
Article

Mathematics and Mechanics of Solids

1–18

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/1081286519877684

journals.sagepub.com/home/mms

Surface effects of network materials
based on strain gradient homogenized
media

Y Rahali
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Abstract
The asymptotic homogenization of periodic network materials modeled as beam networks is pursued in this contribu-
tion, accounting for surface effects arising from the presence of a thin coating on the surface of the structural beam ele-
ments of the network. Cauchy and second gradient effective continua are considered and enhanced by the consideration
of surface effects. The asymptotic homogenization technique is here extended to account for the additional surface prop-
erties, which emerge in the asymptotic expansion of the effective stress and hyperstress tensors versus the small scale
parameters and the additional small parameters related to surface effects. Based on the elaboration of small dimension-
less parameters of geometrical or mechanical nature reflecting the different length scales, we construct different models
in which the importance of surface effects is dictated by specific choice of the scaling relations between the introduced
small parameters. The effective moduli reflect the introduced surface properties. We show in particular that surface
effects may become dominant for specific choices of the scaling laws of the introduced small parameters. Examples of
networks are given for each class of the considered effective constitutive models to illustrate the proposed general
framework.
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1. Introduction

Classical homogenization of network materials with a discrete topology towards an effective Cauchy
continuum has been an active research field since many years, and several methods have been developed
over the last two decades [1–7]. Nevertheless this technique encounters limitations when the wavelength
of the loading or deformation field becomes comparable with the typical microstructure size. More nota-
bly size effects could not be captured by standard elasticity theory [8]. The main motivation that makes
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scientists in 1960s–1970s develop the non-classical continuum mechanics theories from a mathematical
point of view and the objective of homogenization towards generalized continua is to extend the range
of validity of the continuum approach beyond the strict assumption of the scale separation [9]. As men-
tioned by Forest [10], the method to be used must be able to account for the effect of the morphology
and distribution of phases on the material response and to predict scale effects. The general class of so-
called microstructured models or higher order continuum models allows a description of the kinematics
of the microstructure by using an additional tensor in the displacement field or additional intrinsic para-
meters and internal length scales to correlate the microstructure with its macro-modeling via suitably
introduced macro-fields [11,12]. Higher order continuum theories can be traced back to the works of
Cosserat and Cosserat [13], Toupin [14], and Mindlin [15,16], and have been generalized and properly
formulated by Germain [17] and Sedov [18] using the virtual power method.

Some higher-order micro-continuum theories have been developed to account for the microstructure
effects by introducing additional degrees of freedom (such as the Cosserat medium [19] and the micro-
morphic medium [20]) or additional higher-order gradients such as the second gradient continuum
[14,21] and material constants to the conventional ones [15,16,22–33]. Strain localization zones are
clearly observed in experimental tests [34] and it is well known that they cannot be modeled with classi-
cal (without an internal length parameter) continuum mechanics models. Several authors have turned
their attention towards the development of homogenization procedures with the ability to account for
the heterogeneous nature of the material at the micro level using a second-order macroscopic constitu-
tive law [35,36]; works in this direction consider both linear elastic materials and nonlinear materials.
Higher-order homogenization schemes have been built for architectured materials in both the linear and
nonlinear regimes in the work of Trinh et al. [9]. The recent work of El Jarroudi [37] deals with the
homogenization of nonlinear elastic material in contact with a set of more rigid nonlinear elastic fibers
disposed periodically within the structure. The authors choose to work with the second gradient model
developed by Chambon et al. [38–40]. This model can be seen as a particular case of a higher order con-
tinuum and has been mainly used to regularize problems involving strain localization in soils.

In the present work, we construct an effective second order gradient continuum for repetitive net-
work materials based on beam-like structural elements and including surface effects due to the presence
of a thin coating on the beam structural elements. The discrete asymptotic expansion method (DH
method in short) dedicated to the construction of effective continuum substitution media for repetitive
networks is extended up to the second-order gradient of the displacement field to derive the constitutive
law expressing the first-order Cauchy stress and the second-order hyperstress versus their conjugated
kinematic variables. The developed framework based on the principle of virtual power and the homoge-
nization of beam lattices allows incorporating local microstructural effects via the consideration of the
second-order displacement gradient. The chief advantage of the DH method exposed in this contribu-
tion is the ease of geometrical modeling and numerical implementation, especially in comparison to
computations based on the finite element (FE) method. In fact a high accuracy of local stress peak
requires fine meshes resulting in long computation times. In addition, FE computations result in a huge
number of degrees of freedom effectively increasing the size of stiffness matrices. The DH method
involves comparatively a much smaller number of degrees of freedom since the beam degrees of freedom
within the unit cell are only defined at its extremity nodes, whereas FE computations requires meshing
all entities as three-dimensional (3D) solids. The low cost computations allow computing in a quite effi-
cient manner the effective anisotropic mechanical properties of two-dimensional (2D) and 3D repetitive
network materials. Furthermore, as will be apparent in the selected examples, the homogenization
method is able to deliver in many cases closed-form expressions of the effective first- and second-order
moduli.

