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Superconductivity in  LiGa2Ir 
Heusler type compound 
with VEC = 16
Karolina Górnicka1,2*, Gabriel Kuderowicz3, Michał J. Winiarski1,2, Bartłomiej Wiendlocha3 & 
Tomasz Klimczuk1,2*

Polycrystalline  LiGa2Ir has been prepared by a solid state reaction method. A Rietveld refinement of 
powder x-ray diffraction data confirms a previously reported Heusler-type crystal structure (space 
group Fm-3m, No. 225) with lattice parameter a = 6.0322(1) Å. The normal and superconducting 
state properties were studied by magnetic susceptibility, heat capacity, and electrical resistivity 
techniques. A bulk superconductivity with  Tc = 2.94 K was confirmed by detailed heat capacity studies. 
The measurements indicate that  LiGa2Ir is a weak-coupling type-II superconductor ( �e–p = 0.57, �
C/γTc = 1.4). Electronic structure, lattice dynamics, and the electron–phonon interaction are studied 
from first principles calculations. Ir and two Ga atoms equally contribute to the Fermi surface with a 
minor contribution from Li. The phonon spectrum contains separated high frequency Li modes, which 
are seen clearly as an Einstein-like contribution in the specific heat. The calculated electron–phonon 
coupling constant �e–p = 0.68 confirms the electron–phonon mechanism for the superconductivity. 
 LiGa2Ir and recently reported isoelectronic  LiGa2Rh are the only two known representatives of the 
Heusler superconductors with the valence electron count VEC = 16.

With more than a thousand members reported in the literature, the Heusler family remains one of the most 
interesting and intensively studied intermetallic systems in materials  science1. Among this class of materials we 
can find  catalysts2,  ferromagnets3,4,  thermoelectric5–7 and magnetocaloric  materials8. Unwavering interest in 
this class of materials is also caused by the various properties and rich physics they offer, such as heavy fermion 
 behavior3,4,8–10, shape memory  phenomena11, magneto-optical12 and magneto-structural13 effects. Recently, the 
charge density wave and a quantum critical point were reported in Lu(Pt1−xPdx)2In solid  solution14.

What seems to be special for Heusler compounds is that their physical properties can often be predicted just 
by simply counting the number of valence electrons. This valence electron count (VEC) is frequently used to 
classify different groups of Heuslers. For example, for VEC = 24 semimetallic behavior is  expected15 with vanish-
ing net magnetic  moment16–22. Adding three electrons to the system (VEC = 27) often reveals superconductivity, 
including the Heusler compounds containing magnetic rare earth metals, i.e.  TmPd2Sn and  YbPd2Sn23. It is 
worth noting that most of the known Heusler superconductors, together with  Tc ~ 5 K record holder  YPd2Sn, 
have VEC 27 or  2824, the numbers corresponding to 6.5 and 6.75 electrons per atom (el./at.)—exactly at the third 
maximum of  Tc proposed for metals by  Matthias25. The second proposed maximum is between 4 and 6 el./at. 
and hence the Heusler type superconductors with VEC in this range are of great interest.  LiGa2Ir and recently 
reported  LiGa2Rh26 have 4 el./at. and therefore they might belong to the middle maximum in the Heusler family.

The prototype compound  MnCu2Al was discovered in 1903 by Fritz Heusler and appeared to be a ferro-
magnet at room temperature. The crystal structure of  Cu2MnAl was first described more than 3 decades later 
by James  Bradley27. The Heusler  X2YZ compounds form in a cubic space group Fm-3m (s.g. #225) with three 
occupied Wyckoff positions. The Y and Z atoms are usually the most and the least electronegative metals and 
they are located in the 4a (0, 0, 0) and 4b (½, ½, ½) sites. The X atoms occupy the 8c position (¼, ¼, ¼) and fill 
all the tetrahedral holes in the crystal structure. In this special crystallographic site, we can put a few transition 
metals from group 9, 10, and 11, as well as Li and Mg. However, there are 16 full-Heusler compounds reported 
with Al, Ga, and In in the 8c site and except  UAl2Cu and  MnGa2Co, all of them contain Li. In one of these 
compounds,  LiGa2Rh, we recently reported  superconductivity26. In this paper, we present details of a synthesis 
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process and superconducting properties of the isoelectronic compound—LiGa2Ir. This material was obtained 
by an ordinary solid state reaction without using a Ta tube at rather low synthesis temperature. The observed 
bulk superconductivity  (Tc = 2.94 K) was confirmed by the heat capacity, resistivity, and magnetic susceptibility 
measurements. Theoretical calculations based on Density Functional Theory (DFT) were performed to study 
its electronic structure, lattice dynamics, and the electron–phonon interaction and allow us to conclude on the 
electron–phonon mechanism of superconductivity.

