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Abstract: This paper delivers a probabilistic attempt to prove that the selection of a random three-
dimensional finite element (FE) model of a subsoil affects the computed settlements. Parametric
analysis of a random soil block is conducted, assuming a variable subsoil Young’s modulus in
particular finite elements. The modulus is represented by a random field or different-sized sets
of random variables; in both cases, the same truncated Gaussian model is assumed. Mean values
and standard deviations of random soil settlement are estimated by a Monte Carlo simulation
procedure. With regard to the adopted FE model, the estimated settlement mean values do not
vary significantly, but standard deviations do strongly. Similarities also appear in the diagrams of
random field correlation length versus settlement standard deviation and the diagrams displaying
a total number of model random variables versus settlement standard deviation. Thus, relevant
single random variable models represent the random field approach well with regard to settlement
parameter estimation. This remark is verified upon a settlement analysis of a three-dimensional FE
model of a hypothetical strip foundation. Following the preliminary model observations, various
probabilistic geotechnical analyses may be supported, e.g., continuous footing design, slope stability
analysis, and foundation reliability assessment.

Keywords: soil FE modelling; Monte Carlo material model; three-dimensional random fields; strip
foundations; settlements

1. Introduction

Soil medium displays an inherent material parameter variability. Numerical modelling
of actual spatial soil variability is a considerable task, even when extensive in situ tests
are carried out at the construction site. Hence, the only way to relevantly capture the
uncertainty of subsoils leads to probabilistic methods. A strong recommendation for
random methodology is now active, and the standards, e.g., Eurocodes, follow this. A
direct introduction to the probabilistic approach in standard engineering computations is a
present-day requirement and a future development perspective in the field [1–3].

Probabilistic methods are extensive due to the enormous development of compu-
tational power, introducing advanced finite element analysis (FEA) software to solve
numerical problems of the subsoil media. Both the bearing capacity of foundations in their
limit states (ultimate limit state—ULS) and the assessment of settlements (serviceability
limit state—SLS) employ probabilistic analytical means. An extensive literature review in
the field is presented in, e.g., [4], including the application of structural reliability analysis
(SRA) and the stochastic finite element method (SFEM) to geotechnical problems. However,
the classical Monte Carlo (MC) simulation method is the most frequent, as it is easy in
numerical implementation, widely available in the software market, and simple in the
interpretation of its results. Many MC variance reduction techniques are developed on
a high scale, e.g., stratified sampling and Latin hypercube sampling [5]. The MC simu-
lation method is fundamental in reliability-based robust geotechnical design (RGD) [6].
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The first-order reliability methods (FORM) and second-order reliability methods (SORM)
are permanently developed [7]. Note that numerical results are affected by the chosen
computational method and are possibly different from the in situ measurements [8,9].

There are various ways to reflect uncertainty in soil medium parameters. The most
advanced and challenging, in theoretical and numerical meaning, is the random field ap-
proach in both two-dimensional and three-dimensional versions (see, e.g., [10,11]). A joint
approach of multi-block failure mechanisms and a spatial averaging approach is shown
in [12]. Kasama and Whittle [13] proposed the upper-bound and lower-bound analysis.
Generation based on the Karhunen–Loeve expansion method and the classic exponential
covariance function method is presented in [14]. Advanced correlation functions and
the Weibull-type variables are incorporated in [15]. Al-Bittar and Soubra [16] applied
polynomial chaos expansion in bearing capacity assessment of a strip foundation; material
parameter sensitivity is analysed with the use of the Sobol index here. Similar solutions
are adopted in [17]. Al-Bittar et al. [18] combined advanced kriging and Monte Carlo
simulation (AK-MCS). Ali et al. [19] combined the FEM adaptive techniques with random
field application. The point estimate method (PEM) is also applied (see [20]). Suchomel
and Mašín [21] employed studies on the in situ results in the parameter estimation of the
random field correlation function. Regardless of the adopted approaches, it is necessary
to apply advanced computational algorithms, unavailable in commercial software; hence,
implementation difficulties arise in real-life engineering cases.

Random fields are essential in the uncertainty modelling of a subsoil based on limited
in situ data [22,23]. Attempts are made to precisely model the subsoil medium in two-
dimensional [24] or three-dimensional [25] problems. Material homogenization allows for
realistic subsoil modelling [26,27]. The methods above are often applied in specific cases,
e.g., column-reinforced soils [28,29]. Ching et al. [30] proposed to simulate the subsoil
Young’s modulus using a homogenization procedure linking the probabilistic FE analysis
and the homogeneous FE analysis.