The aim of the paper is to evaluate the effective anisotropic material properties of nanostructured net-
work materials at the mesoscale of an effective continuum considering surface/interface properties. It is
well established that unusual and novel properties of nanomaterials emerge from their surface/interfacial
properties. One well-known consequence of surface properties is the so-called size effect, i.e. the depen-
dence of the effective mechanical properties on the size of the considered specimen [41–45]. The presence
of a coating in these surface metamaterials dramatically changes the surface physical properties of the
material and in turn all the material properties. Let us briefly discuss the mathematical models and meth-
ods used in surface-related mechanics. The analysis of surface phenomena traces back to the pioneer

2 Mathematics and Mechanics of Solids 00(0)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


works of Laplace [46,47], Young [48], and Poisson [49] who introduced surface tension for fluids and for-
mulated the corresponding boundary-value problems. Gibbs generalized later on the notion of surface
tension in the case of solids [50]. For the recent state of the art in the theory of capillarity one can refer
to De Gennes et al. [51] and Rowlinson and Widom [52].

A model of surface elasticity for elastic solids undergoing large deformations was proposed by Gurtin
and Murdoch [53,54], relying on the physical point of view of a nonlinear solid with an elastic membrane
attached on its surface. The stress resultant tensor within the membrane receives the interpretation of
surface stresses in the context of the Gurtin–Murdoch model. The Gurtin–Murdoch model found many
applications in micro- and nanomechanics; it predicts the size effects observed for nanosized materials
[55], so in situations where the effective material properties deviate from the ones of the bulk correspond-
ing materials. This model was generalized [56,57] to account for the bending stiffness of the thin film or
coating attached onto the surface of the bulk material. The different models developed in the literature
that incorporate surface effects involve enhanced constitutive equations including a description of the
surface behavior, whereby the introduced surface stress tensor depends on the surface strain measure.
More general surface models beyond the Gurtin–Murdoch model have been developed in the literature
[58–66], like for instance the model of a Cosserat surface for material interfaces [67]. These extended
models include additional material parameters that should be determined, and that do influence the
actual properties of materials [68–74]. It was shown in particular that the presence of surface stresses
leads to the stiffening of the material in the context of the linear theory of elasticity [75–81].

The objectives of this contribution are as follows: we shall derive asymptotic expansions of the classi-
cal Cauchy stress and the second gradient tensors versus the introduced small scale parameters for net-
work materials, incorporating surface effects. The importance of the surface effects will be assessed
using different scaling laws of the small parameters inherent to surface effects versus the size parameter,
defined as the ratio of the identified network unit cell to a macroscopic network length; based on this
analysis, we shall derive conditions under which surface effects are important.

The outline of this contribution is as follows. In Section 2, we provide a clarification of the models
developed in this work and we describe the homogenization process leading to the identification of the
effective second-order continuum for 2D structures accounting for surface effects, based on a simplified
Euler–Bernoulli scheme. A 2D example illustrating the proposed second order homogenization scheme
is presented in Section 3. Finally, we conclude in Section 4 by a summary of the main developments and
perspectives for future developments.

Regarding notation, vectors and tensors are denoted with boldface symbols.

2. Discrete homogenization towards a second gradient effective continuum using
simplified Euler–Bernoulli scheme

The general idea at the root of the discrete homogenization method is the periodic repetition of an
elementary cell made of beams connected at nodes to define an infinite network. Consider a finite 2D
(surface) or 3D structure, parameterized by a small parameter e, defined as the ratio between character-
istic lengths of the lattice unit cell to a characteristic length of the entire network, scalar quantity L
(Figure 1). For a large enough lattices, the ratio of the beam length, the scalar leb, to a macroscopic

Figure 1. Set of repetitive lattices parameterized by a small parameter e.
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lattice length constitutes a small parameter versus which all geometrical and kinematic variables will be
expanded, hence leb = eL.

Maintaining the reference area or volume fixed one considers the limit situation of a continuous den-
sity of unit cells obtained when the small parameter tends to zero. In this limit, a continuum, equivalent
in a certain sense to the initial lattice is obtained. In order to obtain this limit behavior, one does mathe-
matically study the equilibrium of the lattice and the dependence of the governing equations versus the
introduced small parameter. Asymptotic expansions of the nodal position, tensions and external forces
are written and inserted in the equilibrium equations, preferably expressed in weak form. Taylor series
expansion of the displacements and possibly rotational degrees of freedom are next inserted into these
equilibrium equations. The discrete sums are finally converted in the limit of a continuous density of
beams into Riemann integrals, thereby highlighting continuous stress and strain measures. We mentally
isolate a beam within the repetitive network (Figure 2), with extremity nodes O and E and length leb,
with e the ratio of the elementary unit cell l to the macroscopic network size L, illustrated in Figure 2;
the small parameter e tends to 0, so that the asymptotic expansion of the beam length can be written as
leb = eL.

Each beam works in tension-compression under the action of normal forces NO and NE applied to
the extremity nodes and in flexion under the action of the transverse forces TO, TE and the moments
MO and ME, as illustrated in Figure 2.