Experimental and computational methods
The polycrystalline  LiGa2Ir sample was prepared by conventional solid-state reaction. The starting elements 
were high-purity Li chunks (4N, Alfa Aesar), Ir powder (3N8, Mennica-Metale, Poland), and Ga pieces (3N, Alfa 
Aesar). First, the precursor of  IrGa2 taken in a 1:2 molar ratio was placed in an alumina crucible, sealed inside 
evacuated silica tubes, and annealed at 700 °C overnight. The as-prepared material was thoroughly ground, mixed 
with Li chunks with 10% excess to compensate for the loss of some Li during the synthesis, and pressed into a 
pellet using a hydraulic press. Complete sample preparation was performed in an argon-filled glove box system 
[p(O2 ) < 0.5 ppm]. The pellet was then placed in a tantalum crucible in a sealed quartz tube under a partial 
atmosphere of Ar gas. The tube was heated to 240 °C at a rate of 2.5 °C/h and then heated to 550 °C (10 °C/h), 
held at that temperature for 6 h, and air quenched to room temperature. The as-prepared material was reground 
well and once more pressed into a pellet. Finally, the samples were sealed in quartz tubes and annealed at 650 °C 
for 3 days. The resulting materials formed a soft, brown pellet. The compound, although Li-containing, is stable 
in air over time and therefore was handled outside of the glovebox for all performed experiments.

Powder x-ray diffraction (pXRD) measurements were performed at room temperature using Cu Kα radiation 
(λ = 1.5406 Å) on a Bruker D2 Phaser diffractometer with a LynxEye-XE detector. Structure refinement from 
pXRD data was performed using the Rietveld analysis method using the FullProf  package28. The magnetization 
measurements were carried out using a Quantum Design Evercool II Physical Property Measurement System 
(PPMS) with a Vibrating Sample Magnetometer (VSM) function. The data were collected in the temperature 
range 1.95–3.2 K under various applied magnetic fields. All thermodynamic and transport measurements were 
also performed in a PPMS Evercool II system. The heat capacity was measured using the two-τ time-relaxation 
method in the temperature range 1.85–300 K. Flat, polished, circular samples of around 15 mg were fixed with 
Apiezon N grease on the α-Al2O3 measurement platform. The ac electrical resistivity measurements in a tem-
perature range from 1.8 to 300 K were carried out using the standard four-probe method in magnetic fields up 
to H = 1400 Oe (µ0H = 0.14 T). Platinum wires were attached to the surface of the bar-shaped polycrystalline 
samples using conductive silver epoxy (Epotek H20E). High pressure magnetization measurements were per-
formed using a copper-beryllium bronze, VSM-compatible piston cylinder cell manufactured by HMD. Daphne 
7373 oil was used as a pressure transmitting medium. A 15 mg sample was packed together with a small piece of 
high purity lead wire which was employed as a manometer. For calculating the actual cell pressure the pressure 
coefficient of the critical temperature for Pb was taken from ref.29. Measurements were performed at an applied 
field of 10 Oe under ZFC conditions.

Ab initio computations were performed for  LiGa2Ir using density functional theory and Migdal-Eliashberg 
theory implemented in Quantum  Espresso30–32. We calculated the electronic structure, phonons and elec-
tron–phonon interaction functions. Projector augmented wave  pseudopotentials33,34 and PBEsol exchange–cor-
relation  functional35 were chosen. Energy cutoffs of wavefunctions and charge densities were set to 100 Ry and 
1000 Ry, respectively. A  123 k-point Monkhorst–Pack mesh was used for self-consistent calculations, whereas 
the electronic density of states (DOS) and Fermi surface were calculated on  243 grid. Interatomic force constants 
were calculated on a  63 q-point grid which corresponds to 16 inequivalent q-points in this cubic structure.

Results and discussion
Experimental studies. Figure 1 presents the pXRD pattern and results of the Rietveld analysis for the syn-
thesized  LiGa2Ir. The pXRD analysis indicates an excellent quality of the examined sample and the refinement 
confirms that the compound crystallizes in the cubic L21 crystal structure (space group Fm-3m, No. 225). A dif-
ference plot (between experimental and fitted data) and the Bragg positions are also shown in Fig. 1. The refined 
lattice parameter a = 6.0322(1) Å is in a good agreement with the previously reported for  LiGa2Ir36,37 and slightly 
larger than refined for  LiGa2Rh (a = 5.9997(8) Å)26.

In the analysis, the atomic positions were fixed by symmetry. The refinement of isotropic thermal displace-
ment parameters  Biso yielded: 1.7(6) Å2, 3.18(7) Å2 and 3.16(6) Å2 for Li (at the 4b site), Ir (4a), and Ga (8c), 
respectively. The conventional, background-corrected Rietveld reliability factors for the refinement are  Rp = 10.9%, 
 Rwp = 13.2%,  Rexp = 7.27%, and χ2 = 3.32. A LeBail refinement leads to only slightly lower χ2 value (~ 3.3), indicat-
ing that the discrepancy between model and observed intensities is dominated by modelling of peak shapes and 
background and not by structure parameters.

The superconducting transition of  LiGa2Ir, was first investigated by the temperature-dependent volume mag-
netic susceptibility, defined as χ = M/H (M – magnetization, H—applied magnetic field), with zero-field-cooled 
(ZFC) and field-cooled (FC) measurement modes under H = 10 Oe. As depicted in the main panel of Fig. 2(a), the 
measured magnetization was multiplied by 4π and corrected for the demagnetization effect − 4πχV = 1/(1 − N), 
where the demagnetizing factor N is taken to be 0.58 (estimated from the  MV(H) fit discussed later). A Meissner 
transition, corresponding to the onset of superconductivity, appears at  Tc = 2.95 K, where the superconducting 
transition temperature  (Tc) was estimated as the point at which the line set by the steepest slope of the magneti-
zation in the ZFC data set intersects with the extrapolation of the normal-state magnetic  susceptibility38. The 
shielding volume fraction at 1.95 K is ~ 100%, confirming that the sample is a bulk superconductor. Compared 
with the ZFC data, the observed FC diamagnetic signal is much weaker, which is likely caused by the porous 
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nature of the polycrystalline sample. In the inset of Fig. 2(a), the low-field regions of the isothermal dc magnetiza-
tion curves measured at various temperatures ranging from 1.9 K to 2.8 K are presented. For each temperature, 
the experimental data obtained in low magnetic fields were fitted using a linear relation  Mfit =  − aH, which is 
suitable for a perfect shielding effect. Assuming that the initial response to the magnetic field is completely 
diamagnetic, the demagnetization factor N = 0.58 was found. The N value is reasonably consistent with the 
expected (calculated)  Nz value derived for a circular cylinder sample with the height to radius ratio of approx. 
0.539. At each temperature, the value of the lower critical field H∗

