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a b s t r a c t

Given a simple graph G, by an L(p, q)-labeling of G we mean a function c that assigns
nonnegative integers to its vertices in such a way that if two vertices u, v are adjacent then
|c(u)− c(v)| ≥ p, and if they are at distance 2 then |c(u)− c(v)| ≥ q. The L(p, q)-labeling
problem can be defined as follows: given a graph G and integer t , determine whether there
exists an L(p, q)-labeling c of G such that c(V ) ⊆ {0, 1, . . . , t}. In the paper we show
that the problem isN P -complete even when restricted to bipartite planar graphs of small
maximum degree and for relatively small values of t . More precisely, we prove that:

(1) if p < 3q then the problem is N P -complete for bipartite planar graphs of maximum
degree∆ ≤ 3 and t = p+max{2q, p};

(2) if p = 3q then the problem is N P -complete for bipartite planar graphs of maximum
degree∆ ≤ 4 and t = 6q;

(3) if p > 3q then the problem is N P -complete for bipartite planar graphs of maximum
degree∆ ≤ 4 and t = p+ 5q.

In particular, these results imply that the L(2, 1)-labeling problem in planar graphs is
N P -complete for t = 4, and that the L(p, q)-labeling problem in graphs of maximum
degree ∆ ≤ 4 is N P -complete for all values of p and q, thus answering two well-known
open questions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The channel assignment problem is one of the potential applications for various problems of theoretical computer science.
The considered task is to assign channel frequencies (nonnegative integers) to radio transmitters in such a way that each
transmitter receives exactly one channel and interference during transmission does not occur. This problem was first
formulated in graph-theoretic terms by Hale [9]. In this paper we study a variant of this formulation named L(p, q)-labeling.
Let p1 ≥ p2 ≥ · · · ≥ pk (k ≥ 1) be positive integers and let G = (V , E) be a simple graph. By an L(p1, p2, . . . , pk)-labeling

of G we mean any function c from the set of vertices V to the set of all nonnegative integers such that |c(u) − c(v)| ≥ pi
whenever the distance of u and v is i. The smallest integer t such that labeling c satisfies c(V ) ⊆ {0, 1, . . . , t} is called the
span of c. The minimum value of span, taken over all L(p1, p2, . . . , pk)-labelings of G, is denoted by λp1,p2,...,pk(G). It is easy
to see that

min
i≤k
pi · (χ(Gk)− 1) ≤ λp1,p2,...,pk(G) ≤ maxi≤k

pi · (χ(Gk)− 1) (1)

where Gk is the kth power of graph G (i.e. a graph with V (Gk) = V (G) and edges connecting vertices that are of distance at
most k in G) and χ is the chromatic number. Computing of χ(Gk) is N P -hard for any k ≥ 1 [10]. Moreover, it is hard to
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approximateχ(Gk)within a factor ofO(n1/2−ε) for any ε > 0 (see [1] for details). This shows that the problemof determining
λp1,p2,...,pk(G) is computationally hard.
In this paperwe focus on the case k = 2,which seems to be themost important.We study the complexity of the following

problem, defined for any three of nonnegative integer parameters p > q and t .

The L(p, q)-labeling problem (LPQ)

Instance: A simple graph G.
Question: Is there an L(p, q)-labeling of Gwith span at most t , i.e. λp,q(G) ≤ t?

1.1. Related work and our contribution

The L(p, q)-labeling problem has been studied for over 10 years. The first interesting results were given by Chang and
Kuo [4], who proved that λ2,1(T ) can be determined in polynomial time for a tree T . Their algorithm runs in O(n∆4.5) time
(∆ is the maximum degree of a graph and n is the number of its vertices) and after small modifications can be used to solve
the L(p, 1)-labeling problem on trees, for any p ≥ 2. On the other hand, recently Fiala et al. [5] have shown that the problem
isN P -complete for q > 1.
Bodlaender et al. [2] proved that the L(2, 1)-labeling problem is N P -complete on planar graphs. They showed that the

problem of deciding whether λ2,1(G) ≤ 8 is N P -complete for these graphs; for more results concerning planar graphs
see [3,12].
In this paper we obtain – as a direct corollary of some more general considerations – a stronger hardness result for

