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Abstract. We will be concerned with a two-dimensional mathematical model for
a free elastic shell of biological cluster. The cluster boundary is connected with
its kernel by elastic links. The inside part is filled with compressed gas or fluid.
Equilibrium forms of the shell of biological cluster may be found as solutions of a
certain nonlinear functional-differential equation with several physical parameters.
For each multiparameter this equation has a radially symmetric solution. Our
goal is to study the bifurcation which breaks symmetry. In order to establish
critical values of bifurcation parameter and buckling modes we will investigate
an appropriate linear problem. Our main result on the existence of symmetry-
breaking bifurcation will be proved by the use of a variational version of the
Crandall-Rabinowitz theorem.
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1. Introduction

1.1. Mathematical model and radially symmetric solutions

In this paper we will study a bifurcation phenomenon in a two-dimensional math-
ematical model describing equilibrium forms of a shell of biological cluster. The
cluster has an elastic boundary connected with its kernel by elastic links. The inside
part of the cluster is filled with compressed gas or fluid (see Fig. 1).

An equilibrium form of the cluster is described in polar coordinates by a 2π-
periodic Cm+2-smooth positive function r(θ), m ∈ N ∪ {0} (see Fig. 2). We derive
it as a critical point of an appropriate energy functional.

The second author is supported by Grant of National Science Centre (Poland)

no. 2011/03/B/ST1/04533.

Milan J. Math. Vol. 82 (2014) 331–342
DOI 10.1007/s00032-014-0223-9
Published online June 13, 2014
© 2014 The Author(s)
This article is published with open access at Springerlink.com

Milan Journal of Mathematics



332 H. Guze and J. Janczewska Vol.82 (2014)

Figure 1. A biological cluster
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Figure 2. An equilibrium form of biological cluster

Let Cm(2π), m ∈ N∪ {0}, denote the Banach space of 2π-periodic Cm-smooth
functions r(θ) with the standard norm

‖r‖m =
m∑
k=0

max
θ∈[0,2π]

|r(k)(θ)|, (1.1)

where r(k)(θ) denotes the kth derivative of r(θ) and r(0)(θ) = r(θ). It is well known
that Cm(2π) is continuously embedded into the Hilbert space L2(2π) with the scalar
product 〈

f, g
〉

=
∫ 2π

0
f(θ)g(θ)dθ. (1.2)

The total energy of the cluster is a sum of three terms:

E = E1 + E2 + E3,

where

E1 − the potential energy of stretched elastic boundary of the cluster,

E2 − the potential energy of links,

E3 − the energy of compressed gas or fluid inside the cluster.
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The first energy E1 is proportional to the length of the boundary of the cluster

E1(r, α) = α

∫ 2π

0

√
r2(θ) + r′2(θ)dθ,

where α > 0 is an elasticity coefficient of the boundary. The second energy E2 is
proportional to the average length of links

E2(r, β) = β

∫ 2π

0
r(θ)dθ,

where β > 0 is an elasticity coefficient of links. The last one is given by

E3(r, η, ν) = ηS−ν ,

where

S = S(r) =
1
2

∫ 2π

0
r2(θ)dθ

is the area of the cluster and η > 0, ν > 0 are suitable physical parameters describing
the compressed gas or fluid.

Summarizing, the total energy of the cluster is given by

E(r, p) =
∫ 2π

0

(
α
√

r2(θ) + r′2(θ) + βr(θ)
)
dθ + ηS−ν ,

where p = (α, β, η, ν) ∈ R
4
+, r ∈ Cm+2(2π) and r(θ) > 0 for θ ∈ [0, 2π] .

