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ABSTRACT: Superconductivity is observed below Tc = 1.6 K in an endohedral Ga cluster
compound PdGa5 using magnetization and heat capacity measurements. Electronic structure
calculations show that the density of states (DOS) at the Fermi level is dominated by Ga s
and p states and that the overall shape of DOS is similar to what was found in other
endohedral Ga cluster superconductors, such as MoxGa5x+1, ReGa5, and T2Ga9 (T = Rh and
Ir). Our results provide a more complete picture of the relationship between the valence
electron count and superconductivity in the family of endohedral Ga cluster superconductors.

■ INTRODUCTION
One of the greatest challenges in research on superconducting
materials is the lack of robust design guidelines that one could
follow to create a superconductor by design. Due to the lack of
a complete and universal theory of superconductivity, a
significant amount of work has been devoted to finding
empirical correlation between the chemical composition,
normal (i.e., non-superconducting) state, and the occurrence
of superconductivity (see, e.g., refs 1−6).
Endohedral Ga cluster compounds constitute a family of

superconductors that recently gained increased attention.7−25

While crystal structures found in the TMxGay (TM, transition
metal) compounds are diverse and rather complex, they can be
conveniently described as networks of interconnected endohe-
dral Ga clusters. Xie et al.8 showed the correlation between the
cluster connectivity and the valence electron count (VEC).
What is important for searching new superconducting

materials is that endohedral Ga cluster compounds also show
the relationship between the critical temperature (Tc) and
VEC,8 alike other groups of superconducting materials,26 such
as metallic elements,1,27,28 binary A-15 phases,1,27,29 Heusler
compounds,30,31 and high-entropy alloys.32,33

In the case of endohedral gallides, the highest Tc values were
reported for Mo8Ga41 (Tc = 9.8 K) and Mo6Ga31 (Tc = 8.0 K)
with VEC ≈ 21.4 and 21.5 per transition metal atom,
respectively.8 For a larger VEC, the critical temperatures are
much lower, namely, Tc = 2.3 K for ReGa5 (VEC = 22) and Tc
= 2.0 for Rh2Ga9 (VEC = 22.5).7,8

PdGa5 is an endohedral cluster compound that has 25
valence electrons and a mixed edge- and vertex-sharing manner
of cluster connection. The unit cell of PdGa5 with clusters of
gallium around palladium atoms is shown in Figure 1. Each Pd

atom is surrounded by 10 Ga atoms. Pd atoms in PdGa5 are
well separated with the closest Pd−Pd distance of ca. 4.6 Å;
thus, direct Pd−Pd bonding is negligible. Such a situation is
also found in other endohedral Ga cluster superconductors,
such as Mo8Ga41,

15,20,34,35 Mo6Ga31,
22,36 Mo4Ga21,

14,17 and
TM2Ga9

7 families. However in ReGa5,
8 the Re−Re distance is

clearly within the direct bonding range. The PdGa10 units form
a three-dimensional vertex-sharing network with sizable voids
between the clusters. The crystal structure of PdGa5 has been
thoroughly studied and discussed by Grin et al.37
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Figure 1. Unit cell of PdGa5 (Ga atoms, green; Pd, gray). Vertex-
sharing PdGa10 clusters are shown in gray.
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The number of valence electrons per transition metal atom
situates PdGa5 in the rightmost part of the Tc vs VEC diagram
proposed by Xie et al.8 with no superconducting transition
down to 1.8 K.
In this work, we have revisited PdGa5 to investigate its

properties below 1.8 K. Flux-grown single crystals of this
material were examined by means of magnetic susceptibility
and heat capacity measurements. The compound was found to
superconduct below Tc = 1.6 K, thus supporting the VEC-Tc
relationship suggested for the endohedral gallide materials.