This paper proposes an alternative subsoil modelling to reflect the uncertainty of
material parameters. The novel approach is relatively simple and straightforward, ready
for direct application in FE models. It replaces complex probabilistic material models with
simple yet effective computational algorithms.

Parametric analysis is performed on a loaded spatial soil block, representing the
subsoil of uncertain response. The settlement of the central point of the upper block surface
is analysed in a computational series. Several modelling cases are analysed, although the
same material definition concerns every model. The change of settlement mean value
and standard deviation in the series is investigated. The first computational stage defines
material variability by a standard three-dimensional random field. The parameters of the
field correlation functions affect the central point settlement. An alternative, simplified
version is then introduced, with direct use of FEM elements. Here, the subsoil is modelled
by a single random parameter and sets of random parameters of specific sizes. The FE
model definition of the soil acts strongly on the numerical output. The proposed simplified
overview of the block effectively represents a mechanical response of the subsoil.

In the second part of the paper, the settlement of a hypothetical strip foundation was
analysed for selected FE models. These models do not map the subsoil precisely; instead,
they represent the real-life geotechnical design conditions to approximate the global ran-
dom response of the foundation-loaded subsoil. It was confirmed that a different approach
to FE modelling is bound to yield various results regardless of identical material definition.

The paper is not a case study analysis. It presents possible approaches to proba-
bilistic modelling, featuring soil parameter definition by a simplified approach, directly
linking material parameters to corresponding finite elements. In the authors’ opinion, the
conclusions may be interesting to designers as they constitute warnings and guidelines
to the analysis of loaded soils of uncertain response. The paper delivers valuable infor-
mation on the mechanical response variability of the subsoil, impossible to find in the
deterministic analysis.
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2. Random Spatial FE Models of the Subsoil

The issue of the numerical uncertainty definition of the subsoil is analysed in various
FE models of a spatial subsoil block presented in Figure 1. The analysis is performed
in ZSoil® software [31–33] coupled with Python® programming language [34] to aid the
series of repetitive parametric computations. The representative random subsoil volume
area is modelled as a block with dimensions of 10× 10× 10 m (all finite elements have
dimensions equal to 1× 1× 1 m), distinguished in pink in Figure 1.
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Figure 1. The FE model of the subsoil block, featuring the adopted indirect loading.

The boundary conditions at the interface with the surrounding subsoil are reflected by
an additional layer of elements whose Young’s modulus is Ebc = 560 kPa and Poisson’s
ratio is νbc = 0.25, distinguished in green in Figure 1.

These parameters are established based on a preliminary numerical test. First, a
simple compression test of the boundary element stratum is performed, assuming Young’s
modulus Ebc,t = 60, 000 kPa and Poisson’s ratio νbc,t = 0, so that the boundary element
soil stratum does not contribute to lateral displacements of the main subsoil block. The
lateral displacement of the boundary layer δbc = 0.000803 m is determined. Subsequently,
this value is substituted as the target lateral displacement of the global subsoil block FE
model, with the lateral contribution (νbc = 0.25) of the boundary layer assumed. This
allows determining the required effective stiffness parameter of the boundary layer as
Ebc = 560 kPa, ensuring proper subsoil deformability in all directions.

The total number of finite elements is equal to nel,tot = 12× 12× 11 = 1584, whereas
only nel = 10 × 10 × 10 = 1000 constitute the regarded subsoil. The subsoil loading
q = 170 kPa is situated on the soil block indirectly, represented by a flexible metal sheet
(plate) with a width w = 6.0 m, thickness t = 0.01 m, and material parameters corre-
sponding to S235 steel (Young’s modulus Es = 210 MPa, Poisson’s ratio νs = 0.30). The
subsoil is governed by the Coulomb–Mohr material model.

In the task, the Young’s modulus of the subsoil E is considered the only random vari-
able, with a Gaussian probability density function (PDF) of the mean value µE = 28, 000 kPa
and standard deviation σE = 7000 kPa. While the coefficient of variation is v = 0.25, there
is a 0.00317% probability that the generated Ei value will be negative; therefore, a truncation
parameter of t = 4.0 (Ei ∈ µE ± tσE) is introduced, and hence no negative Young’s moduli
appear in the subsequent generation.

Note that a relatively large Young’s modulus variability of the subsoil was purpose-
fully assumed to introduce a significant impact on the scatter of the numerical results of
the settlements. Thus, the random variable distribution is not realistic. However, in most
design cases in real-life engineering, the data on subsoil variability acquired from the in
situ surveys are limited. Hence, suggestions in design codes and literature guidelines
vicariously reflect the random parameters, adopting their high variability. As an example,
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variability v = 0.3 is incorporated in the reliability assessment of foundations resting on
piles [35] or in stability analysis of a coastal cliff [36].