We see at once that E is smooth. Moreover, an easy computation shows that
the Fréchet derivative of E with respect to r is given by

E′
r(r, p)h =

∫ 2π

0
α
r3(θ) + 2r(θ)r′2(θ) − r2(θ)r′′(θ)

(r2(θ) + r′2(θ))3/2
h(θ)dθ

+
∫ 2π

0

(
β − νη

Sν+1 r(θ)
)
h(θ)dθ,

where p = (α, β, η, ν) ∈ R
4
+, r, h ∈ Cm+2(2π) and r(θ) > 0 for θ ∈ [0, 2π] .

It follows that critical points of the energy functional E(r, p) are 2π-periodic
Cm+2-smooth positive solutions of the functional-differential equation

α
r3(θ) + 2r(θ)r′2(θ) − r2(θ)r′′(θ)

(r2(θ) + r′2(θ))3/2
+ β − νη

Sν+1 r(θ) = 0. (1.3)

We are interested in radially symmetric solutions of (1.3). Substituting r(θ) ≡ r
into (1.3) we get the algebraic equation

α + β − νη

πν+1r2ν+1 = 0.

Finally, we get a solution given by

rp =
(

νη

πν+1(α + β)

) 1
2ν+1

for all multiparameters p = (α, β, η, ν) ∈ R
4
+. Let us remark that a radially symmet-

ric solution rp is decreasing together with the growth of α and β, i.e. elastic forces
attract the boundary of cluster to its center.
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Figure 3. An elliptic transformation

Introduce τ = β
α , ω = η

α and a multiparameter μ = (τ, ω, ν). It will cause no
confusion if we use the same letter E to denote

E(r, μ) =
∫ 2π

0

(√
r2(θ) + r′2(θ) + τr(θ)

)
dθ + ωS−ν . (1.4)

Then (1.3) is equivalent to

r3(θ) + 2r(θ)r′2(θ) − r2(θ)r′′(θ)
(r2(θ) + r′2(θ))3/2

+ τ − νω

Sν+1 r(θ) = 0, (1.5)

and

rμ =
(

νω

πν+1(1 + τ)

) 1
2ν+1

(1.6)

is a radially symmetric solution of the equation (1.5) corresponding to a multipa-
rameter μ. Now our goal is to find critical values of a multiparameter μ = (τ, ω, ν)
such that a solution rμ loses its symmetry.

Our main result. The breaking of radial symmetry is depending only on the ratio
τ = β

α of elasticity coefficients and is not depending on others parameters. If τ < 3
then the radially symmetric solution r(θ) ≡ rμ, μ = (τ, ω, ν) given by (1.6) is unique
and stable. The elliptic transformation (see Fig. 3) begins when τ increases from the
first critical value τ = 3.

More precisely, given any (ω, ν) ∈ R
2
+ we prove that for each τk = k2−1, k ≥ 2,

there exists a branch of non-radially symmetric solutions (r(t), τ(t)) of the equation
(1.5), depending on |t| < ε, with

r(t)(θ) = r(τk ,ω,ν) + t · 1√
π

cos(kθ) + o(|t|) (1.7)

and r(0) = r(τk ,ω,ν), τ(0) = τk.

1.2. The physical origin of the problem

Our study was motivated by gas balloons. Namely, we are interested in the anatomy
and behaviour of the part of a balloon that is actually called an envelope.

The fabric in the envelope is flexible (elastic). It is composed of large vertical
sections called gores. Each gore is made up of the same number of horizontal sections
called panels. The panels and gores are held together by stitching and by heavy duty
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Figure 4. A balloon envelope: view from above

load tapes (webbing similar to the material used in seat belts in automobiles) which
help support the weight of the balloon and minimize a strain on the fabric. The top
part of the envelope consisting of one panel of each gore is named a parachute (see
Fig. 4). The standard parachute possesses a circular deflation port - a crown ring -
that is closed off by a circular panel which is held sealed during a flight by a flexible
hook-and-loop closure.

Gas balloons are inflated with a gas of lower molecular weight than the ambient
atmosphere. The most popular gas here is helium.