■ MATERIALS AND METHODS

Single crystals of PdGa5 were synthesized using the self-flux
method.38 Palladium powder (Mennica-Metale, Poland,
99.95%) and pieces of a gallium ingot (Alfa Aesar, 99.99%)
were inserted into an alumina crucible in a 3:22 molar ratio.
Another crucible and a frit disk were used to facilitate the
separating flux from the crystals.39 The set was closed in a
quartz ampoule filled with Ar gas. The ampoule was placed in a
box furnace, heated up to 300 °C, kept at this temperature for
12 h, and cooled with a rate of 1 °C/h down to 100 °C. At this
temperature, the excess flux was centrifuged. The crystals
obtained were small (about 0.5 mm in the longest dimension),
silver, and shiny. As the masses of individual crystals were not
sufficient, clusters of randomly oriented single crystals were
used for measurements of physical properties (magnetization
and heat capacity).
Powder X-ray diffraction (PXRD) was performed using a

Bruker D8 Focus diffractometer with Cu Kα radiation on
several single crystals crushed and fine-ground in an agate
mortar. LeBail profile matching, performed using the FullProf
package,40 confirmed the tetragonal structure of PdGa5.
Magnetic susceptibility and magnetization measurements

were carried out in the temperature range of 0.5−1.6 K and in
magnetic fields up to μ0H = 10 mT employing a Quantum
Design MPMS-XL superconducting quantum interference
device (SQUID) magnetometer equipped with a 3He
refrigerator.
Heat capacity measurements were done in the temperature

range of 0.5−3 K in applied magnetic fields up to μ0H = 10
mT using a Quantum Design physical property measurement
system (PPMS) with a dilution refrigerator option employing
the semi-adiabatic pulse technique.
Electronic structure calculations were done with the

Quantum Espresso package41−43 employing the projector-
augmented wave (PAW)44,45 sets from the PSlib database46

and the Perdew−Burke−Ernzerhof generalized gradient
approximation47 exchange-correlation potential. Wave function
and charge density cutoffs were set to 62 and 500 Ry,
respectively. The experimental primitive cell dimensions and
atomic positions were relaxed using the Broyden−Fletcher−
Goldfarb−Shanno algorithm. For calculations, a 6 × 6 × 7 k-
point mesh was used. The symmetrized unit cell parameters
were calculated from the relaxed primitive cell using the
FINDSYM program of the ISOTROPY suite48 (see Table S1
of the Supporting Information). Crystal orbital Hamilton
population (COHP)49,50 analysis was performed using the
LOBSTER code.51

■ RESULTS AND DISCUSSION

The measured PXRD pattern of PdGa5 is presented in Figure
2. All of the observed reflections can be indexed with a

tetragonal (space group I4/mcm) unit cell. The detailed results
of the LeBail refinement are given in Table S2 of the
Supporting Information. The derived unit cell parameters a =
6.4347(1) Å and c = 9.9871(2) Å are in good agreement with
the values reported by Grin et al.52

The results of magnetization measurements are presented in
Figure 3a−d. The low-temperature zero-field-cooled (ZFC)

and field-cooled (FC) magnetic susceptibility data are shown
in Figure 3a. After accounting for the demagnetization effect
(discussed below), the ZFC susceptibility χV at T = 0.5 K is
close to −1/4π, showing that the sample is in a fully
diamagnetic (Meissner) state. The bifurcation between the
ZFC and FC curves indicates a magnetic flux pinning on
crystal defects. The critical temperature, determined from the
ZFC data as a point at which the steepest slope of χV(T)

Figure 2. PXRD pattern for crushed PdGa5 single crystals. Observed
data are marked with red dots. The LeBail fit is presented as black
solid lines, and the difference between the observed and calculated
profile is shown with blue lines. Bragg positions are marked with
green ticks.

Figure 3. Magnetic data of PdGa5. (a) ZFC and FC magnetic
susceptibility measured in μ0H = 2 mT, (b) magnetization isotherms,
(c) hysteresis loop taken at T = 0.5 K, and (d) critical field vs
temperature, obtained from magnetization (blue) and heat capacity
(orange) data.
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intersects the normal state susceptibility,53 amounts to Tc =
1.35 K. This value is somewhat smaller than that obtained from
a zero-field heat capacity measurement (see below) because of
the rather low critical field in PdGa5.
The sample demagnetization factor N is determined using

the data shown in Figure 3b. The points collected at the lowest
temperature were fitted with a linear function M = aH + b
(black solid line), assuming a perfect diamagnetic response.