The following small parameters are introduced that will prove useful in order to quantify the impor-
tance of surface effects:

� e= lb=L the ratio of beam length to a macroscopic characteristic length of the network;
� eM = ls=l

b with ls = 2Es=E the ratio of (twice) the surface modulus of the coating to the bulk modu-
lus of the beam material, called the characteristic length parameter [82];

� es = h=lb the ratio of the thickness coating to the beam length.

We can make a further assumption in terms of the power relation between parameters lb and h:

� es = eb, introducing therein a new exponent b.

We consider that the slenderness ratio of the beam, parameter h = t=lb ffi tc=l
b, is finite.

The total beam thickness is the sum of the thickness of the core tc and that of the coating, so that it
holds the relation t= tc + h. We further introduce the scaling exponent a to express eM = ea. Based on

Figure 2. Kinematic and static beam parameters.
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the introduced small parameters, the tensile modulus of the base material EB is then enhanced by sur-
face effects according to the relation [82]:

~EB =EB 1 +
ls
t

� �
=EB 1 +

ls

lb
lb

t

 !
=EB 1+

eM
h

� �
=EB 1+

ea

h

� �

We consider a square section with area ~A= t, assuming a unit beam thickness. The modified tensile
and flexural rigidities of the beam can now be expressed as

~kl =
~EB

~A

lb
=EB 1+

ea

h

� �
tc + hð Þ
lb

ffi EB 1+
ea

h

� �
h + esð Þ[kl +EB es + eað Þ+ EB

h
esea

= kl +EB eb + ea
� �

+
EB

h
ea + b

ð1Þ

~kf =
12~EB

~I

lb
� �3 =EB 1+

ea

h

� �
h + eb

� �3 ffi EB h3 + 3ebh2 + eah2 + 3hebea
� �

= kf + 3h2EBeb +EBh2ea + 3EBhebea

= kf + 3h2EBeb +EBh2ea + 3EBhea + b

ð2Þ

since h + esð Þ3 ffi h3 1+ 3es=hð Þ= h3 + 3esh2 ) + 1
ea

h

� �
+ hesð Þ3 ffi h3 + 3esh2

� �
1+

ea

h

� �
= h3 + 3ebh2 + eah2 + 3hea + b

~I= t3=12 is the quadratic moment of the considered beam. Note that h is finite, but es=h! 0. The first-
order terms in previous relations defines successively the tensile and flexural rigidity in the absence of
surface effects, quantities kl and kf.

This entails the following modified expression of forces and moments from beam theory [83] (it is in
fact the simplified Bernoulli model, since rotations are not considered as independent kinematic vari-
ables) in vector form:

N eb
O = ~kb

l eb: De
O �De

E

� �� �
=EB 1 +

ea

h

� �
ðh + ebÞ eb: De

O �De
E

� �� �
ð3Þ

N eb
E = � N eb

O ð4Þ

T eb
O = ~kb

f eb?: De
O �De

E

� �� �
=EB 1 +

ea

h

� �
ðh + ebÞ3 eb?: De

O �De
E

� �� �
ð5Þ

T eb
E = � T eb

O ð6Þ

M eb
O =

~kf leb
6

3:eb?: De
O �De

E

� �� �
:e3 =EB 1 +

ea

h

� �
ðh + ebÞ3 leb

6
3:eb?: De

O �De
E

� �� �
ð7Þ

M eb
E =

~kf leb
6

3:eb?: De
O �De

E

� �� �
:e3 =EB 1 +

ea

h

� �
ðh + ebÞ3 leb

6
3:eb?: De

O �De
E

� �� �
ð8Þ

Vectors De
O and De

E are the displacements of the extremity nodes of the beam with components
D= (U ,V )(x, y), eb the unit director along the beam and eb? the normal unit vector. The subscripts O
and E refer to the origin and extremity nodes of the beam.

The steps for the determination of the Cauchy stress and hyperstress tensors of the second gradient
continuum for this model are summarized in the sequel. We refer the reader to Rahali et al. [84] and
Agrawal et al. [85] for more details related to the different steps of the method.
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2.1. Homogenization steps

1. For each beam b, write the expressions of the normal N and transverse T forces and moments M
exerted on the beam extremities, as summarized in equations (3)–(8).

2. Write the asymptotic expansion of geometrical and kinematic variables of each beam, in curvi-
linear coordinates denoted l in the sequence:

� The beam length leb = eLb

� The beam width teb = etb

� The relative nodal displacement written as

(De
O �De

E) = e DO
1 �DE

1 � Lidib

∂Do leð Þ
∂li

� �
+ e2 DO

2 �DE
2 � Lidib

∂DE
1 leð Þ
∂li

� L2
i d2

ib

2

∂2Do leð Þ
∂l2

i

� �
ð9Þ

with di the shift factor (equal to61) for nodes belonging to a neighboring cell, and nil for nodes located
inside the considered cell. The index i 2 1, 2f g indicating the considered axis e1 or e2 and the index b
refer to the beam. One notices from previous expression that the relative displacement depends on both
first and second gradients of the continuous macroscopic displacement, contributions ∂Do leð Þ=∂l and
∂2Do leð Þ=∂l2

i respectively.