A biological cluster is a two-dimensional analogue of a gas balloon. This term
was proposed by A. Borisovich and H. Treder in [5]. Moreover, we can treat a
parachute in a balloon envelope as an example of biological cluster, because its
height is much smaller than the length of a top rim - a horizontal tape between the
parachute and the rest of envelope. Then a shell of biological cluster is a top rim
of parachute, a kernel of biological cluster corresponds to a circular deflation panel,
and vertical tapes between panels of parachute are elastic links.

Recently, the interest in symmetry-breaking bifurcation has been increased in
connection with works by Avner Friedman and els., where general methods to study
free boundary problems were developed (see [4, 8, 9, 10]). For example, in [9] A.
Friedman with F. Reitich and in [10] A. Friedman with B. Hu and J.L. Velázquez
considered free boundary problems for a system of two elliptic equations in the
plane. They proved the existence of a bifurcation branch of non-radially symmetric
solutions with free boundary

R(ε)(θ) = R0 + ε cos(lθ) +
∞∑
n=2

fn(θ)εn (1.8)

and corresponding parameter

λ(ε) = λl +
∞∑
n=1

anε
n, (1.9)
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where l ≥ 2 is an integer and R0 > 0 is a free boundary of radially symmetric
solution. λl depends on R0 and l. Their proofs are based on transforming the free
boundary into a fixed one, substituting (1.8) and (1.9) into the resulting systems
and proceeding to solve inductively with respect to the coefficient of εn, n ∈ N.
In [8] M.A. Fontelos and A. Friedman extended the results of [9] and [10] to three
dimensions with cos(lθ) replaced by the spherical harmonic Yl0(θ).

We paid special attention to Friedman’s joint work with A. Borisovich [4], where
a certain elliptic free boundary problem in the plane was treated. They studied the
existence of symmetry-breaking bifurcation from radially symmetric solutions by
reducing the problem to one for which classical bifurcation methods may be applied.
Their proof is based on the Crandall-Rabinowitz theorem on simple bifurcation
points. They suggested that an increasing number of free boundary problems, in
particular shell models, might be solved by similar methods.

The investigation of symmetry-breaking bifurcation in a two-dimensional model
describing nonlinear deformations of a free elastic shell of biological cluster is of great
importance, because it is the introduction to searching three-dimensional models,
starting with a special case in which a side surface is formed by the shape of a
horizontal crosscut, for example cylindrical balloons.

Let X and Y be Banach spaces. Let F be a continuous map of a neighbourhood
of (0, τ0) in X × Λ (Λ ⊂ R

k an open subset) into Y . Suppose that the equation

F (x, τ) = 0 (1.10)

possesses the set of trivial solutions

Γ = {(0, τ) : τ ∈ Λδ(τ0)},
where Λδ(τ0) denotes a ball of radius δ > 0 around τ0 in Λ.

Let us recall that (0, τ0) is called a bifurcation point of (1.10) if there exists
another branch of solutions (x(t), τ(t)), depending on |t| < ε, with τ(0) = τ0 and
x(0) = 0. If the Fréchet derivative of F with respect to x at the point (0, τ0) is
a Fredholm map of index zero then, by implicit function theorem, the necessary
condition for bifurcation at (0, τ0) is that dim kerF ′

x(0, τ0) > 0. General bifurcation
theorems provide sufficient conditions for (0, τ0) to be a bifurcation point (see for
example [1, 6, 7, 15, 17, 18, 19]).

A broad class of problems arising in applications is modeled by a nonlinear
functional equation as (1.10), where a parameter τ has a physical interpretation.

