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Graphical abstract 

 

Abstract 

This article presents a review of information related to the influence of potential permafrost 

degradation on the environmental fate of chemical species which are relased and stored, classified as 

potential influence in future  Antarctic environment. Considering all data regarding climate change 

prediction, this topic may prove important issue for the future state of the Antarctic environment. A 

detailed survey on soil and permafrost data permitted the assumption that this medium may constitute 

a sink for organic and inorganic pollution (especially for persistent organic pollution, POPs, and heavy 

metals). The analysis of the environmental fate and potential consequences of the presence of 

pollutants for the existence of the Antarctic fauna leads to a conclusion that they may cause numerous 

ACCEPTED MANUSCRIPT
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

2 
 

negative effects (e.g. Endocrine disruptions, DNA damage, cancerogenicity). In the case of 

temperature increase and enhanced remobilisation processes, this effect may be even stronger, and 

may disturb natural balance in the environment. Therefore, regular research on the environmental fate 

of pollution is required, especially in terms of processes of remobilisation from the permafrost 

reserves. 

 

Keywords: permafrost, pollution remobilisation, anthropogenic influence, environmental threat, 

Antarctica 

 

Highlights: 

• Permafrost distribution in Antarctica and reemission of pollutants • Environmental fate of 

anthropogenic pollution  remobilised from the cryosphere. 

• Pollution from permafrost present in the Antarctic affects the living organisms. 

 

1. Introduction  

Permafrost, defined as soil, rock, or sediment that remains at or below 0
o
C for two or more 

consecutive years, covers vast areas (Bockheim et al., 2013). Permafrost is most extensive in the 

Arctic, but also exists on the Central Asian Plateau and in ice-free areas of Antarctica, including the 

Antarctic Peninsula region (Bockheim et al., 2013). An impermeable barrier associated with 

permafrost prevents drainage and leads to the occurrence of high water table wetlands, lakes, and 

ponds (Vincent et al., 2011). Moreover, it affects the biogeochemistry and geomorphology of the 

landscape, and thereby biological productivity and biodiversity, especially in polar regions (Vincent et 

al., 2011; Dobiński, 2012; Chaves et al., 2017; Alameida et al., 2014; 2017; Correira et al., 2017).  

Global climate changes and the related cryosphere degradation as the effects of temperature 

increase have been observed in both Northern and Southern Hemispheres over the last several decades 

(e.g. Serreze et al., 2000; Vaughan et al., 2003; ACIA, 2005; Turner et al., 2005; Mulvaney et al., 

2012; IPCC, 2013; Kejna et al., 2013). Considering that permafrost underlines an area of 22 million 

km
2
, processes related to the state and changes in permafrost concern a significant part of the global 

land area (approximately 17%) (Bockheim et al., 2013). Recent studies show that the periglacial zone 

is one of the most rapidly changing areas on earth (e.g. Cooper et al., 2011; López-Martínez et al., 

2012; Karlsson et al., 2012, 2015; Oliva and Ruiz-Fernández, 2015; Ravanel et al., 2017; Oliva et al., 

2018). 

It should be emphasised that except for the relatively well known and thoroughly described 

influence of permafrost on water and soil chemistry in the internal region of the North America, 

Europe, and Asia (e.g., Carey, 2003; O'Donnell and Jones, 2006; Petrone et al., 2006; Frey et al., 

2007; McClelland et al., 2007; Frey and McClelland, 2009; Keller et al., 2010; Bagard et al., 2011; 
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Douglas et al., 2013; Larouche et al., 2015; Manasypov et al., 2015; Szopińska et al., 2016; Lehmann-

Konera et al., 2018), there is still little known about permafrost related geochemical processes and its 

role in shaping of the chemical status of areas recently uncovered by glaciers in the Antarctic and 

Arctic regions. 

Research projects carried out in recent years resulted in numerous works regarding to the 

presence of permafrost in the Antarctica (e.g., Guglielmin and Cannone, 2012; López-Martínez et al., 

2012; Bockheim et al., 2013; Guglielmin and Vieira, 2014; Guglielmin et al., 2014; Simas et al., 2015; 

Oliva and Ruiz-Fernández, 2017). Some papers pointed out that the ongoing trend of increasing air 

temperatures could affect soil organic matter (SOM) turnover and soil C-CO2 emissions in the 

terrestrial ecosystems of Maritime Antarctica (Pires et al., 2017). Several studies prove that Antarctic 

seawater, snow, and presumably soils are becoming important secondary sources remobilising POPs 