Both cohesion c = 10 kPa and internal friction angle φ = 30◦ are assumed determin-
istic but, in fact, can be assumed random. The algorithms proposed in the paper do not
limit the number of material parameters to be considered random variables. However,
to compare the influence of the adopted FE models on the variability of the computed
settlements, Young’s modulus E is assumed the only random variable.

Various random FE models of the subsoil block are assembled in the ZSoil® software,
representing the global randomness of the FE model in different ways. Upon a given
number of crude Monte Carlo simulations, all FE models examine the positive displacement
of the central node of the upper (loaded) subsoil block surface (under the centre of the
metal sheet transmitting the uniformly distributed load). The mean values and standard
deviations of the central node displacement are investigated.

2.1. The Subsoil Material Parameters Described by Three-Dimensional Random Fields

The geotechnical parameter uncertainty of soils may be relevantly reflected by three-
dimensional random fields. This action requires advanced numerical tools and theoretical
background in advanced probabilistic methods. Although random field generation is an
advanced issue, implemented in relevant software [11,37], the random field methodology
is still rare in real-life engineering applications. The only software of wide present use
includes simple generators of random fields to be directly entered as input data into
standard FEM software.

In this paper, such a simple computational path is also executed. Dedicated software
is used to generate the FE input-ready Gaussian two-dimensional and three-dimensional
random fields, and the software is described in detail in [38–40]. The software conducts
random variable generation employing a conditional acceptance and rejection concept.
A conditional function fs(Xu/Xk) is applied to directly generate an unknown vector Xu,
assuming that the field part defined by a vector Xk is already generated and is known:

fs(Xu/Xk) = (detKc)
−1/2(2π)−m/2 exp

(
−0.5

(
Xu −

¯
Xc

)T

K−1
c

(
Xu −

¯
Xc

))
(1)

where Kc is a conditional correlation matrix,
¯
Xc is a conditional vector of mean values, and

m stands for the dimension of the correlation matrix K.
The most important aspect of random field modelling is the correlation function

adoption, dedicated to a given problem. Various correlation function definitions are found
in the literature; usually, the function is assumed a priori. Comprehensive studies on
parameter determination based on targeted research results can be found (see, e.g., [21]).
Random fields of standard engineering materials (e.g., soils, concretes, composites) make
use of the exponential correlation function related to the first-order autoregressive function
or a Markov process model. In a three-dimensional problem case, it has the following
definition [41]:

ρ(x, y) = ρ(x)ρ(y)ρ(z) = e−dx |x|−dy |y|−dz |z| (2)

where dx, dy, and dz are damping parameters describing the correlation decay, and |x|, |y|,
and |z| are the distances between the points of the random field, along respective axes.

Due to simple engineering interpretation, the correlation function (2) has been used in
many cases (see, e.g., [17–19,42]).

In the calculations, diverse random field types were generated, differing in the value
of the adopted damping parameter d ≡ dx = dy = dz [m−1]. The parameters vary from
d = 0.01 m−1 (a relatively large correlation range) through d = 0.1 m−1, d = 0.2 m−1,
and d = 1.0 m−1 to d = 5.0 m−1 (a relatively low correlation range). Figure 2 illustrates
the impact of the assumed damping parameter dx on the correlation between the points
(finite elements of the subsoil block).
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Figure 2. Correlation range for different damping parameters d.

The random field applied in the FE model of the subsoil block is based on the previous
truncated Gaussian variable of Young’s modulus E (µE = 28, 000 kPa, σE = 7000 kPa, t = 4).
A number of 200 three-dimensional Gaussian fields of nre = 1000 points are generated,
corresponding to each of the five correlation decay parameter values, directly implemented in
the FE model. The number is limited to 200 samples only, as the time required to generate the
fields, to create FE models incorporating these data, to conduct the numerical calculations,
and to analyse the results is extremely significant. A graphical example of a generated highly
correlated random field (d = 0.01 m−1) is shown in Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20 
 

where xd , yd , and zd  are damping parameters describing the correlation decay, and 

x , y , and z  are the distances between the points of the random field, along respec-
tive axes. 

Due to simple engineering interpretation, the correlation function (2) has been used 
in many cases (see, e.g., [17–19,42]). 