From the equation − =
π −a

N
1

4 (1 )
, N = 0.62 was derived, in a

reasonable agreement with the sample geometry.54 The field
values at which the susceptibility reaches zero (suppression of
the Meissner state) were taken as the critical fields μ0Hc(T)
and plotted as a function of temperature, as shown in Figure
3d. The so-obtained data were fitted with the formula μ0Hc(T)
= μ0Hc(0)[1 − (T/Tc)

2] (orange solid line), yielding μ0Hc(0)
= 9.2(1) mT. The critical temperature estimated from the
same fit is Tc = 1.51 K, i.e., close to the value determined from
the heat capacity data (see below). Figure 3c presents the
magnetization isotherm taken at T = 0.5 K. The shape of theM
vs H loop differs from what one expects for a typical type-II
superconductor but is consistent with type-I superconductivity
with significant contribution of demagnetization effects (see,
e.g., ref 55).
The results of heat capacity measurements are shown in

Figure 4a,b. From the equal entropy construction procedure
shown in Figure 4a, the critical temperature was determined as
Tc = 1.6 K, and the superconducting jump was estimated to be
ΔCp/Tc = 6.49 mJ mol−1 K−2. As can be inferred from Figure

4c, the Cp anomaly is suppressed by the external magnetic field
in a manner consistent with the magnetization data (see Figure
3).
In the normal state (the data were measured in μ0H = 10

mT), the heat capacity of PdGa5 can be described with the
Debye formula Cp/T = γ + βT2, where γ is the Sommerfeld
electronic coefficient and the second term accounts for the
phonon contribution. The least-squares fit shown in Figure 4b
yields γ = 4.51(3) mJ mol−1 K−2 and β = 0.413(6) mJ mol−2

K−4. Using the relation

π
β

Θ = nR12
5D

4
3

where n is the number of atoms per formula unit (here, n = 6)
and R is the gas constant (R = 8.31 J mol−1 K−1); one finds the
Debye temperature ΘD = 304(1) K. Notably, the normalized
heat capacity jump ΔCp/γTc = 1.44 estimated for PdGa5 is very
close to the value predicted by the Bardeen−Cooper−
Schrieffer (BCS) theory for the weak-coupling limit.
Taking the ΘD and Tc values estimated from the heat

capacity measurement and using the inverted McMillan
formula56

λ
μ

μ
=

+ *

− * −
‐

Θ

Θ

( )
( )

1.04 ln

(1 0.62 ) ln 1.04

T

T

el ph
1.45

1.45

D

c

D

c

where μ* is the Coulomb pseudopotential parameter (in
typical superconductors, μ* usually equals to 0.10−0.15; here,
μ* = 0.13 was assumed), the electron−phonon coupling
constant was estimated as λel‑ph = 0.49, indicative of the weak
coupling regime.
As depicted in Figure 5a, the electronic density of states at

the Fermi energy EF is dominated by Ga s and p orbitals with

only about 14% contribution due to Pd atoms. The Pd d states
are mostly occupied, lying over 3 eV below EF. Remarkably, the
Fermi level in PdGa5 is situated within a pseudogap.
Despite structural differences, the overall character of the

DOS is remarkably similar to other endohedral Ga cluster
superconductors.8,10,57,58 In each of them, transition metal d
states are almost fully occupied, being located 2−3 eV below

Figure 4. Heat capacity data for PdGa5. (a) Equal entropy analysis of
the superconducting anomaly. (b) Normal state specific heat (in an
applied field of μ0H = 10 mT) described by the low-temperature
expansion of the Debye model (solid straight line). Inset (c): low-
temperature specific heat measured in different applied magnetic
fields.