The results of this paper were announced without proofs in [5]. We are going
to establish symmetry-breaking bifurcation branches of solutions by reducing our
free boundary problem to an equation as (1.10) with a nonlinear Fredholm map
for which classical and modern bifurcation theory may be applied. We will use the
Crandall-Rabinowitz theorem on simple bifurcation points. Moreover, we want to
adapt Friedman and collaborator’s approach to symmetry breaking bifurcations in
free boundary problems (see [4, 8, 9, 10]). The scheme of application of the Crandall-
Rabinowitz theorem is similar to that in [2, 3, 11, 12, 13, 14, 16].
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The paper is organized as follows. In Section 2 we reformulate the problem
of symmetry-breaking bifurcation from radially symmetric solutions of (1.5) to the
bifurcation from trivial solutions of an operator equation as (1.10) in appropriate
Banach spaces. We prove that an operator F in our model is a nonlinear Fredholm
map of index zero and it is a variational gradient of an energy functional. In Section
3 by the use of a variational version of the Crandall-Rabinowitz theorem we prove
our main result.

2. Reformulation of the symmetry-breaking bifurcation
problem to one of bifurcation from trivial solutions of a
suitable operator equation

For each (ω, ν) ∈ R
2
+ the equation (1.5) possesses a family of radially symmetric

solutions
Γω,ν = {(rμ, τ) : μ = (τ, ω, ν), τ ∈ R+}, (2.1)

where rμ is defined by (1.6). Set

τk = k2 − 1, k ≥ 2.

Theorem 2.1. For each k ≥ 2, there exists a smooth curve of non-radially symmetric

solutions (r(t), τ(t)) of (1.5), depending on |t| < ε, with r(0) = r(τk ,ω,ν), τ(0) =
τk and r(t) of the form (1.7). Thus (r(τk ,ω,ν), τk) ∈ Γω,ν is a symmetry-breaking
bifurcation point of the equation (1.5).

It is worth pointing out that problems (as above) coming from elasticity the-
ory are of formidable difficulty and their solving is connected with many technical
difficulties.

In this section we are going to reduce the problem of existence of symmetry-
breaking bifurcation branches of solutions of (1.5) to the bifurcation from trivial
solutions of an equation as (1.10) with a nonlinear Fredholm map of index zero.
Moreover, we prove that critical values of bifurcation parameter τ are τk.

Let Cm
e (2π), m ∈ N ∪ {0}, be the subspace of Cm(2π) of even functions. Set

X = Cm+2
e (2π) and Y = Cm

e (2π) (m ∈ N ∪ {0}). (2.2)

Given any τ0 ∈ R+ take (r(τ0,ω,ν), τ0) ∈ Γω,ν. From now on, Xδ(0) and (R+)δ(τ0)
denote balls of radius δ around 0 in X and τ0 in R+, respectively. For  ∈ Xδ(0)
and τ ∈ (R+)δ(τ0) define

r(θ) = rμ + (θ), (2.3)

where μ = (τ, ω, ν) is considered as a function of τ . (δ is sufficiently small such that
r(θ) > 0.) Remark that r(θ) is a small perturbation in X from rμ given by (1.6).

Substituting (2.3) in (1.4), we get the energy functional Ê given by

Ê(, μ) =
∫ 2π

0

(√
(rμ + )2 + ′2 + τ(rμ + )

)
dθ + ωŜ−ν , (2.4)
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where  ∈ Xδ(0), τ ∈ (R+)δ(τ0) and μ = (τ, ω, ν), and

Ŝ = Ŝ(, μ) =
1
2

∫ 2π

0
(rμ + )2dθ.

Moreover, the Fréchet derivative of Ê with respect to  is given by

Ê′
�(, μ)h =

∫ 2π

0

(rμ + )3 + 2(rμ + )′2 − (rμ + )2′′

{(rμ + )2 + ′2}3/2 hdθ

+
∫ 2π

0

(
τ − νω

Ŝν+1
(rμ + )

)
hdθ. (2.5)

Let F̂ : Xδ(0) × (R+)δ(τ0) → Y be given by

F̂ (, μ) =
(rμ + )3 + 2(rμ + )′2 − (rμ + )2′′

{(rμ + )2 + ′2}3/2 + τ − νω

Ŝν+1
(rμ + ). (2.6)

Of course, F̂ is smooth. By the above, critical points of Ê(, μ) are 2π-periodic
Cm+2-smooth even solutions of the equation

F̂ (, μ) = 0. (2.7)

According to (2.5), we have

Lemma 2.2. For each τ ∈ (R+)δ(τ0), F̂ (., μ) : Xδ(0) → Y is a variational gradient

of Ê(., μ) : Xδ(0) → R with respect to the scalar product in L2(2π), i.e.