In the calculations, diverse random field types were generated, differing in the value 
of the adopted damping parameter −≡ = = 1[m ]x y zd d d d . The parameters vary from 

−= 10.01 md  (a relatively large correlation range) through −= 10.1 md , −= 10.2 md , and 
−= 11.0 md  to −= 15.0 md  (a relatively low correlation range). Figure 2 illustrates the im-

pact of the assumed damping parameter xd  on the correlation between the points (finite 
elements of the subsoil block). 

 
Figure 2. Correlation range for different damping parameters d . 

The random field applied in the FE model of the subsoil block is based on the previ-
ous truncated Gaussian variable of Young’s modulus E ( ாߤ 	= 	28,000	kPa , 
σ = 7000 kPaE , = 4t ). A number of 200 three-dimensional Gaussian fields of = 1000ren  
points are generated, corresponding to each of the five correlation decay parameter val-
ues, directly implemented in the FE model. The number is limited to 200 samples only, as 
the time required to generate the fields, to create FE models incorporating these data, to 
conduct the numerical calculations, and to analyse the results is extremely significant. A 
graphical example of a generated highly correlated random field ( −= 10.01 md ) is shown 
in Figure 3. 

 
Figure 3. Example of a three-dimensional random field representing Young’s modulus; the numbers 
on respective axes denote node ordinal numeration. 

Figure 3. Example of a three-dimensional random field representing Young’s modulus; the numbers
on respective axes denote node ordinal numeration.

The assessed displacements δi
RF (i = 1, . . . , 200) of a highly correlated random field

(d = 0.01 m−1) are shown in Figure 4, along with the convergence diagrams for both mean
value µδRF and standard deviation σδRF of model response. The figure detects two positive
vertical axes—standard deviation is presented on a positive upward axis, while displace-
ments refer to a positive downward axis, the latter reflecting the settlement direction. This
assumption is valid in subsequent similar figures.
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Figure 4. Convergence of simulation-based settlement estimation, the random field model,
d = 0.01 m−1.

The data in Figure 4 are representative of all five cases of different correlation decay
parameters, due to the similar mechanical response of the soil block in the case of the
other four damping parameters d. The MC simulation convergence criterion is adopted:
convergence holds if the mean value relative error is lower than ∆µ = 0.01% and the
standard deviation relative error is lower than ∆σ = 1% in the course of a 20-sample
computation. In all five cases, the adopted criterion was fulfilled. However, higher MC
simulation precision requires computing a larger number of samples. Computation of the
extreme central node settlements δRF, their mean values µδRF , and standard deviations σδRF
for all considered FE models are shown in Table 1.

Table 1. Soil block settlement parameters, 200-item simulation procedure, random field approach.

Correlation
Decay Parameter

d [m−1]

Mean
Value

µδRF [m]

Standard
Deviation
σδRF [m]

Extreme
Settlement

δextr
RF [m]

0.01 0.1076 0.0132 0.1825
0.1 0.1057 0.0066 0.1350
0.2 0.1050 0.0048 0.1279
1.0 0.1052 0.0016 0.1109
5.0 0.1048 0.0009 0.1085

Note that Figure 4 displays peaks in the settlement diagram, slightly disturbing the
response parameter convergence. In a highly correlated random field (d = 0.01 m−1), the
extreme value δd=0.01

RF = 0.1825 m is reached (Table 1). The peaks stem from the FE models
with a low Young’s modulus taken as the basis for random field generation. Due to high
correlation, an initially low modulus propagates to a significant number of finite elements
in the block volume, thus generating a weak subsoil, prone to excessive displacements.

The peaks vanish with correlation decay increase, as the propagation of the initial low
modulus quickly fades, not allowing for an extensive material weakening of the FE subsoil
model. In a slightly correlated random field (d = 5.0 m−1), the peaks are not observable,
so the extreme displacement δd=5.0

RF = 0.1085 m does not come too far from the mean value
estimated: in this case, µd=5.0

RF = 0.1048 m (Table 1).
The computational results (Table 1) can be summarized as a closed-form relation

between the correlation decay parameter and standard deviation variability of the analysed
settlement. The logarithmic approximation σδRF(d) = −0.00201831 ln(d) + 0.00363733 is
shown in Figure 5. As the settlement mean value remains at a specified level throughout
the computations of distinct sets (Table 1), it is not considered here.
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proach.

Figure 5 shows that the standard deviation change of the settlement in a random
field approach to FE models may be represented by appropriate damping parameters d in
Equation (2). However, random field generation is difficult to perform and interpret.

The field definition also requires an advanced calibration of the FE model, while the
type of correlation function has to be taken in advance with its parameters, e.g., correlation
lengths or the damping parameter.