c1 is defined as the point of deviation of the data 
curve from the pure Meissner response. At each T, this point was precisely calculated following the methodology 
described  elsewhere40. The estimated H∗

c1 values are shown with the corresponding temperatures in the main 
panel of Fig. 2(b). At T = 1.9 K the H∗

c1 is 68 Oe and decreases monotonically with an increase in temperature, to 
10 Oe at T = 2.8 K. The data points were analyzed with the equation:

where H∗
c1(0) is the critical field at 0 K and  Tc is the superconducting critical temperature. Our experimen-

tal data is well described with the above formula and the fit (red solid line) yields H∗
c1(0) = 113(3) Oe and 

 Tc = 3.03(3) K. Taking into account the demagnetization factor (N = 0.58) derived above, the lower critical field 
value  Hc1 = H∗

c1/(1 − N) = 268 Oe. The obtained value is slightly higher than these reported for the other full-
Heuslers  compounds24,26. The inset in Fig. 2(b) presents the full magnetization loop versus applied magnetic 
field measured in the superconducting state at T = 1.9 K. It is evident that  LiGa2Ir exhibits conventional type-II 
superconductivity.

The measurement of the heat capacity is reliable evidence of the presence of bulk superconductivity. Fig-
ure 3(a) shows in more detail the superconducting transition for  LiGa2Ir plotted as  Cp/T versus T under µ0H = 0 T. 
The sharp anomaly visible in the specific heat data confirms bulk superconductivity and suggests a good quality 
of the sample. From the graphical equal-area construction, represented by green solid lines, the  Tc is estimated 
to be 2.94 K, which is consistent, with the value determined by magnetic measurements. The specific heat jump 
at  Tc is found to be about �C/Tc = 7.7 mJ  mol−1  K−2. Figure 3(b) shows the heat capacity data plotted as  Cp/T 
versus  T2, under µ0H = 0.15  T. In the normal state, the raw data can be fitted using the expression 
 Cp/T = γ + βT2 + δT4, where the first term is the electronic specific heat coefficient and the second and third terms 
are attributed to the lattice contributions to the heat capacity (the δT5 term in the heat capacity was added after 
analyzing the computed phonon spectrum, discussed below). The extrapolation, expressed as the red solid line, 
gives γ = 5.5(1) mJ  mol−1  K−2, β = 0.366(1) mJ  mol−1  K−4 and δ = 0.0052(3) mJ  mol−1  K−6. In a Debye model for 
the phonon contribution, the β coefficient is related to the Debye temperature ΘD through �D =

(

12π4

5β nR
)1/3

 , 

where R = 8.31 J  mol−1  K−1 and n = 4 for  LiGa2Ir. The resulting value of ΘD is 277(1) K, which is significantly lower 
than the Debye temperature for Rh analog  LiGa2Rh (ΘD = 320  K26). Using the previously obtained specific heat 
jump at  Tc and the Sommerfeld coefficient (γ = 5.5(1) mJ  mol−1  K−2), the ratio ΔC/γTc = 1.40 can be calculated. 
The estimated value is close to the BCS value of 1.43, suggesting that  LiGa2Ir is a weakly coupled superconductor 
and is close to that of  LiGa2Rh (ΔC/γTc = 1.4826).

(1)H∗
c1(T) = H∗

c1(0)

[

1−
(

T

Tc

)2
]

,

Figure 1.  Powder X-ray diffraction pattern of  LiGa2Ir (red points) together with the Rietveld refinement profile 
(black solid line). The blue curve is the difference between experimental and model results. The green vertical 
bars indicate the expected Bragg peak positions (space group Fm-3m).
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The electron–phonon coupling constant λe−p can be estimated from the McMillan’s  equation41 by taking the 
calculated Debye temperature:

where μ* is the Coulomb pseudopotential factor, usually assumed to be μ*  = 0.13 for conventional intermetallic 
 superconductors24,42. Taking  Tc = 2.94 K and ΘD = 277 K, the calculated λe−p = 0.57, implying that  LiGa2Ir can be 
classified as a weakly coupled BCS superconductor.