3. Insert equation (9) into equations (3) through (8).
4. Evaluate the derivatives of the displacement, quantities Lidib

∂Do(le)
∂li

, Lidib
∂DE

1 (le)
∂li

, and
L2

i
d2

ib

2
∂2Do(le)

∂l2
i

, in
the Cartesian basis (see equations (41)–(43) in [85]).

5. Write the equilibrium forces and moments in virtual power form

X
vi2Z2

X
b2BR

Tb _V + Nb _U
� �

= 0 ð10Þ

X
vi2Z2

X
b2BR

Mb
O:w

b
O +Mb

E:w
b
E +

lb

2
eb ^ Fb

E

� �
:wb

C �
lb

2
eb ^ Fb

O

� �
:wb

C

� �
= 0 ð11Þ

The moments are self-equilibrated; therefore the moment equilibrium is automatically satisfied.
BR refers to the set of beams with in the reference unit cell, w the virtual rotation velocity and

Fb = N beb + Tbeb? the force exerted on the beamb.

6. Write the virtual power of internal forces over an elementary cell (on the boundary nodes, since
the contribution of the internal nodes mutually cancel):

Pe =
X

b

TE
_V E � _V O

� �
+ NE

_UE � _UO

� �� �
ð12Þ

with _Vi and _Ui therein the two components of the virtual velocity field.

7. Development of the expressions of the relative longitudinal and transverse velocities _V E � _V O

� �
and _U E � _U O

� �
using a Taylor series expansion (see equation (53) in [85]).

8. Write the continuous formulation of the virtual power by passing to the limit in equation (12).
One can find after development:
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lim
e!0

P = lim
e!0

e2
X
c2Z

Pe

=

ð
O

Pedl =

ð
O

1

g

X
b

T1
ELidib

∂Vo

:
(le)

∂li

� �
+ N1

ELidib
∂Uo

:
(le)

∂li

� �� �

+ e
T1

E

L2
i d2

ib

2
∂2 Vo

:
(le)

∂l2
i

� �
+ T2

ELidib
∂Vo

:
(le)

∂li

� �
+ N1

E

L2
i d2

ib

2
∂2 Uo

:
(le)

∂l2
i

� �
+ N2

ELidib
∂Uo

:
(le)

∂li

� �
0
B@

1
CA

+ e2 T2
E

L2
i d2

ib

2
∂2 Vo

:
(le)

∂l2
i

� �
+ N2

E

L2
i d2

ib

2
∂2 Uo

:
(le)

∂l2
i

� �� �

2
666666664

3
777777775

2
666666664

3
777777775

dV

ð13Þ

with NE = eN 1
E + e2N2

E

� �
, TE = eT 1

E + e2T2
E

� �
and g is the Jacobean of the transformation from Cartesian

to curvilinear coordinates. Factor di is the shift factor equal to61 for nodes belonging to a neighboring
cell, and nil for nodes located inside the considered cell.

Previous expression involves three integrals of increasing powers with respect to the scale parameter
e, namely the zero-order term (the factor e2 is absorbed into the continuation of the discrete sum
towards Riemann integral), the first order representing coupling terms, and the second-order associated
to the hyperstress tensor contribution. Previous expression is next written in Cartesian coordinates (see
Appendix A).

9. Equivalence with a second-order grade continuum [10,84] in order to express the stress and
hyperstress tensors

Pi =

ð
O

s � S � rð Þ � rð Þ � _D dV =

ð
O

Fq � ∂ _D

∂xq

� �
�Hpq � ∂2 _D

∂xp∂xq

� �� �
dV ð14Þ

Second-order tensor _D therein is the virtual rate of deformation, s is the Cauchy stress and S is the
third-order hyperstress tensor with index symmetry Sijk = Sikj. The 3D spatial gradient operator has been
denoted with the nabla operator r.

10. Calculation of the stress and hyperstress tensors, resulting in the following relations:

s = siqei

� �
� eq = Fq � eq ð15Þ

S= Skqpek

� �
� eq � ep = Hpq � eq � ep ð16Þ

Such as q 2 1, 2f g,

F1 =
T1

E +N1
E

g

� �
+ e

T2
E +N2

E

g

� �� 	
L1d1bcosu1 + L2d2bcosu2ð Þ ð17Þ

F2 =
T1

E +N1
E

g

� �
+ e

T2
E +N2

E

g

� �� 	
L1d1bsinu1 + L2d2bsinu2ð Þ ð18Þ

with the pair of indices p, qð Þ 2 1, 1ð Þ, 2, 2ð Þ, 1, 2ð Þf g,

H11 = e
T1

E +N1
E

g

� �
+ e2 T2

E +N2
E

g

� �� 	
L2

1 d1b
2 cos2u1

2
+

L2
2 d2b

2 cos2u2

2

� �
ð19Þ

H22 = e
T1

E +N1
E

g

� �
+ e2 T2

E +N2
E

g

� �� 	
L2

1 d1b
2 sin2u1

2
+

L2
2 d2b

2 sin2u2

2

� �
ð20Þ
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H12 = e
T1

E +N1
E

g

� �
+ e2 T2

E +N2
E

g

� �� 	
L2

1 d1b
2 cosu1sinu1 + L2

2 d2b
2 sinu2cosu2

� �
ð21Þ

with g = L1L2 cosu1sinu2 � sinu1cosu2ð Þ in the above the determinant of the Jacobian matrix and