2.2. The Monte Carlo FE Material Model

There are obstacles in the application of random fields in engineering problems; hence,
an alternative variant is proposed. The generated Young’s moduli are linked with specific
finite elements of the numerical model. Merging the elements into sub-blocks makes it
possible to produce the global subsoil response. A variation of the method results, e.g.,
foundation settlements, is reflected by a direct Monte Carlo simulation. Thus, the paper
proposes a Monte Carlo FE material model to directly represent the uncertain character of
the subsoil volume. Parametric analysis of four FE models illustrates the computational
course, and the generated Young’s moduli are linked with the variable sub-block structure.

2.2.1. The Homogenous FE Model Described with One Random Variable

The initial model assigns a single random variable nE = 1 (with the truncated normal
distribution of Young’s modulus of the soil: µE = 28, 000 kPa, σE = 7000 kPa, t = 4) to all
nr = 1000 elements. Thus, the entire block stiffness is represented by a single randomly
generated value. Such an FE model is straightforward in its numerical operation; hence,
frequently introduced in probabilistic analysis.

The first stage of the analysis checks the convergence of the investigated displacement
with 200 FE models computed for different Ei random variable generations. The mean
value µ200

δ1
= 0.1087 m and standard deviation σ200

δ1
= 0.0091 m are obtained here. In the

second stage, the test was expanded to a total of 10,000 samples, bringing a sample mean
µ10000

δ1
= 0.1097 m and standard deviation σ10000

δ1
= 0.0174 m. The computed displacement

of each FE model (sample) δi
1 and convergence of both mean value µδ1 and standard

deviation σδ1 of the settlement are shown in Figure 6. The 200-sample test is separated in
Figure 6a, and the complete 10,000-sample test is presented in Figure 6b.
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Figure 6. Convergence of simulation-based settlement estimation: (a) the 200-sample test; (b) the
10,000-sample test; the homogeneous FE model, nE = 1.

The 10,000-sample mean does not substantially differ from the 200-sample test, but
the standard deviation does. The latter stems from excessive soil settlements reaching
δ10000

1 = 1.1505 m (the 9851st sample) which, in turn, is produced by extremely low
Young’s moduli generated for the FE models. The highest settlement in the initial domain
of 200 samples is δ200

1 = 0.1525 m (the 149th sample). The computed peaks exceed the
settlement allowable for the ZSoil® nonlinear material model. The excessive cases should
be analysed separately in terms of the large displacement theory. It should be stated that
the single random variable solution (Young’s modulus) for all finite elements is wrong.
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If a homogeneous FE soil model is incorporated, the dispersion is unclear. The
dispersion decreases with a lower truncation parameter of Young’s modulus distribution,
e.g., t = 1.0; however, such an assumption is not justified by in situ soil studies. Soils in
their natural state show significant variability, and the coefficient of variation may reach 0.4
(see [43–45]). Thus, larger values of the truncation parameter are recommended (t� 1.0).

Although the presented results (Figure 6a, 200 samples) are improper and only ac-
cidentally reliable (no possible peaks are observable), they serve as a reference point for
further analysis.

2.2.2. The FE Models Described with Several Uncorrelated Random Variables

An alternative variant of the FE model is proposed to produce results of higher
numerical quality. The model introduces a specified, relatively small number of random
Young’s moduli, assigned to smaller subsets of adjacent elements of the entire soil block.

First, a subdivision of the analysed subsoil block of nr = 1000 elements into eight
equal sub-blocks was assumed (nE = 8), as presented in Figure 7.
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Figure 7. The subsoil FE model; 8 distinct sub-blocks of E modulus, nE = 8.

As a result, each sub-block consists of 5× 5× 5 = 125 elements. For each sub-block,
a distinct random Young’s modulus E is independently generated; in turn, the FE model
is described by 1000/125 = 8 different Young’s moduli. The analysis is limited to 200 FE
models only. Satisfactory convergence of the solution is reached under the conditions of
∆µ, and ∆σ is set in the random field case (Figure 8).
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Mean value and the standard deviation of the soil settlement are µ200
δ8

= 0.1079 m
and σ200

δ8
= 0.0036 m, respectively. An extreme displacement δ200

8 = 0.1233 m was reached.
Similar to the homogeneous subsoil block, the unjustified central node displacement peaks
may also appear, following a large number of samples. However, contrary to the single
variable model, the peaks occur only when small Young’s moduli are generated for the
majority of eight sub-blocks, and the probability of such a generation seems relatively low.

