCSIS), 2011 Federated Conference on, IEEE,520

2011, pp. 405–410.

29

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


[27] J. Ruminski, A. Kwasniewska, Evaluation of respiration rate using thermal imag-

ing in mobile conditions, in: Application of Infrared to Biomedical Sciences,

Springer, 2017, pp. 311–346.

[28] M. Hanmandlu, et al., A new entropy function and a classifier for thermal face525

recognition, Engineering Applications of Artificial Intelligence 36 (2014) 269–

286.
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