T1
E = T1

Ee
b?, T2

E = T2
Ee

b?, N1
E = N 1

Ee
b; N2

E = N2
Ee

b.
The resultants expand on two orders versus e, adopting the following choices of the exponents a = b

= 1 in equations (1) and (2):

NE = eN1
E + e2N2

E = ~kb
l e UE1 � UO1ð Þ+ e2 UE2 � UO2ð Þ
� �

= e kb
l UE1 � UO1ð Þ

� �
+ e2 kb

l UE2 � UO2ð Þ+ 2EB UE1 � UO1ð Þ
� � ð22Þ

TE = eT 1
E + e2T2

E = ~kb
f e VE1 � VO1ð Þ+ e2 VE2 � VO2ð Þ
� �

= eðkb
f VE1 � VO1ð ÞÞ+ e2ðkb

f VE2 � VO2ð Þ+ 4h2EB VE1 � VO1ð ÞÞ
ð23Þ

The different terms in equations (22) and (23) are defined as follows:

UO 1 =DO
1 : e

b ,UE1 = DE
1 + Lidib

∂Do(le)

∂li

� �
: eb

UO2 =DO
2 : e

b,UE2 = DE
2 + Lidib

∂DE
1 (le)

∂li

+
L2

i d2
ib

2

∂2Do(le)

∂l2
i

� �
: eb

VO1 =DO
1 : e

b?,VE1 = DE
1 + Lidib

∂Do(le)

∂li

� �
: eb?

VO2 =DO
2 : e

b?,VE2 = DE
2 + Lidib

∂DE
1 (le)

∂li

+
L2

i d2
ib

2

∂2Do(le)

∂l2
i

� �
: eb?

Owing to the linearity of the problem, the local displacements can be expressed in terms of the macro-
strain using the localization operators for the strain and strain gradient loading terms (applied to the
unit cell), so that it formally holds the following relations at first and second orders of the small-scale
parameter:

UE1 �UO1ð Þ= HE, 1:E+ HK, 1:K

UE2 �UO2ð Þ= HE, 2:E+ HK, 2:K
ð24Þ

with HE, 1,HK, 1,HE, 2,HK, 2 therein the localization operators (each function of the microscopic variable
within the unit cell) for the displacement at the first and second orders of the small parameter e. These
localization operators are obtained by solving the localization problems successively at the two orders
using the equilibrium of forces and moments for the unit cell. They allow expression of the homogenized
constitutive law, when inserting equation (24) into equations (15) and (16) and using the following scal-
ings of the beam rigidities:

~kl = kl + EB eb + ea
� �

+
EB

h
ea + b, ~kf = kf + 3h2EBeb + EBh2ea + 3EBhea + b ð25Þ

s =
1

g

~kb
f HE, 1:E+ HK, 1:Kð Þ:eb?
� �

eb?

+ ~kb
l HE, 1:E+ HK, 1:Kð Þ:eb
� �

eb

 !
+ e

~kb
f HE, 2:E+ HK, 2:Kð Þ:eb?
� �

eb?

+ ~kb
l HE, 2:E+ HK, 2:Kð Þ:eb
� �

eb

 !" #
� B= sc + ss ð26Þ

B= L1d1cu1
+ L2d2cu2

� �
� e1 + L1d1su1

+ L2d2su2

� �
� e2
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where cu, su, c2
u and s2

u stand for cos u, sin u, cos2u and sin2u and introducing therein the classical and
surface Cauchy stress tensors sc,ss, expressed by

sc =
1

g

kb
f HE, 1:E+ HK, 1:Kð Þ:eb?
� �

eb?

+ kb
l HE, 1:E+ HK, 1:Kð Þ:eb
� �

eb

 !
+ e

kb
f HE, 2:E+ HK, 2:Kð Þ:eb?
� �

eb?

+ kb
l HE, 2:E+ HK, 2:Kð Þ:eb
� �

eb

 !" #
� B, ð27Þ

ss =
EB

g

3h2eb + h2ea + 3hea + bð Þ HE, 1:E+ HK, 1:Kð Þ:eb?
� �

eb?

+ eb + eað Þ+ 1
h
ea + b

� �
HE, 1:E+ HK, 1:Kð Þ:eb

� �
eb

0
@

1
A+

e
3h2eb + h2ea + 3hea + bð Þ HE, 2:E+ HK, 2:Kð Þ:eb?

� �
eb?

+ eb + eað Þ+ 1
h
ea + b

� �
HE, 2:E+ HK, 2:Kð Þ:eb

� �
eb

0
@

1
A

2
6666664

3
7777775� B

It holds similarly for the hyperstress the decomposition into a classical contribution (in the absence of
surface effects) and an additional term accounting for surface effects, equation (26):

S=
1

g
e

~kb
f HE, 1:E+ HK, 1:Kð Þ:eb?
� �

eb?

