
 

 

 

 

Abstract— An evolutionary algorithm with elitist 

selection and an immunological procedure has been 

developed for Pareto task assignment optimization in 

logistics. A multi-criterion optimization problem has 

been formulated for finding a set of efficient alternatives. 

Some criteria have been applied for evaluation of 

solutions: bottleneck machine workload, a machine cost, 

and a system performance. Moreover, some numerical 

experiments have been performed and the machine 

constraints have been respected. 

I. INTRODUCTION 

enetic algorithms, evolutionary algorithms and 

evolution strategies are the alternative evolutionary 

approaches to the other meta-heuristic multicriteria 

optimization methods such as simulated annealing, 

immunological systems [1, 6], tabu search [12], scatter 

search or Hopfield neural networks [4]. Evolutionary 

calculations process simultaneously a solution population, 

which permits finding a subset of P-optimal alternatives by 

one run as a replacement for several isolated runs of the 

other multiobjective optimization techniques [7]. From this 

reason evolution approaches are convenient, if we look for 

the subset of Pareto-optimal solutions [16, 17]. 
Experimental outcomes demonstrate that elitism can 

increase performance of multi-objective evolutionary 

algorithms radically [18]. Moreover, elitism avoids the 

damage of non-dominated alternatives, if they have been 

established. A concept of elitism for multi-criterion 

evolutionary algorithms is taken from evolution strategies 

regarding evolution strategy developed for combinatorial and 

multi-objective optimization problems [5]. The other 

evolution strategy with an archive for finding P-optimal 

solutions has been suggested in [13].  

In this paper, a problem of task allocation in logistics has 

been verbalized as a combinatorial and multi-objective 

optimization question characterized by some partial criteria: 

a machine cost, a bottleneck machine workload, and the 

system performance. Moreover, three kinds of constraints 

have been considered. The first constraint sort is related with 

the assumption that each task should be allocated to the 

machine, and the second one – with assumption one and only 

one machine should be allocated to a place of the task 

performing. Furthermore, the resource constraints are 

respected.  

II. EVALUATION CRITERIA 

We assume that some important logistic tasks are performed 

by some machines, automatically. A bottleneck machine is 

characterized by the heaviest logistic task load. A bottleneck 

workload is should be minimized as a critical factor that can 

balance a whole load among elements. The weight of the 

bottleneck machine is calculated, as below: 
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where 

vjt
 

– a time of the overhead performing for the task 

number v by the machine sort number j, 

ikvu  – a time of a resource transport between the task 

number v at the place wi and the task number u at 

the place wk. 
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The machine cost is determined regarding the formula, as 

below: 
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where αj is the machine cost for the sort number j.  

The total machine performance is calculated, as follows: 
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where j  is the logistic machine performance for its sort 

number j.  

III. MUTIOBJECTIVE OPTIMIZATION PROBLEM 

An optimal configuration of task in a logistic system that can 

be modeled as a task assignment may reduce the total cost of 

a set of tasks execution or the workload of bottleneck 

machine. It can decrease the cost of machines because of the 

machine sort selection, too. A total amount of system 

performance is another measure that can be maximized by 

task scattering and by the machine sort selection. An 

advantage of the system with an optimal task assignment 

may exceed 50% value of any criterion for a system with 

a task scattering designed without an optimization technique 

[2]. The bottleneck machine load is assessment criterion of 

the system configuration that causes the load balance and 

also minimizes a response time [3]. 

In that problem, the admissible solution satisfies three 

classes of constraints. Because each unit is allocated to one 

node, the logistic task allocation constraints are devised, as 

below: 
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We assume one and only one machine should be allocated 

at each node. It implies the machine allocation constraints, as 

follows: 
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Each machine provides some resource capacities to 

perform some assigned tasks. Let some resources z1,...,zl,...,zL 

be required in a logistic system. We introduce jl to represent 

the lth resource capacity in the machine pj . We assume the 

task number v holds ηvl units of zl. The values jl and ηvl are 

nonnegative and limited.  