Ê′
�(, μ)h =

〈
F̂ (, μ), h

〉
(2.8)

for all h ∈ X.

The equation (2.7) possesses a trivial family of solutions

Γ̂ω,ν = {(0, τ) ∈ X × R+ : τ ∈ (R+)δ(τ0)}.
In order to establish the existence of a symmetry-breaking bifurcation branch of
solutions of (1.5) at (r(τ0,ω,ν), τ0) we will study the bifurcation from trivial solutions
of (2.7) at (0, τ0).

The task is now to prove the lemma below.

Lemma 2.3. For each τ ∈ (R+)δ(τ0), F̂ ′
�(0, μ) : X → Y is a Fredholm map of index

0.

Proof. Fix τ ∈ (R+)δ(τ0). An easy computation shows that

F̂ ′
�(0, μ)h = − 1

rμ
h′′ − νω

πν+1rμ2ν+2

(
h− ν + 1

π

∫ 2π

0
h(θ)dθ

)
(2.9)

for each h ∈ X. The map F̂ ′
�(0, μ) : X → Y may be written as a sum

F̂ ′
�(0, μ) = A + B, (2.10)

where
A(h) = − 1

rμ
h′′
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and

B(h) = − νω

πν+1rμ2ν+2

(
h− ν + 1

π

∫ 2π

0
h(θ)dθ

)
.

To finish the proof it suffices to show that A : X → Y is a Fredholm map of index
0, and B : X → Y is completely continuous. It is clear that A is a linear continuous
mapping with kerA = {h(θ) = C : C ∈ R}, and so dim kerA = 1. We have

X = kerA⊕ {h ∈ X :
∫ 2π

0
h(θ)dθ = 0},

and
Y = {h(θ) = C : C ∈ R} ⊕ imA.

From this we see that codim imA = 1, and consequently A is a Fredholm map of
index 0. Now let us consider the operator B as a composition B = B1 ◦ B2, where
B2 : X → X is defined by

B2(h) = − νω

πν+1rμ2ν+2

(
h− ν + 1

π

∫ 2π

0
h(θ)dθ

)

and B1 : X → Y is the natural embedding of X into Y . As B2 is a continuous
mapping and B1 is a completely continuous one, B is also a completely continuous
map. �

By the implicit function theorem the necessary condition for bifurcation from
trivial solutions of (2.7) at (0, τ0) is that dim ker F̂ ′

�(0, τ0, ω, ν) > 0.
To find critical values of bifurcation parameter we have to solve the equation

F̂ ′
�(0, τ, ω, ν)h = 0 (2.11)

with two additional conditions ∫ 2π

0
h(θ) cos θdθ = 0 (2.12)

and ∫ 2π

0
h(θ)dθ = 0. (2.13)

The assumption (2.13) implies a loss of radial symmetry. The evenest of h(θ) and
(2.12) exclude a displacement of mass center of the cluster. The conditions (2.12)
and (2.13) exclude h(θ) = cos(θ) and h(θ) = const �= 0.

Moreover, the assumption (2.13) simplifies the equation (2.11) to

− 1
rμ

h′′ − νω

πν+1rμ2ν+2h = 0.

We take the bifurcation mode ek(θ) = 1√
π

cos(kθ) for k ≥ 2. We obtain

1√
π
· 1
rμ

cos(kθ)
(
k2 − νω

πν+1rμ2ν+1

)
= 0.