The temperature-dependent electrical resistivity for  LiGa2Ir, ρ(T), is depicted in the main panel of Fig. 4(a), 
in the range of temperature 1.8 − 300 K, without the application of an external magnetic field. In the nor-
mal state, the resistivity reveals a metallic behavior (dρ/dT > 0) with rather small residual resistivity ratio 
(RRR = ρ(300 K)/ρ(5 K) = 2.1). That characteristic can be attributed to the polycrystalline nature of the sample 
investigated that probably contained many macroscopic defects. The value obtained is comparable to those 
reported for full-Heusler  compounds24. The resistivity undergoes a sudden drop at 2.96 K, that perfectly agrees 
with the  Tc obtained from magnetic and heat capacity measurements. The inset of Fig. 4(a) emphasizes the 
low-temperature resistivity under various magnetic fields from 0 to 1400 Oe. As expected, the superconduct-
ing transition becomes slightly broader and the  Tc shifts to a lower temperature as the applied magnetic field is 
increased. Using the criterion that the point with 50% normal state resistivity (ρ0) is the transition temperature, 
we determined the upper critical field μ0Hc2(T) for  LiGa2Ir at various temperatures (Fig. 4(b)). The solid line is 
a fit to the Ginzburg–Landau  equation43:

(2)�e−p = 1.04+ µ∗ln(�D/1.45Tc)

(1− 0.62µ∗)ln(�D/1.45Tc)− 1.04

Figure 2.  (a) Temperature dependences of the zero-field-cooled (ZFC) and field-cooled (FC) volume magnetic 
susceptibility measured in a magnetic field of 10 Oe. The red straight lines illustrate derivation of the critical 
temperature. Inset: the field-dependent magnetization curves  MV(H) for  LiGa2Ir taken at different temperatures. 
(b) The temperature dependence of the lower critical fields determined from Mv(H). Inset: Magnetization loop 
at T = 1.90 K.
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where t = T/Tc and  Tc is the transition temperature at zero magnetic field. Equation (3) describes the experimental 
data well, and yields µ0Hc2(0) = 0.31(1) T. The Pauli limiting field within the BCS theory for a weak electron–pho-
non  coupling44,45 gives Hp

c2(0) = 1.85  Tc = 5.4 T, which is eighteen times larger than estimated upper critical field 
value for  LiGa2Ir. An identical value of µ0Hc2(0) has been reported for isostructural and isoelectronic  LiGa2Rh 
 superconductor26. Consequently, assuming that the upper critical field is purely orbital, using the GL formula 
Hc2 = �0

2πξ2GL
 where Ф0 = hc/2e is the flux quantum, the superconducting coherence length is calculated to be 

ξGL = 322 Å. Similarly, from the relation Hc1 = �0
4π�2GL

ln �GL
ξGL

, a superconducting penetration depth λGL(0) = 443 Å 
is found for  LiGa2Ir. The GL parameter κGL = λGL/ξGL can then be estimated as κGL = 1.38 > 1/

√
2 , confirming the 

type-II nature of the superconductivity. Finally, the thermodynamic critical field can be obtained from κGL,  Hc1 
and  Hc2 using the formula Hc1Hc2 = H2

c ln κGL . The resulting value of  Hc is 1633 Oe (µ0Hc = 0.16 T).
With the Sommerfeld coefficient γ and the electron–phonon coupling parameter λe−p known, the non-inter-

acting density of states at the Fermi level N(EF) can be calculated using the formula:

where  kB is the Boltzmann constant. For  LiGa2Ir, N(EF) is estimated to be 1.49 states  eV−1 per formula unit (f.u.). 
Superconducting and normal parameters are gathered in Table 1.

Pressure dependence of the  Tc for  LiGa2Ir is shown in Fig. 5.  LiGa2Ir shows an exceptionally low pressure coef-
ficient compared to other Heusler compounds for which high-pressure studies were  reported24,46,47. It is however 
worth noting that all of the compounds reported to date are Pd-based systems with a valence electron count of 

(3)µ0Hc2(T) = µ0Hc2(0)

(

1− t2
)

(

1+ t2
)

(4)N(EF) =
3γ

π2k2B
(

1+ �e−p

) ,

Figure 3.  (a) Specific heat divided by temperature  (Cp/T ) vs. temperature of  LiGa2Ir measured in zero 
magnetic field in the vicinity of the superconducting phase transition. (b)  Cp/T vs.  T2 measured at 0.15 T 
magnetic field. The red straight line represents the Debye fit discussed in the main text.
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Figure 4.  (a) The temperature dependent resistivity for  LiGa2Ir over a wide temperature range measured in 
zero applied magnetic field. Inset: the low- temperature resistivity data taken in several different magnetic fields. 
(b) The temperature dependence of the upper critical field of  LiGa2Ir, determined from electrical resistivity 
measurements.

Table 1.  Experimental superconducting parameters of  LiGa2T where T = Ir and Rh.

Parameter Unit LiGa2Ir LiGa2Rh

Tc K 2.94 2.4

µ0Hc1(0) mT 26.8 5.9

µ0Hc2(0) T 0.31 0.31

µ0HPauli T 5.4 4.4

ξGL Å 322 326

λGL Å 443 2342

κGL –- 1.38 7.2

γ mJ  mol−1  K−2 5.5 4.73

ΔCp/γTc – 1.40 1.48

λe−p – 0.57 0.52

�D K 277 320
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27 per f.u. As in the case of  RPd2Z (R = Sc, Y, Tm, Yb, Lu and Z = Sn, Pb) 47 and  HfPd2Al 24 the suppression of  Tc 
by high pressure likely stems from the stiffening of the lattice, yet in the case of  LiGa2Ir the effect is much weaker.

Theoretical calculations. First, the unit cell was relaxed with the Broyden–Fletcher–Goldfarb–Shanno 
algorithm starting from the experimental lattice constant. Atomic positions were fixed by the symmetry con-
straints of the full-Heusler structure. The relaxation was repeated including spin–orbit coupling (SOC) because 
the effect might be important due to the presence of a heavy Ir atom. For calculations with SOC, the scalar-
relativistic pseudopotential of Ga and Ir were replaced with the full-relativistic ones. The obtained relaxed lattice 
constants are in a very good agreement with the experimental one, and SOC was found to have a negligible effect 
on the lattice constant (Table 2).