L(2, 1)-labeling on planar graphs, involving a smaller bound on the value of span. Namely, we show that for bipartite planar
graphs the problem of deciding whether λ2,1(G) ≤ 4 isN P -complete. This establishes the border betweenN P -complete
and polynomial cases for L(2, 1)-labeling in planar graphs since it is easy to decide whether a given planar graph admits an
L(2, 1)-labeling with span at most 3.
Fiala et al. [6] have shown that the L(p, q)-labeling problem isN P -complete for every p and q and fixed span (p+dp/qeq).

They considered arbitrary graphs, but their results can be formulated in a slightly strongerway: the L(p, q)-labeling problem
isN P -complete for graphs with maximum degree∆ ≤ dp/qe + 1.
Herein we also strengthen these results. More precisely, we show that if p < 3q (p ≥ 3q) then the problem is

N P -complete even for bipartite planar graphs with maximum degree∆ ≤ 3 (∆ ≤ 4) and for fixed span.

1.2. Outline of the paper

The rest of the paper is organized as follows. In Section 2 we briefly present certain properties of L(p, q)-labelings of a
graph which are useful in later considerations. In Section 3 we prove that the problem of deciding whether λp,q(G) ≤ p+5q
isN P -complete for all p > 3q even when restricted to planar bipartite graphs of maximum degree 4. Next, the problem of
deciding whether λp,q(G) ≤ p +max{2q, p} is shown to be N P -complete for planar bipartite graphs of maximum degree
3 for all p < 3q (in Section 4), and for planar bipartite graphs of maximum degree 4 when p = 3q (in Section 5). Some final
conclusions are stated in Section 6.

2. Some properties of L(p, q)-labelings

The following lemma will be useful in the remainder of the paper.

Lemma 1 ([8]). Let c be an L(p, q)-labeling of graph G. There is an L(p, q)-labeling c ′ of G such that for every vertex v ∈ V we
have

(1) c ′(v) ≤ c(v),
(2) c ′(v) = ap+ bq for some nonnegative integers a, b.

As a corollary we obtain that for any graph G, λp,q(G) = ap+ bq, for some pair of integers a, b ≥ 0.

3. The case p > 3q

In this section we focus on the case p > 3q. More precisely, we are going to show that the following subproblem of LPQ
isN P -complete.

The L(p, q)-labeling problem for p > 3q (Lp>3q)

Instance: A bipartite, planar graph G of maximum degree at most 4.
Question: Is λp,q(G) ≤ p+ 5q?
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Fig. 1. The gadget H∗ and its partial edge 4-coloring (dotted edges receive color 0, non-pendant black color 1, dashed color 2 and thick gray color 3;
pendant black edges remain uncolored).

To this aim, we recall some properties of two classic notions: t-colorability and edge t-colorability. Graph G is t-colorable
(edge t-colorable) if and only if there is a function c that maps its vertices (edges) into the set {0, 1, . . . , t − 1} in such
a way that c(u) 6= c(v) (c(e1) 6= c(e2)) for any two adjacent vertices u, v (edges e1, e2). It is known [7] that the
3-colorability problem is N P -complete for planar graphs. We show that it is N P -complete in an even more restricted
case. More precisely, we prove that the following problem isN P -complete.

Restricted 3-coloring of planar graphs (3CP-1)

Instance: An edge 4-colorable planar graph G such that for every vertex v ∈ V we have deg(v) ∈ {1, 4}.
Question: Is G 3-colorable?

The 3CP-1 problem is a variant of the 3-coloring problem considered in [2]; Lemma 2 is a variant of Lemma 33 of [2].

Lemma 2. The 3CP-1 problem isN P -complete.

Proof. To show that 3CP-1 is N P -complete, we use a transformation from the following problem (the reader may refer
to [7] for a proof of itsN P -completeness).

3-coloring of 4-regular planar graphs (3CP-2)

Instance: A 4-regular planar graph G.
Question: Is G 3-colorable?