+ ~kb
l HE, 1:E+ HK, 1:Kð Þ:eb
� �

eb

0
@

1
A+ e2

~kb
f HE, 2:E+ HK, 2:Kð Þ:eb?
� �

eb?

+ ~kb
l HE, 2:E+ HK, 2:Kð Þ:eb
� �

eb

0
@

1
A

0
@

1
A� A,

=Sc +Ss

A=
L2

1d2
1c2

u1

2
+

L2
2d2

2c2
u2

2

 !
e1 � e1 +

L2
1d2

1s2
u1

2
+

L2
2d2

2s2
u2

2

 !
e2 � e2 +

+ L2
1d2

1cu1
su1

+ L2
2d2

2su2
cu2

� �
e1 � e2 + � e2 � e1ð Þ

ð28Þ

introducing therein the classical and surface hyperstress tensors Sc,Ss expressed as

Sc =
1

g
e

kb
f HE, 1:E+ HK, 1:Kð Þ:eb?
� �

eb?

+ kb
l HE, 1:E+ HK, 1:Kð Þ:eb
� �

eb

0
@

1
A+ e2

kb
f HE, 2:E+ HK, 2:Kð Þ:eb?
� �

eb?

+ kb
l HE, 2:E+ HK, 2:Kð Þ:eb
� �

eb

0
@

1
A

0
@

1
A� A,

Ss =
EB

g

e
3h2eb + h2ea + 3hea + bð Þ HE, 1:E+ HK, 1:Kð Þ:eb?

� �
eb?

+ eb + eað Þ+ 1
h
ea + b

� �
HE, 1:E+ HK, 1:Kð Þ:eb

� �
eb

0
B@

1
CA

+ e2

3h2eb + h2ea + 3hea + bð Þ HE, 2:E+ HK, 2:Kð Þ:eb?
� �

eb?

+ eb + eað Þ+ 1
h
ea + b

� �
HE, 2:E+ HK, 2:Kð Þ:eb

� �
eb

0
B@

1
CA

0
BBBBBBBBB@

1
CCCCCCCCCA
� A

ð29Þ

Note that the classical contribution in both the classical stress tensor and the hyperstress tensor
appears at two orders versus the scale parameter e. Surface effects appear in the (surface) stress and
hyperstress tensors as higher-order contributions versus the scale parameter e in comparison to their
classical contribution (in the absence of surface effects). Surface effects may dominate over classical
contributions when at least one of the exponents a,b is negative ; in such a situation, that the surface
effects present in the strain gradient terms outweigh the classical Cauchy-type response of the
material.

When both exponents a,b vanish, there is an additional surface contribution to the first-order beam
rigidities. For the specific case a = 1 = b, equations (1) and (2) lead to the modified beam rigidities

~kl = kl + 2EBe+O e2
� �

, ~kf = kf + 4h2EBe+O e2
� �

ð30Þ
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Inserting these expressions for the rigidities into equations (26) through (29) shows that surface effects
appear at order e in the (surface) Cauchy stress, whereas they are present at the next order e2 in the sur-
face hyperstress tensor, which are written explicitly as follows:

ss =
EB

g

4h2e + 3he2ð Þ HE, 1:E+ HK, 1:Kð Þ:eb?
� �

eb?

+ 2e+ 1
h
e2

� �
HE, 1:E+ HK, 1:Kð Þ:eb

� �
eb

0
@

1
A+

e
4h2e + 3he2ð Þ HE, 2:E+ HK, 2:Kð Þ:eb?

� �
eb?

+ 2e + 1
h
e2

� �
HE, 2:E+ HK, 2:Kð Þ:eb

� �
eb

0
@

1
A

2
6666664

3
7777775� B, ð31Þ

Ss =
EB

g

e2
4h2 + 3heð Þ HE, 1:E+ HK, 1:Kð Þ:eb?

� �
eb?

+ 2 + 1
h
e

� �
HE, 1:E+ HK, 1:Kð Þ:eb

� �
eb

0
@

1
A+

e3
4h2 + 3heð Þ HE, 2:E+ HK, 2:Kð Þ:eb?

� �
eb?

+ 2 + 1
h
e

� �
HE, 2:E+ HK, 2:Kð Þ:eb

� �
eb

0
@

1
A

0
BBBBBB@

1
CCCCCCA� A ð32Þ

The obtained expressions of the surface stress and hyperstress tensors show that the slenderness ratio
of the beam play a determinant role since it determines the relative importance of surface effects on the
effective mechanical properties.

In the next section we provide an example of a non-centrosymmetric beam-like network in order to
show the importance of surface effects on the effective mechanical properties of the homogenized sec-
ond gradient continuum.

3. Non-centrosymmetric square unit-cell network material architectures

The methodology presented in Section 2.1 is general, provided a repetitive unit cell can been identi-
fied. In the current section, we apply the previously elaborated methodology to the 2D square-
shaped unit-cell structure with two internal beams that do not intersect in their center pictured in
Figure 3, so that it is not centrosymmetric and coupling effects between first and second gradient
contributions are expected. The unit cell is composed of a total of eight beam elements, as shown
in Figure 3.