Figure 5. Density of states (a) and crystal orbital Hamilton
population (b) calculated for PdGa5. The COHP curves are shown
as an average over all Pd−Ga (20 per cell) or Ga−Ga pairs (36 per
cell).
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EF. This similarity of the electronic structures allows comparing
this structurally diverse group on a common basis of the
valence electron count.
The COHP calculations (Figure 5b) show that the DOS

(EF) has a significant contribution of Pd−Ga antibonding
states (−COHP <0 above −3 eV), while Ga−Ga interactions
have (on average) a bonding character up to ca. 0.5 eV above
EF. In our recent study of an endohedral Al superconductor
RuAl6, we demonstrated that the occupation of antibonding
states results in an electronic structure instability, in this case
manifesting itself as a superconducting transition.59 Thus, a
slight electron doping of PdGa5, shifting EF toward the Ga−Ga
antibonding range, may result in an increase of Tc.
The total VEC in PdGa5 is 25 per Pd, equivalent to ca. 4.17

per atom, making this material the most electron-rich
endohedral Ga cluster compound. A number of endohedral
Ga superconductors were reported since Xie et al.8 have
suggested the relationship between Tc and VEC per TM
atom.10,14,15,17 Inclusion of these recently reported phases
provides further support for that correlation (see Figure 6a).

However, most of the known superconducting Ga endohedral
cluster compounds have only up to 22.5 electrons per TM
atom, limiting the possibility to extend the conclusions to
PdGa5 with VEC/TM atom = 25.
If the Tc data is plotted against the VEC divided per total

number of atoms (see Figure 6b), then PdGa5 lies close to
Rh2Al9 and Ir2Al9 compounds with slightly higher Tc = 2.0 and
2.3 K, respectively. Remarkably, in such a representation,
ReGa5 seems to follow an almost linear decrease of Tc between
VEC = 3.49 per atom (Mo8Ga41, Tc = 9.8) and VEC = 3.67 per
atom (ReGa5, Tc = 2.3 K).
No endohedral Ga cluster superconductors are known with

VEC/atom values between 3.67 and 4.09. In our recent study
on RuAl6 (VEC/atom = 3.71), we suggested that electron
doping might increase its Tc.

59 In the case of PdGa5, the VEC-
Tc correlation shown in Figure 6a,b would suggest that
electron doping should reduce the Tc, but superconductivity
can possibly be enhanced by hole doping. The synthesis and

characterization of electron-doped ReGa5 or hole-doped
TM2Ga9 and PdGa5 are thus of high interest as they could
provide further data to elucidate the relationship between Tc
and VEC over a broader range.

■ CONCLUSIONS
We have studied the low-temperature properties of the
endohedral Ga cluster compound PdGa5 and found it to
become superconducting below Tc = 1.6 K. The low critical
field and the shape of the M(H) loop suggest that PdGa5 is a
type-I superconductor, but further studies are necessary to
elucidate this point.
The electronic structure calculations revealed that, despite

structural differences, PdGa5 is similar to other endohedral Ga
cluster superconductors. The observed Tc value fits into the
VEC-Tc correlation suggested before for this family,8 high-
lighting its robustness. Electron and hole doping experiments
on ReGa5, TM2Ga9, and PdGa5 should provide further insight
into the observed VEC-Tc relationship.
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Zuzanna Ryzẏńska − Faculty of Applied Physics and
Mathematics and Advanced Materials Center, Gdansk
University of Technology, Gdansk 80-232, Poland
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Figure 6. Relationship between the Tc and valence electron count in
endohedral gallide superconductors. Within the Mo8Ga41 family, the
VEC was changed by partial substitution in both Mo (with V)11,20

and Ga sites (with Sn and Zn).13−15 The Mo4Ga21 family consists of
five reported members with Ga partially substituted by chalcogens, Sn,
or Sb.14,17 In panel (a), the total number of valence electrons is
divided by the number of transition metal atoms (VEC/TM atom, as
was proposed by Xie et al.).8 Panel (b) shows the VEC divided by the
total number of atoms (VEC/atom). Two endohedral aluminide
superconductors, RuAl6 (Tc = 1.2 K)59 and ReAl6 (Tc = 0.74 K),60 are
also included in panel (b) for comparison.
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(59) Ryzẏnśka, Z.; Chamorro, J. R.; McQueen, T. M.; Wisńiewski,
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