Suppose that G = (V , E) is an instance of 3CP-2, i.e. G is planar and 4-regular. To get an instance G′ of 3CP-1 from G, we
change G in a way similar to that described in [2]. We replace every vertex v ∈ V by a copy of the gadget H∗ shown in Fig. 1.
Next, every edge {u, v} ∈ E changes into an edge connecting two black vertices, one in a copy of H∗ that replaces u and one
in copy of H∗ that replaces v. The second step is performed in such a way that the resulting graph G′ is planar and all its
black vertices are of degree 4.
Clearly, the transformation can be done in polynomial time. Moreover, G′ is planar and all its vertices are of degree 4

or 1. To show that G′ is edge 4-colorable, it suffices to color edges in copies of H∗ in the way shown in Fig. 1 and complete
the resulting partial coloring. The completion is achieved by the greedy coloring first, of all uncolored, non-pendant edges,
and next, of all pendant edges. In the first step of the completion, the edge currently undergoing coloring has 4 colored
neighbors, two of which have identical color 0, so a color from the set {1, 2, 3} can always be assigned. In the second step,
the edge being colored has 3 neighbors, and therefore it will receive a color from the set {0, 1, 2, 3}. Therefore the resulting
coloring uses 4 colors.
The proof of the fact that G is 3-colorable if and only if G′ is 3-colorable is immediate when we observe that in any

3-coloring of gadget H∗ all the black vertices must obtain the same color. �

Now we are ready to prove main result of the section.

Theorem 3. The Lp>3q problem isN P -complete.

Proof. We will show how to reduce 3CP-1 to Lp>3q in polynomial time.
LetG be an instance of 3CP-1. Without loss of generalitywe can assume that V (G)∩E(G) = ∅. LetH be the graph resulting

from G by inserting a vertex in every edge of G, i.e. V (H) = V (G) ∪ E(G) and E(H) = {{u, e}: u ∈ V (G)is incident with e ∈
E(G)}. Clearly, H is a bipartite, planar graph of maximum degree 4. To complete the proof, it suffices to show that χ(G) ≤ 3
if and only if λp,q(H) ≤ p+ 5q.
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Fig. 2. Label adjacency graphs (cases a–c).

(⇒) Let c: V (G)→ {0, 1, 2} be a 3-coloring of G and c ′: E(G)→ {0, 1, 2, 3} be an edge 4-coloring of G. It is easy to see
that function l: V (H)→ N given by

l(v) =
{
qc ′(v) if v ∈ E(G)
p+ 3q+ qc(v) if v ∈ V (G) (2)

is an L(p, q)-labeling of H . Moreover, max l(V (H)) = p+ 5q and therefore λp,q(H) ≤ p+ 5q.
(⇐) Let l be an L(p, q)-labeling of H such that max l(V (H)) ≤ p+ 5q. By Lemma 1 we may assume that labels used by l

are of the form ap+ bq, a, b ≥ 0. Let G1 be a subgraph of G induced by vertices of degree 4. To complete the proof, it suffices
to show that G1 is 3-colorable. To this aim we focus on labels used by l on vertices of G1. We will study which of these labels
can be adjacent, i.e. may be assigned to adjacent vertices.
First, let us note that every vertex u of G1 has 4 incident edges in G, say e1, e2, e3 and e4. Without loss of generality we

may assume that l(e1) < l(e2) < l(e3) < l(e4). There are only three cases to be considered:

(1) l(u) < l(e1). Then l(e4)− l(u) = (l(e4)− l(e3))+ (l(e3)− l(e2))+ (l(e2)− l(e1))+ (l(e1)− l(u)) ≥ p+ 3q. On the other
hand l(e4) ≤ p+ 5q, and thus l(u) ≤ 2q.

(2) l(u) > l(e4). Then l(u)− l(e1) = (l(u)− l(e4))+ (l(e4)− l(e3))+ (l(e3)− l(e2))+ (l(e2)− l(e1)) ≥ p+ 3q. On the other
hand l(e1) ≥ 0, and thus l(u) ≥ p+ 3q.