The mechanical parameters selected in this example originate from experimental data obtained with
tensile tests of single crystal ZnO nanowires having a [0001] oriented wurtzite structure from Agrawal et
al. [85]. The geometrical and mechanical parameters of the unit-cell structure are conveniently summar-
ized in Table 1.

The vector including all beam lengths is elaborated as

Lb =
L

2
,

L

2
,

L

2
,

L

2
,

L

2
ffiffiffi
2
p ,

3
ffiffiffi
2
p

L

4
,

L

2
ffiffiffi
2
p ,

L

2
ffiffiffi
2
p

� 	
,

and the periodicity vectors used to generate the periodic planar network are Y1 =
1

0

� 	
, Y2 =

0

1

� 	
with

respective lengths L1 = L2 = L. We adopt the angular value u = 458. The connectivity table of this lattice
is provided in Table 2. All beams have here the same mechanical properties.

The constitutive law for an anisotropic second gradient continuum is written as follows:

sij = Cijpq epq + Mpqrij Kpqr

Sijk = Mijkpq epq + Aijkpqr Kpqr
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introducing therein sij, Sijk, epq, and Kpqr the stress, hyperstress, deformation, and gradient of deforma-
tion tensors, respectively. The tensors Cijpq,Aijkpqr,Mpqrij are the first- and second-order elasticity tensors
and the coupling tensor, respectively.

One obtains for this example exhibiting a non-centrosymmetric microstructure the following homoge-
nized tensors:

C½ �=

7860 2010 1830 1850

2010 7860 1850 1830

1830 1850 2430 2040

1850 1830 2040 2430

2
664

3
775; M½ �=

39300 10000 9140 9240 0 0

10000 39300 9240 9140 0 0

9140 9240 10200 12100 0 0

9240 9140 12100 10200 0 0

2
664

3
775

A½ �=

2:44 105 94400 97200 1:05 105 0 0

94400 2:44 105 1:05 105 94400 0 0

97200 1:05 105 1:05 105 2:44 105 0 0

1:05 105 94400 2:44 105 1:05 105 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

The dimensions of the coefficients of these effective rigidity tensors are as follows: [C] n Pa, [M] in Pa m,
and [A] in N.

Figure 3. Unit cell of the square structure with internal crossed beams.

Table 1. Geometrical and mechanical parameters of the square lattice.

Type Geometric parameters of the beam Mechanical properties

Square L = 10 mm , b = 458 , t = 1 mm(width) EB = 56:2GPa, n = 0:3

Table 2. Connectivity table of the square lattice.

Beam 1 2 3 4 5 6 7 8

O(b) 1 2 1 4 1 3 4 3
E(b) 2 1 4 1 3 1 3 2
d1 0 0 0 1 0 1 0 0
d2 0 1 0 0 0 1 0 0
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If we compare these results with those of the case without surface effects, one notes that the tensors of
classical and coupling moduli, C and M do not change while the components of the second gradient ten-
sor A are increased by about 23% when surface effects are accounted for.

The effective moduli Cxx, Mxx, and Axxx are represented versus parameters h and EB in Figure 4; the
second-order tensile modulus Axxx is maximum for pure tensile lattices (h tends to 0), and it decreases
towards a minimum when h tends to 1 contrary to Cxx and Mxx. In order to verify the asymptotic expan-
sion method, an analytical method based on an evaluation at micro-level of the strain energy density is
presented in the Appendix B. Both identification procedures lead to the construction of the same second
gradient linear continuum. Indeed its effective mechanical properties can be obtained by means of either.
For more complex structures, the asymptotic homogenization is quite efficient (in comparison, analytical
methods become quite complicated and inapplicable). Let us note that the influence of surface elastic
moduli on the effective material properties of nanosized network materials, such as nanofoams, is similar
to the case of nanoporous solids [70,71].

4. Conclusion

Surface effects of network materials caused by a thin coating of the structural beam elements have been
introduced in the present work. A discrete asymptotic expansion method has been used to derive the
expressions of Cauchy stress and hyperstress tensors for the adopted effective strain gradient continuum.
Surface effects are accounted for by two small parameters, the ratio of the surface modulus of the coat-
ing to the bulk modulus of the beam material, and the ratio of the thickness coating to the beam length.
These two parameters are made dependent upon the scaling parameter (ratio of the representative unit
cell size to a macroscopic characteristic length) according to two different scaling laws, thereby introdu-
cing two scaling exponent. Thereby, surface effects appear in second gradient contributions to the consti-
tutive law (in the hyperstress tensor) for non-negative values of the scaling exponents; this corresponds
to the typical situation, described in the pioneering work of Mindlin [16] wherein the strain gradient con-
tinuum is motivated by its ability to incorporate surface effects through the strain gradient terms. In the
present work, the additional surface properties of the effective constitutive law emerge in the asymptotic
expansion of the effective stress and hyperstress tensors versus the small-scale parameters and the addi-
tional small parameters related to surface effects. The range of possible values of the scaling exponents
allows envisaging different models in which the importance of surface effects is dictated by specific
choice of the scaling relations between the introduced small parameters. We show especially that surface
effects may become dominant for specific choices of the scaling laws of the introduced small parameters.
The example of a non-centrosymmetric repetitive network for which couplings between first and second
gradient effects appear has been chosen to illustrate the proposed general methodology. The proposed