To further refine the analysis, another subdivision of the analysed subsoil block is
introduced. Here, the 1000-element block is divided into 125 equal sub-blocks (Figure 9),
each consisting of 2× 2× 2 = 8 elements. This means an input of 1000/8 = 125 different
Young’s moduli into the global FE model (nE = 125).
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At first, based on 200 FE model samples, mean value µ200
δ125

= 0.1083 m and standard
deviation σ200

δ125
= 0.0024 m were estimated. An extreme displacement δ200

125 = 0.1165 m
occurs. The solution presented in Figure 10 features a small scatter in individual values of
central node displacements.
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Although convergence holds for 200 MC samples, under the previous conditions, a
broader scale analysis of 10,000 FE models is performed. The results and convergence of
the crucial parameters of the random response are shown in Figure 11.
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According to prior predictions, solutions arrive in the 10,000-sample computations
with relatively large settlements (δ10000

125 = 0.1539 m). Contrary to the single variable
10,000 FE model analysis (Figure 6b), the peaks do not disturb solution convergence, the
mean value here µ10000

δ125
= 0.1083 m is identical to the 200 FE sample case (µ200

δ125
= 0.1083 m),

and the standard deviation σ10000
δ125

= 0.0029 m differs slightly from the σ200
δ125

= 0.0024 m
result.

Finally, an FE model is assembled, where each of 1000 elements is given a unique,
random Young’s modulus (nE = 1000). Although a white noise-like modulus distribution
does not properly characterize the soil medium (opposite to the homogeneous description),
the calculations are performed to check if the FE model subdivision into smaller sub-
volumes affects its computed response. A series of 200 samples is analysed, and the mean
value µ200

δ1000
= 0.1075 m and standard deviation σ200

δ1000
= 0.0005 m are obtained. The extreme

displacement δ200
1000 = 0.1105 m is reached, similar to the 200-sample calculation of the 125-

variable case
(
δ200

125 = 0.1165 m
)
. The results and convergence of both random parameters

are illustrated in Figure 12.
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Summing up, all essential results of the considered computational cases (Young’s
moduli modelled by sets of random variates) are presented in Table 2. With regard to
FE models, the mean settlement is not affected by Young’s modulus variation, but the
standard deviation of the central node settlement decreases with the random variable
domain rise. The extreme settlements are also listed in Table 2. It should be noted that if
different sample sets are computed, the presented output is about to vary. This is due to
extreme deflections since a larger number of analysed samples increases the probability of
unrealistic settlement peaks occurrence.

Table 2. Soil block settlement parameters, the 200-item and the 10,000-item simulation procedure, and the Monte Carlo FE
material model.

nE

200 FE Models Incorporated 10,000 FE Models Incorporated

Mean
Value

µδnE
[m]

Standard
Deviation

σδnE
[m]

Extreme
Settlement

δextr
nE

[m]

Mean
Value

µδnE
[m]

Standard
Deviation

σδnE
[m]

Extreme
Settlement

δextr
nE

[m]

1 0.1087 0.0091 0.1525 0.1097 0.0174 1.1505
8 0.1079 0.0036 0.1233 calculations not performed

125 0.1083 0.0024 0.1165 0.1083 0.0029 0.1535
1000 0.1075 0.0005 0.1105 calculations not performed

Similar to random field modelling, an approximation of settlement standard deviation
versus the number of the assumed random Young’s modulus variables is performed
(Figure 13). An assumption is made on the horizontal axis—a cubic root of the number of
variables cE = 3

√
nE (0 < cE < 10) is adopted, not the direct number nE (0 < nE < 1000).

The logarithmic function is approximated σδnE
= −0.00339796 ln(cE) + 0.00783447 (see

Figure 13). Note that the diagram resembles the one in Figure 5 in the analysis of FE models
with the random field modelling of Young’s modulus E.
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√
nE.

The similarity between the diagrams in Figures 5 and 13 is not accidental. An apparent
relationship is observable between the random field regions with similar stiffness moduli
E defined by the correlation decay parameter d (Figure 3) and the number of sub-blocks nE
that divide the entire FE model volume according to a given mode (Figure 9). Although it
is impossible to analytically define these relationships, they are visible in terms of extreme
case analysis. When defining the total block volume by a single random value (nE = 1),
ideal homogenization of the material emerges, and it resembles the random field with
infinitely strong correlation, d→ 0 . Both simulations imply a large result scatter and
significant standard deviation of the investigated settlement. While the number of sub-
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blocks is equal to the number of finite elements (nE = 1000), the FE model resembles the
white noise random field of extremely weak correlation (d� 5). It is evident that the cases
corresponding to the real-life soil conditions are included between these extremes. Since
random field computations are difficult, they can be represented by accurate block division
into sub-volumes of single Young’s moduli.