(3) l(e1) < l(u) < l(e4). Then l(ei) < l(u) < l(ei+1) for some i ∈ {1, 2, 3}. Hence p + 5q ≥ l(e4) − l(e1) =
(l(e4)− l(e3))+ · · · + (l(ei+1)− l(u))+ (l(u)− l(ei))+ · · · + (l(e2)− l(e1)) ≥ 2p+ 2q, a contradiction.

Summarizing, labels used by l on vertices of G1 are either not greater than 2q or not smaller than p+ 3q.
For labeling l we define the label adjacency graph Hl as the graph with vertices being labels used by l on G1 and

edges connecting pairs of labels which are assigned to adjacent vertices of G1, i.e. V (Hl) = l(V (G1)) and E(Hl) =
{{l(u), l(v)}: u and v are connected by an edge in G1}. The structure of Hl depends on the ratio p/q. There are six cases to
consider:

(a) 3q < p < 4q. In this case V (Hl) ⊆ {0, q, 2q, 7q, 8q, p+3q, p+4q, p+5q, 2p, 2p+q}. Wewill show thatHl is a subgraph
of the graph shown in Fig. 2a.
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Fig. 3. Label adjacency graphs (cases d–f).

Suppose, contrary to our claim, that there is a pair u, v of adjacent vertices of G1 such that {l(u), l(v)} is not an edge of
the graph shown in Fig. 2a. Without loss of generality we can assume that l(u) < l(v). There are two cases to consider:
(1) {l(u), l(v)} ∈ {{7q, 2p}, {7q, p + 3q}, {7q, p + 4q}, {8q, 2p + q}, {8q, p + 4q}, {8q, p + 5q}, {2p, p + 3q}, {2p, p +
4q}, {2p+ q, p+ 4q}, {2p+ q, p+ 5q}}. Then |l(u)− l(v)| < q, which is impossible due to the fact that u and v are
of distance 2 in H .

(2) {l(u), l(v)} ∈ {{0, p+3q}, {q, 7q}, {q, 2p}, {q, p+3q}, {q, p+4q}, {2q, 7q}, {2q, 8q}, {2q, 2p}, {2q, 2p+q}, {2q, p+
3q}, {2q, p + 4q}, {2q, p + 5q}}. Let e be an edge connecting u with v in G1. Then l(e) > l(u), since otherwise
l(e) ≤ l(u) − p < 0 and l(e) < l(v) since otherwise l(e) ≥ l(v) + p > p + 5q. Therefore l(u) < l(e) < l(v) and
l(u)− l(v) ≥ 2p, a contradiction.

(b) p = 4q. In this case V (Hl) ⊆ {0, q, 2q, 7q, 8q, 9q}. Using the same arguments as above one can show thatHl is a subgraph
of the graph shown in Fig. 2b.

(c) 4q < p < 5q. In this case V (Hl) ⊆ {0, q, 2q, 8q, 9q, p+ 3q, p+ 4q, p+ 5q, 2p}. Using the same arguments as above one
can show that Hl is a subgraph of the graph shown in Fig. 2c.

(d) p = 5q. In this case V (Hl) ⊆ {0, q, 2q, 8q, 9q, 10q}. Using the same arguments as above one can show that Hl is a
subgraph of the graph shown in Fig. 3d.

(e) p > 5q and q|p. In this case V (Hl) ⊆ {0, q, 2q, p+3q, p+4q, p+5q}. Using the same arguments as above one can show
that Hl is a subgraph of the graph shown in Fig. 3e.

(f) p > 5q and q6 |p. In this case V (Hl) ⊆ {0, q, 2q, (bp/qc + 4)q, (bp/qc + 5)q, p + 3q, p + 4q, p + 5q}. Using the same
arguments as above one can show that Hl is a subgraph of the graph shown in Fig. 3f.

In each of the above cases Hl is a subgraph of a graph that is 3-colorable (white vertices receive color 0, gray vertices receive
color 1, and black vertices receive color 2) and thus it is 3-colorable. This completes the proof. �

4. The case p < 3q

Let us now consider the complexity of the L(p, q)-labeling problem, restricted to planar subcubic graphs, for values of
p < 3q.
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The L(p, q)-labeling problem for p < 3q (Lp<3q)

Instance: A bipartite, planar graph G of maximum degree at most 3.
Question: Is λp,q(G) ≤ p+max{2q, p}?