The resource capacity limit in any machine in the ith place 

cannot be exceeded, what can be written, as bellows:  
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The multiobjective optimization problem may be 

established a triple (X, F , P) to find the Pareto 

representation of some optimal solutions, as follows [15]: 

1) X - an admissible solution set 
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B ={0, 1} 

2) f – a multi-objective optimization criterion 

,   : 3RXf                           (7) 

where f(x) = [K(x), ϴ(x), Zmax(x)] T  ,  xX 

3) P  - the relationship of optimization preferences [14]  

 

 

IV. MUTIOBJECTIVE OPTIMIZATION ALGORITHMS 

 

Some advanced evolutionary algorithms have been 

developed for several multi-objective optimization problems 

[8, 9, 11]. What is more, some of them have been tested for 

finding the set of Pareto-optimal task assignments [2, 3].  

A ranking idea for non-dominated individuals was 

introduced to avoid the prejudice of the interior Pareto 

solutions [10]. Then, the first algorithm called NSGA with 

the ranking procedure has built on the ideas mentioned by 

Goldberg [15].  

In a current population, some non-dominated individuals 

get a rank equal to 1. Then, the second level of non-

dominated alternatives is assigned the rank 2. This assigning 

procedure is recurred until the population is preceded. It is 

worth to mention that all non-dominated individuals have the 

same reproduction fitness because of the equivalent rank.  

Deb et al. have improved NSGA by introduction an elitist 

procedure [8]. In an evolutionary algorithm called NSGA-II, 

a selection of potential parents is based on a binary 

tournament. Both an offspring population and a parent 

population are combined to select a new parent population. 

If two chromosomes are characterized by the other ranks, it 

with smaller rank is preferred. If individuals have the same 

rank, there is preferred the logistic configuration of tasks in 

a less overcrowded region.   
 

V. ADAPTIVE MULTI-CRITERION EVOLUTIONARY 

ALGORITHM WITH ELITIST SELECTION 
 

Adaptive evolutionary algorithm with elitist selection called 

AMEA+ is noticed as an advanced optimization technique 

for multi-criterion logistic task assignment [3]. Figure 1 

shows a diagram of AMEA+. The preliminary set of 

chromosomes is erected to satisfy constraints (4) and (5) 
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(Fig. 1, line 3). Generated individuals are constructed by 

integer coding, as below: 
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Fitness function is calculated for some admissible 

solutions (Fig. 1, line 4), as below: 

,1)()( maxmax   xPxF                    (9) 

where (x) is the admissible solution rank, max)(1   x . 

 

1. BEGIN 

2. φ:=0, enter ψ – the size of chromosome population,  γ –
 the chromosome length, pm:=(ψ γ) -1; 
3. Create a preliminary set Pop(φ), M(φ):= Pop(φ); 

4. Compute ranks (x) and values of fitness 

)(),( PopxxF  

5. work:=TRUE 

6. WHILE work DO 

7.     BEGIN /* create a new population */ 

8.     φ:= φ +1, :)(Pop  

9.     Estimate probabilities )1(),(  Pxxps
 

10.   FOR ψ/2 DO 

11.   BEGIN /* reproduction cycle */ 

12.       2WT potential parent selection (a,b) from P(φ -1)  

13.       S-crossover of a pair (a,b) with the adaptive 

crossover rate max/
:

T

c ep
  

14.       S-mutation of an offspring pair (a',b') with pm 

15.       P(t):=P(t)  (a',b'} 

16. END 

17. P(φ):= M(φ)  P(φ) 

18.    Compute ranks (x) and values of fitness 

)(),( PxxF  

19.    An elitist selection of ψ solutions with the largest F  (x) 

in P(t); if more than ψ items have the same rank, use 

the crowd measure to select ψ solutions; 

20.    IF (φ Tmax OR P(φ) converges) THEN 

         work:=FALSE 

21. END 

22. END 

 

Fig. 1. A diagram of an adaptive multi-criteria genetic 

algorithm with elitist selection 

 

The 2WT potential parent selection is the two-weight 

tournament because two times the roulette rule is made.  

The chromosome crossover point is randomly selected and 

two offspring are formed regarding max/
:

T

c ep
 . The first 

part of the parent a is concatenated with the second part of 

the parent b. Similarly, the first part of the parent b is 

concatenated with the second part of the parent a. Each pair 

of potential individuals is randomly chosen for crossover 

with the probability pc. If chromosomes are not taken for 

crossover, parents are transferred to a set of offspring. 

A crossover rate decreases during the progressing of 

evolution. So, the changes of a search area retire slowly.      