Note that the determined logarithmic approximations (Figures 5 and 13) can be related
to the soil model presented in the paper only. However, it is supposed that the observed
relation can be estimated in any other FE model of a geotechnical structure resting on
random subsoil or the FE models of slopes of a complex multi-layered geological structure
with uncertain parameters, e.g., prone to stability loss.

The optimal number of singular variables to be randomly generated in a simple ap-
proach nE can be devised. The data collected in Figure 13 lead to an assumption that the
refined FE model with nE = 125 variables may be regarded as the finest one. If nE = 8 is as-
sumed, the generated FE model becomes too similar to a model defined by a homogeneous
field. The results show unjustified large jumps, so to reach the convergence of the MC
solution, too many samples are required, discarding the analysis from real-life engineering
problems. For nE = 125, the results are practically independent of the number of FE models
applied in the computational series, and the result scatter is realistic. It balances the com-
plexity of model generation and output reliability well. Nevertheless, accepting nE = 125
is arbitrary and strongly related to the analysed case. However, the diagram in Figure 13
shows that for such a value, the variability range of FE model parameters is small enough
to produce engineering-sound solutions, decisive when investigating real-life problems.

In a general case, for any FE model, the number of sub-blocks with the same material
parameters nE should be specified. The easiest way to define this number is based on the
percentage of the number of sub-blocks pE (0.0 < pE < 1.0) to the total number of the finite
elements in the model nel :

nE = pE · nel (3)

For example, in the considered FE model of the block involving nel = 1000 finite
elements, the optimal number of different random values generated for the task should be
nE = 0.125 · 1000 = 125 (pE = 0.125). In turn, the entire volume is divided into 125 sub-
blocks, each including 1000/125 = 8 finite elements. In the case of an irregular mesh of
finite elements, specific random variables are linked with relevant volumes to represent
their contribution to the entire modelled structure. Such computations, however, require
additional, pre-generated external procedures assigning a certain number of Young’s mod-
uli to precisely set sub-volumes, matching the FE model syntax. A regular mesh of finite
elements, usually applicable in subsoil models, corresponds to the presented approach.

Unfortunately, no clear distinction arises on the FE model definition, and the model
adoption is intuitive. Despite this, such a simplified random variable approach is dedicated
to advanced geotechnical engineering design to replace the three-dimensional random
field analysis.

3. FE Model of a Continuous Strip Foundation

The advanced computational three-dimensional FE model of a perfectly continuous
foundation resting on a three-dimensional random subsoil verifies the prior FE solution
of a subsoil block. A sufficiently long segment of the foundation is analysed to provide
numerical results of a displacement of the central node of the foundation longitudinal
cross-section free of any interference of the boundary elements. The considered FE model
of a segment of the strip footing foundation of dimensions 2.0× 0.5× 20.0 [m], resting
on a spatially random subsoil, is presented in Figure 14. A volume of 18.0× 6.0× 6.0 [m]
is generated in the ZSoil® software, and the outer elements are properly constrained to
accurately reflect the mechanical response of the entire subsoil under the foundation. The
subsoil under the foundation level is only modelled, and the soil layers lying above the
foundation–subsoil interface are replaced by a uniformly distributed load q = 18.0 kPa
situated on the upper surface of the subsoil FE model. The dead load of the foundation wall
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is represented by a linear load P = 1.0 MN per FE length. The wall-foundation connection
makes the deflections compatible; the rotations do not follow the rule.
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Probabilistic analysis requires multiple repetitions of similar computations; it is a
significantly time-consuming process, so assuming an optimal refinement of the finite
element mesh is necessary. Division of the subsoil into a given number of elements should
ensure the desired result accuracy, also providing a relatively short calculation time of a
single case. Therefore, the subsoil volume under the foundation is divided into several
sub-volumes, variable in the degree of finite element mesh condensation (Figure 14).
Moreover, the approach to the subsoil volume definition is also diverse, as the subsoil
volume (10.0 × 6.0 × 6.0 [m]) directly under the strip foundation is assumed random
(marked in yellow in Figure 14), while the remaining volume is modelled deterministic
(marked in pink in Figure 14). To facilitate the description of the random soil sub-volume
with random fields, a regular mesh of three-dimensional continual eight-node elements
(Q4 continuum 2D) with dimensions 0.5× 0.75× 0.75 [m] is adopted. This brings a total
number of 3200 finite elements to constitute the random sub-volume.