Before we proceed to show theN P -completeness of the above problem, let us present several of its simple properties.

Proposition 4. A subcubic graph admits an L(p, q)-labeling with span at most t (t = p + max{2q, p}) only if it admits such a
labeling with the additional constraint that vertices of degree 3 can only receive labels 0 or t.

Proof. Indeed, suppose that the considered graph has an L(p, q)-labeling c with span at most t . Observe that any vertex v
of degree 3 may only receive label c(v) ≤ t − p − 2q or c(v) ≥ p + 2q, since otherwise it would be impossible to extend
the labeling to the neighbors of v (note that 2p+ q > t). Thus, taking into account the condition p < 3q, we have c(v) < q
or c(v) > t − q. Notice that a modification of labeling c such that c(v) := 0 in the former case and c(v) := t in the latter
case cannot affect its legality, which completes the proof. �

Given a subcubic graph G = (V3 ∪ V1, EG) without vertices of degree 2, let G = (V3 ∪ V2 ∪ V1, EG) denote the subcubic
graph formed by inserting exactly two vertices of degree 2 into each edge of G (we assume that v ∈ Vd if and only if its
degree is equal to d, d ∈ {1, 2, 3}). Then the following property holds.

Proposition 5. Graph G admits an L(p, q)-labeling with span at most t only if it admits such a labeling with the following
additional constraints:

(i) each vertex from V3 receives one of the labels 0 or t,
(ii) each vertex v ∈ V3, such that all neighbors of v in G belong to V3, has the same label as exactly two of these neighbors.

Proof. If G admits an L(p, q)-labelingwith span atmost t , then by Proposition 4we can define a labeling c of Gwhose span is
at most t andwhich fulfills constraint (i). Now, let v ∈ V3 be a vertex of degree 3 connected in G to vertices {v1, v2, v3} ⊆ V3.
Let (vu1au1bv1), (vu2au2bv2), (vu3au3bv3) denote the corresponding paths in G, where {u1a, u1b, u2a, u2b, u3a, u3b} ⊆ V2.
Without loss of generality we may write c(u1a) < c(u2a) < c(u3a). Supposing that c(v) = 0, we obtain the following
conditions by verifying the correctness of L(p, q)-labeling c along the paths from vertex v to vertices vi, and taking into
account that q < p < 3q, t = p+max{2q, p}, and 2p+ q > t:

(a)

|c(u1a)− c(v)| ≥ p H⇒ c(u1a) ≥ p,
c(u2a)− c(u1a) ≥ q ∧ c(u3a)− c(u2a) ≥ q H⇒ c(u1a) ≤ t − 2q,
|c(u1b)− c(v)| ≥ q ∧ |c(u1b)− c(u1a)| ≥ p H⇒ c(u1b) ≥ 2p,
|c(v1)− c(u1b)| ≥ p ∧ c(v1) ∈ {0, t} H⇒ c(v1) = 0;

(b)

c(u2a)− c(u1a) ≥ q ∧ c(u3a)− c(u2a) ≥ q ∧ c(u1a) ≥ p H⇒ c(u3a) ≥ p+ 2q,
|c(v3)− c(u3a)| ≥ q ∧ c(v3) ∈ {0, t} H⇒ c(v3) = 0;

(c)

c(u1a)+ q ≤ c(u2a) ≤ c(u3a)− q ∧ c(u1a) ≥ p H⇒ p+ q ≤ c(u2a) ≤ t − q,
|c(u2b)− c(u2a)| ≥ p H⇒ c(u2b) ≤ t − p− q,
|c(v2)− c(u2b)| ≥ p ∧ c(v2) ∈ {0, t} H⇒ c(v2) = t.

Thus, assuming that c(v) = 0, we have obtained c(v1) = c(v3) = 0 and c(v2) = t . Likewise, when c(v) = t the same
method can be used to prove that c(v1) = c(v3) = t and c(v2) = 0. Therefore labeling c fulfills both constraint (i) and
constraint (ii). �

It is also possible to formulate a somewhat modified version of the converse of the above proposition.