Figure 6 shows the electronic dispersion relations and total DOS. Three bands cross the Fermi level form-
ing three Fermi surface sheets visualized using  XCrysDen48 in Fig. 7. SOC has a small effect on the electronic 
bands and DOS near the Fermi energy  (EF), however much stronger SOC effects are seen for electronic states 
with energies below  EF, like an anticrossing of bands in the Ŵ -K direction around −1.5 eV. The total and partial 
DOS for each atom in  LiGa2Ir are shown in Fig. 8. States near  EF are built mainly from Ga-4p and Ir-5d orbitals, 
whereas the contribution to the DOS(EF) from Li is negligible. Interestingly, the Fermi level is located in the local 
minimum of the DOS(E), formed from a superposition of a decreasing DOS of Ir and increasing DOS of Ga. 
From the calculated DOS(EF) values, slightly increased in the relativistic case (see Table 3) , the bandstructure 
value of the Sommerfeld electronic specific heat coefficient is calculated, γband = π2

3 k2BDOS(EF) , and used to 
estimate the electron–phonon coupling parameter as γexpt = γband

(

1+ �γ

)

 . This results in �γ = 0.48 , a slight 
underestimate when comparing to �e−p = 0.57 obtained from  Tc using McMillan’s formula.

Phonon dispersion relations ω(q) and phonon density of states F(ω ) of  LiGa2Ir with atomic contributions are 
shown in Fig. 9. Modes associated with different atoms are well separated because of large differences in mass 
 (MLi = 6.94u,  MGa = 69.72u,  MIr = 192.22u). Three optic modes of Li form an Einstein-like peak in F(ω ) around 11 
THz, a much higher frequency than the Ga, and Ir-dominated parts of the phonon spectrum. The acoustic part 
is mostly contributed by the heaviest Ir vibrations. Although SOC had a small effect on the electronic DOS(EF), 
it affected phonons, slightly pushing the Ir branches towards higher frequencies and visibly lowering the Ga and 
Li frequencies. This is shown in Table 4, where the average phonon frequencies are collected. The global effect 
of SOC is a small decrease in the average frequency, from 5.77 THz to 5.75 THz.

Figure 5.  Pressure dependence of the  Tc for  LiGa2Ir.  Tc was taken as the temperature where the extrapolation of 
the steepest slope of the normalized magnetization versus temperature curves intersects the extrapolation of the 
normal state magnetization (inset).

Table 2.  Calculated and experimental lattice constant of  LiGa2Ir.

Experiment w/o SOC with SOC

a (Å) 6.0322(1) 6.0161 6.0164
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Looking again at the phonon dispersion relations, we notice the presence of a small dip in the first acoustic 
branch in the Γ-K direction. Such an anomaly is frequent in Heusler compounds, and was already reported 
in  HfPd2Al49,  LiGa2Rh50 or  LiPd2X (X = Si, Ge, Sn)51, where in the last case it evolved into a soft mode with an 
imaginary frequency for X = Ge and Sn. As our ongoing investigation of the  LiPd2Ge case  showed51, this may be 
related to the anharmonic features of the crystal potential.

The theoretical phonon spectrum allows us to analyze the lattice specific heat in more detail. The constant 
volume  Cv is computed directly from the phonon density of states F(ω ) as:

The computed curve (red line) is compared to the measured constant pressure  Cp data (open circles) in Fig. 10, 
where we notice a good overall agreement.

If one wishes to describe the heat capacity using an approximate model, a combination of Debye and Einstein 
terms  (CDebye +  CEinstein) should be considered:

(5)Cv = R
∞
∫
0
F(ω)

(

�ω

kBT

)2 exp
(

�ω
kBT

)

[

exp
(

�ω
kBT

)

− 1
]2 dω.

(6)CDebye(T) = 3nDR

(

T

�D

)3 �D
T

∫
0

x4exp(x)
[

exp(x)− 1
]2 dx,

(7)CEinstein(T) = nER

(

�E

T

)2

exp

(

�E

T

)[

exp

(

�E

T

)

− 1

]−2

,

Figure 6.  Electronic dispersion relation and total DOS of  LiGa2Ir calculated with and without SOC.

Figure 7.  Fermi surface sheets of  LiGa2Ir.
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where nD and nE are the number of phonon modes treated as Debye and Einstein type, respectively.
Looking at the phonon DOS in Fig. 9 we see that the three high-frequency Li modes may be described as an 

Einstein term with the average frequency corresponding to about 540 K, whereas the remaining part, containing 
nine Ir and Ga modes, could be roughly approximated by the Debye spectrum. Hence, we assume  nD = 9 and 
 nE = 3 and we use only two fitting parameters: the Debye and Einstein temperatures. The fit in the temperature 
range 1.85 K – 200 K gave the values �D = 242(1) K and �E = 550(10) K. Contributions from each of these 
terms are shown in Fig. 10 and the combined heat capacity describes the experimental data reasonably well. 
Deviations are seen in the lower temperature range due to the non-Debye-like phonon spectrum, captured 
accurately in the direct calculation using Eq. (5). Note that the low-temperature fit, described before, yielded a 
larger value of ΘD = 277 K as the whole heat capacity was ascribed to the Debye-like phonon spectrum (n = 4 in 
eq. �D =

(

12π4

5β nR
)1/3

 corresponds to 12 phonon modes, 3 per each of the atom). Since the Einstein term in 
our case gives no contribution to the specific heat at low temperatures, adopting to the combined model (i.e. 
changing to n = 3) we get ΘD = 252 K, very close to the value obtained from the fit for the broad temperature 
range.