By (1.6),
r2ν+1
μ =

νω

πν+1(1 + τ)
,
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and, in consequence,
k2 − 1 − τ = 0,

which implies
τ = τk = k2 − 1, k ≥ 2.

Theorem 2.4. Substituting τk (k ≥ 2) into τ0. Then (0, τk) is a bifurcation point of

(2.7) and the solution set of (2.7) in a neighbourhood of this point is the sum of Γ̂ω,ν

and a smooth curve ((t), τ(t)), parametrized by |t| < ε, such that (0) = 0, τ(0) =
τk and

(t)(θ) = t · 1√
π

cos(kθ) + o(|t|).

3. Proof of Theorem 2.4

In this section we prove Theorem 2.4. Our proof is based on the Crandall-Rabinowitz
theorem on simple bifurcation points (see [7]). More precisely, we will apply a gradi-
ent (variational) version of the Crandall-Rabinowitz theorem due to A.Yu. Borisovich
(see [2, 3]). For the convenience of the reader we state this theorem. For the proof
we refer to [13].

Theorem 3.1. Assume that H is a Hilbert space with a scalar product (., .)H . Let X
and Y be Banach spaces continuously embedded in H. Suppose that a Cr-operator
F : Xδ(0)×Rδ(τ0) → Y and a Cr+1-functional E : Xδ(0)×Rδ(τ0) → R, where r ≥ 2,
satisfy the following conditions:

1. F (0, τ) = 0 for τ ∈ Rδ(τ0),
2. dim kerF ′

x(0, τ0) = 1, F ′
x(0, τ0)e = 0, (e, e)H = 1,

3. codim imF ′
x(0, τ0) = 1,

4. E′
x(x, τ)h = (F (x, τ), h)H for (x, τ) ∈ Xδ(0) × Rδ(τ0) and h ∈ X,

5. E′′′
xxτ (0, τ0)ee �= 0.

Then (0, τ0) is a bifurcation point of the equation

F (x, τ) = 0.

In fact, the solution set of this equation in a certain neighbourhood of (0, τ0) consists
of the curve Γ1 = {(0, τ) : τ ∈ Rδ(τ0)} and a Cr−2-curve Γ2, intersecting only at
(0, τ0). Moreover, if r ≥ 3, the curve Γ2 can be parametrized by a variable t, |t| ≤ ε,

as

Γ2 = {(x(t), τ(t)) : t ∈ Rε(0)},
where x(0) = 0, τ(0) = τ0 and x′(0) = e.

Proof of Theorem 2.4. To finish the proof it is sufficient to show that

Ê′′′
��τ (0, τk, ω, ν)ekek �= 0.

From Lemma 2.2 it follows that

Ê′′
��(0, μ)hg =

〈
F̂ ′
�(0, μ)h, g

〉
.
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Applying (2.9) we have

Ê′′
��(0, μ)hg =

∫ 2π

0

(
− 1
rμ

h′′(θ) − νω

πν+1rμ2ν+2h(θ)
)
g(θ)dθ+

+
∫ 2π

0

(
ν(ν + 1)ω
πν+2rμ2ν+2

∫ 2π

0
h(θ̄)dθ̄

)
g(θ)dθ. (3.1)

Substituting h = g = ek to (3.1), we obtain

Ê′′
��(0, μ)ekek =

1
rμ

(k2 − 1 − τ). (3.2)

Differentiating (3.2) with respect to τ we get

Ê′′′
��τ (0, μ)ekek =

(
πν+1(1 + τ)

νω

) 1
2ν+1

(
k2

(2ν + 1)(1 + τ)
− 1

2ν + 1
− 1

)
.

Finally, for critical values of parameter τ we have

Ê′′′
��τ (0, τk, ω, ν)ekek = − 2ν+1

√
πν+1k2

νω
< 0, k ≥ 2,

which completes the proof. �
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