Proposition 6. Any labeling c: V3 ∪ V1 → {0, t}, such that each vertex v ∈ V3 has exactly two neighbors with the same label
in graph G, can be extended to an L(p, q)-labeling c: V3 ∪ V2 ∪ V1 → {0, . . . , t} of graph G, preserving c(v) = c(v) for all
v ∈ V3 ∪ V1.

Proof. Since G is subcubic, the subset EC of its edges for which both end-vertices have the same label, EC = {{v1, v2} ∈
EG: c(v1) = c(v2)}, forms a set of paths and cycles in G, whereas EG \ EC is an independent set of edges. We can direct all
edges from EC , obtaining a set of arcs EEC such that each vertex v ∈ V3 is the head of exactly one arc and the tail of exactly one
arc from EEC . Now, consider an L(p, q)-labeling procedure in graph Gwhich, given a path (v1u1u2v2)where {v1, v2} ⊆ V3∪V1
and {u1, u2} ⊆ V2, determines values of labels c(u1) and c(u2) according to the following set of rules (illustrated in Fig. 4):
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Fig. 4. Illustration of the procedure for converting a labeling of graph G into a labeling of graph G. Directed edges denote arcs from EEC .

Fig. 5. Auxiliary gadgets: (a) H1(m), (b) H2(v).

(a) if c(v1) = c(v2) = 0 and (v1, v2) ∈ EEC , then c(u1) := p and c(u2) := t ,
(b) if c(v1) = c(v2) = t and (v1, v2) ∈ EEC , then c(u1) := t − p and c(u2) := 0,
(c) if c(v1) = 0 and c(v2) = t , then c(u1) := t − q and c(u2) := q.

By applying the above rules we determine label values c(u) for all vertices u ∈ V2, and the correctness of the obtained
labeling is easy to verify. �

The proof of N P -completeness of Lp<3q proceeds by reduction from the problem of exact cover by 3-sets, restricted to
cubic planar instances. This problem, referred to as X3C, can be formulated in the way described below and is known to be
N P -complete [11].

Exact Cover by 3-Sets (X3C)

Instance: A cubic bipartite planar graph H = (V ∪M, E) having bipartite partitions V andM , such that
|V | = |M| = 3s.

Question: Is there a subsetM ′ ⊆ M of cardinality |M ′| = s covering all vertices in V?

Theorem 7. The Lp<3q problem isN P -complete.

Proof. In order to prove the claim we will show that for all values p < 3q there exists a polynomial time algorithm which,
given an X3C instance H , determines a subcubic bipartite planar graph G such that problem X3C has a positive solution for
H if and only if λp,q(G) ≤ t .
Consider the transformation of X3C instance H = (V ∪M, E) into graph G, defined by the following two operations:

(1) each vertexm ∈ M , adjacent to some three vertices {v1, v2, v3} ⊆ V , is replaced by the gadget H1(m) shown in Fig. 5a,
(2) each vertex v ∈ V , adjacent to some three vertices {m1,m2,m3} ⊆ M , remains unchanged as the gadget H2(v) (Fig. 5c).

It is easy to observe that the resulting graph G is subcubic, bipartite and planar. Furthermore, G has no vertices of degree
2. Therefore we can create graph G from G in such a way that Propositions 5 and 6 hold; the entire construction of G from H
is evidently polynomial. Since graph G is also subcubic, bipartite and planar, it now suffices to show that problem X3C has
a positive answer for graph H if and only if λp,q(G) ≤ t .
(⇐) Suppose that λp,q(G) ≤ t . Then by Proposition 5 it is possible to define a labeling of vertices of G with integers 0

and t , such that each vertex of degree 3 in G with three neighbors in G of degree 3 has a label different from exactly one
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Fig. 6. Configurations of selected edges (marked in bold): (a) both possible configurations in a fragment of gadget H1(m), for i = 1, 2, 3, (b) corresponding
configurations in gadget H1(m). In the considered labeling all black nodes have the same labels (one of {0, t}); all white nodes have the other label.