Figure 4. Evolution of the effective moduli versus the slenderness ratio of the beam.
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model of surface effects in network materials shall prove useful for the prediction of the importance of
surface contributions of network materials and architectured media, especially at the very small scales
(nanometric level); its predictive capacity further allows conceiving and optimizing microstructures
based on the elaboration of specific requirements at the continuum level.
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Appendix A

Transition from curvilinear to Cartesian coordinates

After development of equation (13) in Cartesian coordinates, one obtains
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e!0
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where cu, su, c2
u and s2

u denote cos u, sin u, cos2u andsin2u; they are the components of the periodicity vec-
tors [84].

Appendix B

Analytical derivation of the effective strain energy density

We present here an analytical method based on an evaluation at micro level of the strain energy density
in order to compute the effective mechanical properties of a network materials.

One considers general 2D beam elements. The element kinematics is characterized by a displacement
field U with displacement components u, v and rotation u defined in the beam’s local x, y frame, as
depicted in Figure B.1.

Each beam works in tension-compression under the action of normal forces Fi
j and Fi + 1

j + 1 applied to
the extremity nodes and in flexion under the action of the transverse forces Ti

j , T i + 1
j + 1 and the moments

Mi
j , Mi + 1

j + 1 , as illustrated in Figure B.1.
We express the strain energy W S generated by the element’s nodal displacement and rotation as the

sum of the extensional, flexural and shear energy contributions, as follows [84]:
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ShearEnergy

ðB:1Þ

where E stands for the beam’s material modulus, A for the beam’s cross-sectional area, L for the beam’s
length, and I for the quadratic moment of the considered beam. The previously introduced parameters
define the extensional EA=L, flexural EI=L, and shear rigidity 12EI=L3.

In order to take into account the surface effects, tensile, shear and flexural rigidities of the beam are
modified as explained in Section 2:
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~kl =
~EB

~A

lb
; ~kc =

12~EB
~I

lb
� �3 ; ~kf =

~EB
~I

lb

such as ~EB =EB(1+ ls
t

)
This entails the following modified expression of the strain energy:
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We subsequently employ as a continuation method a Taylor expansion of the kinematic variables using
a beam curvilinear coordinate s (for more details see Rahali et al. [84]), upon which we retrieve the fol-
lowing expressions for the beam’s strain energy contributions in a continuum description:
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We note that the asymptotic development of equation (B.3) corresponds to the connection between
two extremities nodes numbered as i, jð Þ, (i + 1, j + 1):Using the expressions in equation (B.3), we distin-
guish between energy contribution terms associated with the first-order gradient of the kinematic vari-
ables, coupling terms encompassing both first- and second-order derivatives and second gradient terms,
defined exclusively through second-order derivatives of the kinematic variables. Naming the linear terms
as WSL

, the coupling terms as WSC
and the second gradient terms as Ws2, we define the total strain energy

of the effective continuum as their sum:

WS = WSL
+ WS2

+ WSC
ðB:4Þ

The transition of the total energy expression, equation (B.4), is next made from the local curvilinear
basis to the Cartesian global basis. The energy density is finally evaluated by dividing the total energy,
elaborated as the sum of the energies of all beams comprising the unit cell in the Cartesian basis by the
volume of the elementary unit cell. This methodology leads to the effective second gradient continuum
replacing the initially discrete network. The Cauchy stress tensor sij is defined by means of the first order

Figure B.1. Kinematics of a beam element.
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and coupling energy contributions while the hyperstress tensor Sijk is elaborated from the second gradi-
ent and coupling energy terms as follows:

sij =
∂ WsL + WsCð Þ
∂ ∂ui=∂xj

� � Sijk =
∂ Ws2 + WsCð Þ
∂ ∂2uij=∂xk

2
� � ðB:5Þ

If we apply the previously elaborated methodology to the same square example presented in Section
3, the strain energy of the structure written as follows, in which indices k (in uk, vk, and uk) refer to the
beam numbers:

Ws = Wextension + Wflexion + Wshear ðB:6Þ

with
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We use the Bernoulli model including a local rotation, in addition to the displacement acting as the
translational degree of freedom. The rotation is here limited to the zero order (one order less than the
displacement), which entails the following relations:

ui + 1
j + 1 = ui�1

j�1 = ui
j =

∂v

∂s

����i
j

;

After some developments and simplifications (we refer the reader to Rahali et al. [84] for more details
related to the different steps of the method), one can compute the energy density by dividing by the area
of the elementary unit cell, i.e. S = L2, viz.

W �= Ws=S =
1

L2
Wextension + Wshearð Þ ðB:7Þ

This allows us to compute the effective second gradient continuum properties. One can therefore deduce
the Cauchy stress tensor sij and the hyperstress tensor Sijk.
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