Moving on to the electron–phonon interactions, the magnitude of the electron–phonon interaction for a 
given phonon branch is represented in Fig. 11 by the phonon linewidth γqν which is computed from the elec-
tron–phonon interaction matrix elements gqν  as52–54:

Figure 8.  Total and partial DOS of  LiGa2Ir calculated without SOC (a–d) and with SOC (e–h).

Table 3.  Calculated DOS(EF), γband and λγ of  LiGa2Ir compared with experimental results obtained from 
electronic heat and McMillan formula.

p = 0 GPa p = 1 GPa

w/o SOC with SOC with SOC

DOS(EF)  (eV−1) 1.545 1.574 1.558

γband (mJ  mol−1  K−2) 3.64 3.71 3.67

γexpt (mJ  mol−1  K−2) 5.5(1) –

λγ 0.51 0.48 0.50

λexpt 0.57 –
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where

In the formulas above, ωqν is the phonon frequency at the wavevector q for the mode ν, Ms is mass of atom 
s, ψi,k is an electron wavefunction for a given band i and wavevector k, êν is a phonon polarization vector and 
dVscf

dûν,s
 is a change of the electronic potential due to a displacement of the atom s in the direction u.

The strongest electron–phonon interactions, seen as the largest phonon linewidths, are associated with the 
optic modes of Ga near 5 THz and the Einstein-like Li branch around 11 THz. Next, the electron–phonon 
interaction function α2F(ω) (Eliashberg function) is calculated by summing the contributions from each of the 
phonon branches, weighted by their inverse frequency:

α2F(ω) is plotted in Fig. 11 and has three peaks associated with enhanced electron–phonon interactions: at 
1.78 THz, 5.22 THz, and 11.49 THz . The first peak is associated with acoustic Ir vibrations, having moderate 
phonon linewidths but low frequencies, effectively increasing the Eliashberg function. The second and third 

(8)γqν = 2πωqν

∑

ij

∫ d3k

�BZ

∣

∣gqν
(

k, i, j
)∣

∣

2
δ
(

Eq,i − EF
)

δ
(

Ek+q,j − EF
)

,

(9)gqν
(

k, i, j
)

=
∑

s

(

�

2Msωqν

)1/2

�ψi,k|
dVscf

dûν,s
· êν |ψj,k+q�.

(10)α2F(ω) = 1

2πN(EF)

∑

qν

δ
(

ω − ωqν

) γqν

�ωqν
.

Figure 9.  Phonon dispersion relation and density of states of  LiGa2Ir calculated with and without SOC.

Table 4.  Calculated average phonon frequencies, electron–phonon coupling constant and superconducting 
transition temperature from Allen-Dynes formula.

p = 0 GPa p = 1 GPa

w/o SOC with SOC with SOC

〈ω〉(THz) 5.77 5.74 5.82

〈ωLi〉 (THz) 11.11 11.08 11.20

〈ωGa〉 (THz) 4.70 4.58 4.65

〈ωIr 〉 (THz) 2.67 2.73 2.78
〈

ωα2F
log

〉

 (THz) 2.22 2.34 2.35
〈

ωα2F
log

〉

(K) 106.64 112.31 112.69

�(K) 0.7010 0.6754 0.6708

Tc,calc(K)(µ∗ = 0.13) 2.85 2.69 2.64

Tc,calc(K)(µ∗ = 0.121) 3.1053 2.9442 2.8963

Tc,expt (K)(K) 2.95 –
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maxima are associated with the above-mentioned Ga and Li branches. Comparing α2F(ω) with the phonon DOS 
function F(ω) (see also Fig. 12) we see, that the Eliashberg function is enhanced over the phonon DOS at lower 
frequencies, and as a consequence the height of all three α2F(ω) maxima become comparable.

The overall electron–phonon coupling parameter � is calculated from the Eliashberg function:

and reaches � = 0.68, slightly lowered by the spin–orbit coupling from the scalar-relativistic value of 0.70 (see 
Table 4). The frequency distribution of �

(11)� = 2
ωmax

∫
0

α2F(ω)

ω
dω,

(12)�(ω) = 2
ω

∫
0

α2F
(

ω′)

ω′ dω′

Figure 10.  Zero magnetic field, lattice heat capacity data of  LiGa2Ir versus temperature T for 1.85 K < T < 250 K. 
The red line shows constant volume  Cv, computed directly from the phonon density of states F(ω ). The blue 
solid line represents the fitted sum of the contributions from the Debye (green) and the Einstein (orange) heat 
capacity contributions.

Figure 11.  Phonon dispersion relation and Eliashberg function of  LiGa2Ir calculated with SOC. Blue filling is 
proportional to phonon linewidth (multiplied 50 times to make it visible).
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is plotted in Fig. 12 and the mode contribution from all 12 phonon branches is displayed in Table 5. The acoustic 
phonons contribute in approximately 72% to the electron–phonon coupling constant, therefore, Ir vibrations are 
the most important factor in the superconductivity of  LiGa2Ir. The small and decreasing effect of SOC on the 
electron–phonon coupling parameter � is related to the small SOC effect on the Fermi surface of the compound 
and slight increase of the Ir phonon frequencies.