of those neighbors; an edge in G connecting such two vertices having different labels will be called selected. Let m ∈ M be
arbitrarily chosen. Let us consider all possible arrangements of selected edges in a fragment of gadget H1(m) ⊆ G, as shown
in Fig. 6a; observe that for the labeling to satisfy the imposed constraints, the number of selected edges in each cycle of the
graph must be even. We easily conclude that there are exactly two possible configurations of outgoing edges of the gadget
H1(m): either all outgoing edges of H1(m) are selected, as shown in the left-hand configuration in Fig. 6b, or none of them
are selected, as presented in the right-hand configuration. The sought solution to the X3C problem is now constructed as
the set of those m ∈ M for which all outgoing edges in H1(m) are selected. All that remains to be observed is that such a
solution does indeed cover every vertex v ∈ V . This is true, since by applying Proposition 5 to the corresponding gadget
H2(v) ⊆ Gwe immediately obtain that for each of these gadgets exactly one outgoing edge must always be selected.
(⇒) Suppose that problem X3C has a positive answer for graph H . Consider a labeling of vertices of graph G given by the

following procedure:
(1) For all v ∈ V , assign label 0 to all vertices belonging to gadgets H2(v).
(2) For all H1(m),m ∈ M , adopt the left-hand configuration of selected edges (shown in Fig. 6) for thosemwhich belong to
the cover in the solution to X3C for H , and the right-hand configuration for all other m. Next, label vertices of degree 3
belonging to gadget H1(m) using labels 0 and t in such a way that the end-vertices of an edge receive different labels if
and only if the edge is selected.

(3) Assign labels 0 and t to vertices of degree 1 in G so that each vertex of degree 3 is adjacent to exactly two vertices with
the same label.

It is easy to verify that such a labeling fulfills the assumptions of Proposition 6. In consequence, this labeling can be extended
to an L(p, q)-labeling of graph G using labels {0, . . . , t}, therefore λp,q(G) ≤ t , which completes the proof. �

Putting p = 2 and q = 1 in the definition of problem Lp<3q, from the above theorem we obtain a corollary for the
L(2, 1)-labeling problem which was mentioned in the introduction.

Corollary 8. The problem of deciding whether a bipartite planar graph G fulfills λ2,1(G) ≤ 4 isN P -complete.

5. The case p = 3q

In order to perform the proof for the boundary case p = 3q, we will apply a slight modification of the method from
Section 4 to show theN P -completeness of the following problem.

The L(p, q)-labeling problem for p = 3q (Lp=3q)

Instance: A bipartite, planar graph G of maximum degree at most 4.
Question: Is λp,q(G) ≤ 6q?
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Fig. 7. The gadget H3 used to construct graph G̃ from graph G.

The question posed in problem Lp=3q is in fact equivalent to that in the previously considered Lp<3q problem, since now
t = p + max{2q, p} = 3q + max{2q, 3q} = 6q. However, when p = 3q, Propositions 4–6 no longer hold for the subcubic
graph G constructed from graph G = (V1∪V3, EG). In order to eliminate this problem, we define graph G̃ as the graph formed
by attaching the gadget H3 shown in Fig. 7 by an edge to each vertex of degree 3 in G (obviously,∆(G̃) ≤ 4). By Lemma 1, if
λp,q(G̃) ≤ 6q, then there exists an optimal labeling of G̃ using only the labels {0, q, 2q, 3q, 4q, 5q, 6q}.
We easily obtain the following analogues of Propositions 4–6 for the considered case.

Proposition 9. Graph G̃ admits an L(p, q)-labeling using labels from the range {0, . . . , 6q} only if it admits such a labeling with
the additional constraint that vertices of degree 4 can only receive labels 0 or 6q.