The S-mutation is based on the integer random 

modification by another feasible value. For 
ta sk

vX , the set 

},...,1{ I  is considered, and for 
p

iX , the set },...,1{ J is 

adequate. A constant mutation rate is assigned.  

A search space for the considered evolutionary algorithm 

consists of I 
V
J 

I
 elements. It can be proved that S-crossover 

and S-mutation give ability for obtaining each solution in the 

search space. So, we can expect to find non-dominated 

assignments after an exhausted search.   

Some numerical experiments demonstrate that elitism may 

improve the quality of alternatives [13, 14, 18]. An improved 

elitist selection is carried out as follows. Let M(t) be an old 

population P(t-1) and  P(t) be a new population created from 

M(t) by mating, crossover and mutation. Firstly, a sum of 

two populations M(t)  P(t) is created. Secondly, ranks are 

calculated for an entire population M(t)  P(t). Each non-

dominated solution in the extended set is characterized by 

the fitness value regarding its rank. Finally, L solutions are 

qualified with the higher fitness f (x) to P(t).  

Let Tmax be a maximal number of new populations that is 

O(n), where n =  max{I, V, J}, I is O(J), and V is O(J). 

Moreover, let a size L of population be O(n), too. Now, we 

can assess a complexity of the AMEA-II. Fitness (Fig. 1, line 

18) is calculated O(n
2
) times what gives the complexity 

O(n
6
) for the AMEA-II applied to the multi-objective logistic 

problem.  

 

VI. CONVERGENCE MEASURE 
The convergence of the studied algorithm can be considered 

by measuring the quality of obtained logistic task 

assignments to the Pareto front. So, we introduce a closeness 

measure for the obtained efficient points to the given Pareto 

points {P1, P2,..., PU}. They may be found by enumerative 

search for small instances. An evolutionary algorithm can 

find the set of sub-efficient points {A1, A2,..., AU’}, where 

U’ ≤ U. If there is an outcome Au= (Au1, Pu2, Au3) with the 

same cost of computers as the uth Pareto result 

Pu= (Pu1, Pu2, Pu3), then the distance between these points is 

equal to     .
2

44

2

11 uuuu APAP   If Au is missed by the 

AMEA+, then the distance  


3

2
1

2

i
i

uiui AP  is considered, 

where 

1uA  is the maximal load of the bottleneck machine, 

and 

3uA  is the minimal performance of machines, for the 

instance of the problem (7).  
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Some ξ initial populations are generated, and ξ values of 

the distances 
l

uS  are calculated. A convergence criterion to 

the P-set is calculated, as below: 

.
1

1 1

 
 
 l

U

u

l

uSS                            (10) 

The AMEA+ gives better results than AMEA without an 

elitist procedure. In the 200 iteration, S is 1.3% for the 

AMEA+ and 1.6% for the AMEA. Above algorithms have 

been run 30 times. 

For the instance with 2 places, 10 tasks, and 5 machines 

types, 30 binary variables generate 1 073 741 824 solutions 

in the search space. ϴ is a value from [200, 600], K is from 

[2, 10] [money unit], and Zmax is from [26; 75] [time unit]. 

A formula I 
V
J 

I
 permits to calculate an upper bound of the 

number of an admissible set. Figure 2 displays the two 

criteria space of evaluations. The ideal point y
o
 and the anti-

ideal point y 
–
 can be used for finding a compromise 

solutions. 

 

 
Fig. 2. Bi-criteria evaluation space 

  

VII. CONCLUDING REMARKS 
 

The AMEA+ is capable techniques for solving 

a multiobjective optimization problems focused on finding 

logistic task allocations that minimize the cost of machines, 

a workload of the bottleneck machine, and maximize  

performance of logistic system.  

Every one of non-dominated solutions in the combined 

population is assigned a fitness based on the rank of 

solutions. Dominated solutions are assigned fitness worse 

than the worst fitness of any non-dominated solutions in 

a population. This assignment of fitness makes sure that the 

search is directed towards the non-dominated solutions, too. 

Our future works will focus on finding the combination 

the multicriteria evolutionary algorithm with the 

immunological algorithm to include some ranking 

procedures to handle constraints and for improving the 

obtained Pareto-optimal task assignments.  
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