The superconducting critical temperature  Tc is calculated using the Allen-Dynes  formula55:

where

Taking the standard value of the Coulomb screening parameter μ* = 0.13, the calculated value  Tc = 2.85 K is in 
a very good agreement with the experimental value of 2.95 K. The experimental  Tc is exactly reproduced using an 
only slightly smaller μ* = 0.121. The spin–orbit coupling has a small effect on the calculated critical temperature, 
slightly decreasing its value to  Tc = 2.69 K. The agreement between calculations and experiment clearly confirms 
that superconductivity in  LiGa2Ir is mediated by phonons.

To investigate exceptionally low decrease of  Tc with pressure we have calculated electronic structure and lattice 
dynamics under the pressure of 1 GPa. All further calculations were done including SOC. The lattice constant 
relaxed under 1 GPa is a = 6.0021 Å. Electronic structure was almost unchanged, with only slight decrease of 
DOS(EF) by 0.016  eV−1 (see Table 3). Moreover, only small changes were induced by the pressure in the phonon 
dispersion relations and in the electron–phonon coupling. Small effect of the lattice stiffening under the external 
pressure is observed in phonon dispersion relations shown in Fig. 13, where Ga and Li modes moved towards 
higher frequencies, but modes of heaviest Ir changed only slightly. The small dip in the acoustic mode at Γ-K was 
not affected either. Average phonon frequencies, electron–phonon coupling constant and critical temperature 
are collected in Table 4. Assuming the same value of µ*, which reproduces the experimental  Tc under ambient 
pressure, the obtained change of  Tc is equal −0.048 K/GPa, which is in excellent agreement with the experiment.

To understand why the effect of pressure on  Tc is so weak in  LiGa2Ir, comparing to other Heusler compounds, 
we have to compare the values of characteristic parameters which determine the response of superconductor to 
external pressure. In our analysis we will compare  LiGa2Ir to  MgPd2Sb, for which we have recently found much 
stronger response to pressure: −0.23 K/GPa46. The most important parameter which determines the change of 
 Tc with respect to pressure is the variation of the electron–phonon coupling constant � , which in the case of 

(13)Tc =

〈

ωα2F
log

〉

1.20
exp

[ −1.04(1+ �)

�− µ∗(1+ 0.62�)

]

,

(14)
〈

ωα2F
log

〉

= exp

(

ωmax

∫
0

α2F(ω)ln(ω)
dω

ω
/
ωmax

∫
0

α2F(ω)
dω

ω

)

.

Figure 12.  Eliashberg function (solid line) of  LiGa2Ir and cumulative electron–phonon coupling constant 
(dashed line) calculated with SOC. Phonon density of states, marked with gray filling, was normalized to have 
the same integral as Eliashberg function.

Table 5.  Electron–phonon coupling constant contributions from the 12 phonon modes.

λtot λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

w/o SOC 0.7010 0.2679 0.1588 0.0905 0.0283 0.0291 0.0253 0.0260 0.0235 0.0304 0.0089 0.0058 0.0065

with SOC 0.6754 0.2430 0.1506 0.0873 0.0310 0.0313 0.0271 0.0269 0.0253 0.0324 0.0080 0.0056 0.0067
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 LiGa2Ir drops from 0.6754 to 0.6708 at p = 1 GPa. On the other hand, in  MgPd2Sb the change is stronger as � 
decreases from 0.611 to 0.582. As � ∝ γqν

ω2
qν

 (see Eqs. 6–9) is composed of two factors, the frequency-independent 
electronic contribution expressed by phonon linewidths γqν and the phonon frequency ωqν , we may analyze what 
is the origin of such differences. To do so, we calculate the first moment of Eliashberg function 41:

This quantity is frequency-independent because:

At 0 and 1 GPa the first moment of Eliashberg function is equal respectively: 4.144  THz2, 4.217  THz2 in 
 LiGa2Ir and 1.869  THz2, 1.890  THz2 in  MgPd2Sb. Thus the changes in I are + 1.8% in  LiGa2Ir and + 1.12% in 
 MgPd2Sb. As far as the electronic part of λ is concerned, stronger increase in the electronic contribution in the 
case of  LiGa2Ir is found.

Much larger difference is found in the change of the “average square phonon frequency” defined as

With such definition � = 2I/
〈

ω2
〉

 and in the case of a weak frequency dependent electron–phonon interac-
tion 

〈

ω2
〉

 is close to similar quantity determined from the pure phonon  DOS41. For  LiGa2Ir we get 12.273  THz2 
(0 GPa) and 12.574  THz2 (1 GPa), i.e. 2.4% increase. On the other hand, for  MgPd2Sb we have 6.116  THz2 (0 
GPa) and 6.491  THz2 (1 GPa), which is 6.13% increase. When analogical quantities are computed from the pure 
phonon DOS, the increases are 2.6% for  LiGa2Ir and 5.5% for  MgPd2Sb, confirming the trend. Thus, the effect 
of lattice stiffening takes over the increase in electronic contribution to electron–phonon coupling constant in 
both materials, explaining the decrease of λ with pressure. The much weaker effect on λ in  LiGa2Ir is explained 
by stronger increase in the electronic contribution (parameter I) accompanied by the smaller increase in the 
average square phonon frequency, while compared to  MgPd2Sb.