In the random sub-volume of the soil, Young’s modulus parameters are assumed the
same as in the case of a soil cube (Chapter 2). In the deterministic part, the parameter was
set to its mean value E = µE = 28 MPa.

The concrete of the foundation is considered elastic, and its parameters correspond to
the C30/37 concrete (with Young’s modulus of E = 33 GPa).

The soil block analysis shows an optimal finite element domain of diverse Young’s
moduli equal to 12.5% (pE = 0.125, Equation (3)) of the total FE domain. Here, the Monte
Carlo results converge fast, and their dispersion is moderate. The random domain of the
strip foundation subsoil model (3200 elements, Figure 14) is split into 400 smaller sub-
volumes, each of them made of eight finite elements (400/3200 · 100% = 12.5%). While this
generated random variable is applied to each sub-volume, 400 separate Young’s modulus
random variables are incorporated in a single model, nE = 400.

The computations are performed for 200 generated foundation models. To assess
solution convergence, parameter variation is examined on the central point settlement
of the foundation, neglecting the boundary condition impact (Figure 15). Based on the
computations, variable settlement shows its mean value µ

strip
δ400

= 0.0976 m and standard

deviation σ
strip
δ400

= 0.0017 m.
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To provide a comparison, two additional computational series are conducted: with
50 models where the entire type 1 volume is defined by a single Young’s modulus variable
(full homogenization) and 50 models where 3200 variables are used (white noise-like
simulation). The computational results are shown in Table 3.

Table 3. Strip foundation settlement parameters; the Monte Carlo FE material model.

Number of
Different Young

Moduli nE

Number of
Simulations

Mean
Value
µδ[m]

Standard
Deviation

σδ[m]

Extreme
Settlement

δextr[m]

1 50 0.1193 0.0103 0.1478
400 200 0.0976 0.0017 0.1044

3200 50 0.0943 0.0001 0.0946

The presented results show that all the conclusions drawn for the initial subsoil block
model, presented in Chapter 2, are confirmed. The extreme-value simulations for nE = 1
and nE = 3200 form an envelope of the possible task solutions. If the number of variables to
capture subsoil uncertainty is chosen according to Equation (3), numerical results obtained
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by the FE model (computed settlements, their mean value, and standard deviation) are
more reliable from the engineering viewpoint. Moreover, balance is achieved between
modelling accuracy of the subsoil-foundation system, the total time cost of numerical
computations, and the quality of the output data.

4. Conclusions

Based on the probabilistic analysis presented in the paper, the following remarks and
conclusions are made:

• The proposed Monte Carlo simulation-based material variability definition of an
FE model allows for an alternative advanced analysis, competitive with the use of
three-dimensional random fields;

• There is a possibility to create specific FE models with a relatively regular FE mesh to
directly implement the randomly generated data from simple pre-generated external
procedures, supporting the presented approach;

• It is optimal to sub-divide the subsoil domain into smaller sub-volumes and to sequen-
tially represent them by unique, independently generated random geotechnical pa-
rameters;

• Although the subsoil parameters are assumed identical Gaussian variables (the same
µE and σE are used to generate their parameters in subsequent computations), the
global variability description of the FE model is defined the other way: it significantly
affects the standard deviation scatter of the foundation settlement, while the mean
values are unchanged;

• From an engineering standpoint, a high result scatter in probabilistic settlement
response is unacceptable; thus, modelling the entire random subsoil by a single
variable (even with its parameters supported by real-life surveys) is improper;

• Unjustified result dispersion may be reduced, e.g., by introducing truncated (bounded)
input variables; however, it is contrary to the natural high variability of soil parameters,
displayed by real-life in situ measurements;

• The proposed number of unique random geotechnical parameters is about 12.5% of
the total number of FE elements of the model to balance modelling accuracy with the
numerical quality of the solutions;

• The method to assign material parameters to finite elements is considered general,
and it allows covering subsoil parameters other than Young’s modulus, e.g., yield
parameters, cohesion, internal friction angles, and porosity; however, to analyse the
impact of all decisive parameters of the adopted soil model, an appropriate parametric
analysis should be provided.

This paper finds it advantageous to incorporate relatively simple and regular FE
models, with their randomness attributed to a set of randomly generated parameters
assigned to adjacent finite elements. An approximate optimal ratio of these parameters
to the total number of finite elements is proposed. Hence, simplified, engineer-oriented
modelling produces computationally efficient, engineering-sound solutions.
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