Proof. Indeed, it is easy to verify that for a vertex v of degree 4, assignment of one of the labels {q, 2q, 3q, 4q, 5q} is not
possible, since then the L(p, q)-labeling cannot be extended to the neighbors of v. �

Proposition 10. Graph G̃ admits an L(p, q)-labeling using labels from the range {0, . . . , 6q} only if it admits such a labeling with
the following additional constraints:

(i) each vertex from V3 receives one of the labels 0 or 6q,
(ii) each vertex v ∈ V3, such that all neighbors of v in G belong to V3, has the same label as exactly two of these neighbors.

Proof. The proof proceeds by analogy to that of Proposition 5. Note that due to the properties of labelings of gadgetH3, none
of the vertices from V2 can receive label 2q or label 4q. �

Proposition 11. Any labeling c: V3 ∪ V1 → {0, 6q}, such that each vertex v ∈ V3 has exactly two neighbors with the same label
in graph G, can be extended to an L(p, q)-labeling c̃: V (G̃)→ {0, . . . , 6q} of graph G̃, preserving c̃(v) = c(v) for all v ∈ V3∪V1.

Proof. For graph G, the proof proceeds by a construction identical to that used in the proof of Proposition 6 (using values
p = 3q and t = 6q). The obtained labeling of G can then be easily extended to a labeling of G̃ by labeling all the attached
gadgets H3. �

By introducing the above propositions in the proof of Theorem 7, we obtain a polynomial time algorithm which, given
an X3C instance H , determines a bipartite planar graph G̃,∆(G̃) ≤ 4, such that problem X3C has a positive solution for H if
and only if λp,q(G̃) ≤ 6q, where p = 3q. Thus, we have the following statement.

Theorem 12. The Lp=3q problem isN P -complete.

6. Final remarks

We have just proved that the problem of computing λp,q(G) is N P -hard for subcubic graphs, in the case p < 3q, and
graphs with maximum degree∆ ≤ 4, in the case p ≥ 3q; the obtained results hold even when considerations are restricted
to bipartite planar graphs. On the other hand, it is clear that the problem of computing λp,q(G) is polynomially solvable for all
graphs withmaximum degree at most 2. Taking this into account, wemay say that our results almost completely determine
the border line that separates N P -hard cases from polynomial ones. Only one case remains unsolved: subcubic graphs in
the case p ≥ 3q. Our methods fail in that case; we conjecture it to beN P -hard.

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for the careful reading of the manuscript
and for numerous helpful comments.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


R. Janczewski et al. / Discrete Mathematics 309 (2009) 3270–3279 3279

References

[1] G. Agnarsson, R. Greenlaw, M.M. Halldórsson, On powers of chordal graphs and their colorings, Congressus Numer. 144 (2000) 41–65.
[2] H.L. Bodlaender, T. Kloks, J. van Leeuwen, R.B. Tan, Approximations for λ-coloring of graphs, The Comput. J. 47 (2004) 193–204.
[3] T. Calamoneri, The L(h, k)-labelling problem: An annotated bibliography, The Comput. J. 49 (2006) 585–608.
[4] G.J. Chang, D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309–316.
[5] J. Fiala, P. Golovach, J. Kratochvil, Computational complexity of the distance constrained labelling problem for trees, in: Proc. ICALP 2008, in: LNCS,
vol. 5125, Springer, 2008, pp. 294–305.

[6] J. Fiala, T. Kloks, J. Kratochvil, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math. 113 (2001) 59–72.
[7] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplifiedN P -complete graph problems, Theoret. Comput. Sci. 1 (1976) 237–267.
[8] J.P. Georges, D.W. Mauro, Generalized vertex labelings with a condition at distance two, Congressus Numer. 109 (1995) 141–159.
[9] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980) 1497–1514.
[10] S.T. McCormick, Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem, Math. Program. 26 (1983) 153–171.
[11] C. Moore, J.M. Robson, Hard tiling problems with simple tiles, Discrete Computat. Geom. 26 (2001) 573–590.
[12] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217–1231.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	The complexity of the  L (p, q) -labeling problem for bipartite planar graphs of small degree
	Introduction
	Related work and our contribution
	Outline of the paper

	Some properties of  L (p, q) -labelings
	The case  p >3 q 
	The case  p <3 q 
	The case  p = 3 q 
	Final remarks
	Acknowledgments
	References