Two other global parameters are important in determining the pressure evolution of  Tc. In the McMillan or 
Allen-Dynes formulas for  Tc we have Tc ∝ ωc , with ωc being the characteristic phonon frequency ( 

〈

ωα2F
log

〉

 in 
the Allen-Dynes formula and �D in McMillan formula). The evolution of the exponential part of  Tc equation is 
governed by the evolution of λ, discussed above, thus we should also take a look on how the multiplicator in  Tc 
formula is affected by pressure. The more intuitive picture is provided by the McMillan formula, thus calculating 
the pressure derivative of Debye temperature we get:

(15)I =
ωmax
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ωα2F(ω)dω.
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∫
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Figure 13.  Phonon dispersion relation, phonon density of states and Eliashberg function of  LiGa2Ir under 1 
GPa.
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γG is the average Grüneisen parameter:

and B is the bulk modulus defined by the approximate pressure–volume relation V =  V0exp(-p/B) which holds 
in the small pressure ranges where the variation in bulk modulus with pressure can be neglected. In our case we 
fitted this relation in the pressure range 0–5 GPa obtaining B = 151(2) GPa (see Fig. 14(b)) for  LiGa2Ir and 118(2) 
GPa in  MgPd2Sb, whereas the average Grüneisen parameter is 1.9 in  LiGa2Ir compared to 2.7 in  MgPd2Sb. The 
larger B, along with the smaller γG additionally lower the pressure dependence of  Tc in  LiGa2Ir, compared to 
 MgPd2Sb and other Heusler compounds.

To complete the analysis of bulk modulus for  LiGa2Ir we have fitted p(V) relation using the Birch-Murnaghan 
equation of  state56:

where

Pressure volume relation was obtained by relaxing cells up to 20 GPa with a 1 GPa step, whereby the starting 
lattice constant was the one calculated at p = 0 GPa. Fitted equation of state and fit parameters with standard 
deviations are shown in Fig. 14(a). Bulk modulus  B0 equal 139 GPa is quite high and confirms  LiGa2Ir resist-
ance to pressure. Similarly calculated value for  MgPd2Sb is 106 GPa, confirming the difference between the two 
compounds.

Summary and conclusions
We have made high-quality polycrystalline  LiGa2Ir using a solid state reaction method.  LiGa2Ir forms in a full-
Heusler crystal structure type with a refined lattice parameter a = 6.0322(1) Å, in agreement with that reported 
by Czybulka, et al. in ref. 36,37. The heat capacity, electrical resistivity, and magnetic susceptibility confirm the bulk 
superconductivity with  Tc = 2.94 K. Analysis of our data shows that  LiGa2Ir is a weak-coupling type-II supercon-
ductor ( � e-p = 0.57 from the McMillan formula, �C/γTc = 1.4). Theoretical calculations show that 5d states of Ir 
and 4p states of Ga equally contribute to the Fermi surface, which consists of three sheets. Although the com-
pound contains heavy Ir, the spin–orbit coupling does not modify the electronic structure near the Fermi level, 
with the influence only visible for the deeper-lying electronic states. In the phonon spectrum we may distinguish 
three groups of modes, lined up according to the atomic mass: high-frequency Einstein-like optic Li vibrations, a 
medium-frequency group of mostly Ga optic modes and a low-frequency acoustic Ir part. The calculations of the 
Eliashberg function gave � e-p = 0.68 with the dominating contribution from the heaviest iridium. SOC slightly 
lowers the coupling constant, as the scalar-relativistic value is �e–p = 0.70. The computed superconducting critical 
temperature agrees very well with the measurements, confirming the phonon mechanism of superconductivity.
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Figure 14.  (a) Birch-Murnaghan equation of state fitted to calculated cell volumes of  LiGa2Ir under pressures 
and (b) approximate pressure–volume relation in 0–5 GPa range.
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Comparing the superconducting properties of  LiGa2Ir and  LiGa2Rh (see Table 1) we see that  LiGa2Ir is 
another Ir-based superconductor with a  Tc higher than that observed for the isostructural and isoelectronic com-
pound containing Rh. The other examples are  SrRh2 vs.  SrIr2,  CaRh2 vs.  CaIr2, IrGe vs.  RhGe57. This is caused by 
the larger electron–phonon coupling constants �e-p originating from the larger mass of Ir versus Rh. The heavier 
atom oscillates with lower frequency, thus the inverse proportionality of enhances λe-p if in both compounds the 
frequency-independent phonon linewidths are similar.

The observed weak pressure dependence of  Tc in  LiGa2Ir originates from the large bulk modulus, relatively 
small Grüneisen parameter and compensating increase of the electronic contribution to the electron–phonon 
coupling constant.

More than 60 years ago, Berndt Matthias proposed that the critical temperature changes with the valence 
electrons and there are three peaks at VEC ~ 3, 5 and 7 el./at. All known Heusler-type superconductors belong 
to the third maximum, with two exceptions:  LiGa2Ir and  LiGa2Rh26 for which VEC = 4 el./at. Superconductivity 
reported for  LiGa2Rh26 and  LiGa2Ir (this work) will shed light on the validity of the Matthias  Tc vs. VEC diagram 
and can be a stimulus for the future studies and experimental effort to find other Heusler-type superconductors 
with VEC ~ 20 (5 el./at) for which superconducting transition temperature should be higher.
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