(Cabriezo et al., 2012, 2013; Klánová et al., 2008). They can also cause an increase in the 

concentration of legacy pollutants such as hexachlorobenzene and polychlorinated biphenyls (PCBs) 

in the Antarctic environment (Cabriezo et al., 2013). A lot of international agreements have been 

passed to protect Antarctica. The Protocol on Environmental Protection to the Antarctic Treaty is the 

most notable of them. Since its implementation, importation of specific POPs has been prohibited, and 

also research stations and practices have been improved (Cabriezo et al., 2012). Polycyclic Aromatic 

Hydrocarbons with a higher molecular weight, i.e. with 4-6 aromatic rings, are other contaminants 

highly toxic to organisms in the Antarctic environment. They have carcinogenic and mutagenic 

properties (Martins et al., 2010). Another group of pollutants which may be stored in permafrost and 

are hazardous to the environment consists of heavy metals. In the case permafrost-affected soils of 

Antarctica, it should be also emphasised that the freezing process may significantly influence the 

distribution of elements within the soil profile (Nagare et al., 2012). 

Considering that inorganic and organic contaminants are temporarily stored in sediments and 

may be released into environment with the thawing and freezing of permafrost (e.g., Carey, 2003; 

O'Donnell and Jones, 2006; Petrone et al., 2006; Frey et al., 2007; McClelland et al., 2007; Frey and 

McClelland, 2009; Keller et al., 2010; Bagard et al., 2011; Douglas et al., 2013; Larouche et al., 2015; 

Manasypov et al., 2015; Szopińska et al., 2016; Szumińska et al., 2018), this work presents an 

attempted comparison and summary of knowledge on potential influence of permafrost on the 

chemical status of the Antarctic ecosystem. Special attention was paid to sources of inorganic and 

organic compounds (natural or anthropogenic, local or long-distance) and their potential influence on 

Antarctic biota. The proposed summary could be important for understanding the potential 

environmental hazards associated with the accumulation of anthropogenic pollution in the Antarctic 

environment. Taking into consideration the holistic approach to the polar geomorphic system proposed 

by Dobiński (2012), we can assume that both processes – accumulation and release of contaminants - 

occur simultaneously, and contaminants are transferred continuously within the cryogenic 

environment. 
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2. Permafrost distribution in Antarctica 

The map provided by Bockheim and Hall (2002) shows the ice-free area in Antarctica where 

permafrost can potentially occur, as well as the probable occurrence of subglacial permafrost (Fig. 1). 

Only 0.35%, or 45,000 km
2
 of Antarctica is ice-free (Bockheim, 1995). Continuous permafrost occurrs 

in continental Antarctica. Its thickness reaches 1,000 m in the McMurdo Dry Valleys and 500 m on 

the Ross Island. In the Antarctic Peninsula permafrost is discontinuous, with a thickness ranging from 

3 to 25 m on the Deception Island, 20-100 m on the King George Island, and 35-200 m on the 

Seymour Island (Bockheim et al., 2013). Detailed research on seasonal permafrost thawing shows 

different depths of the active layer, varying from 0-60 cm in the Interior Antarctica (Bockheim, 1995; 

Bockheim and Hall, 2002) to prevailing ranges between 10 and 200 cm in the Antarctic Peninsula 

(Veira et al., 2010), in particular cases exceeding 600 cm (Bockheim et al., 2013). Moreover, 

Bockheim and Hall (2002) pointed out that the concept of an active layer is less relevant in interior 

Antarctica, because much of the permafrost in interior Antarctica is ‘dry’ in contrast to the Antarctic 

Peninsula and its offshore islands, and to maritime East Antarctica, where mainly wet permafrost 

occurrs. 
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Figure 1. Permafrost distribution in Antarctica (Bockheim and Hall, 2002) 

Ice-free areas are presented in black, probable distribution of subglacial permafrost beneath the 

Antarctic ice sheet is presented as shaded areas, subglacial lakes are depicted with a cross; The –8°C 

and –1°C mean annual air temperature isotherms are taken from Weyandt. 

 

The detailed research conducted on the Antarctic Peninsula suggests that permafrost distribution in 

this area is largely controlled by local factors, such as marine disturbance (Veira et al., 2010), duration 

and thickness of snow (Oliva et al., 2017a; Ferreira et al., 2017), land relief (Oliva et al., 2017a), 

lithology (Hrbáček et al., 2017), and vegetation cover (Alameida et al., 2014). Lithological conditions 

influence among others the average depth of active layer thickness. This layer in the South Shetland 

Islands usually exceeds 100 cm in loamy soils (de Pablo et al., 2013; Schaefer et al., 2012; Oliva et al., 

2017b). The deepest active layer (>300 cm) was observed in bedrock in the vicinity of Bellingshausen 

site, located in the western region of the King George Island (Hrbáček et al., 2018). The active layer is 

the thinnest on the Deception Island, located in the South Shetland Islands archipelago. It reached only 

30-50 cm (Ramos et al., 2017). According to some authors, the ocean influence limited permafrost 
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occurrence at the sea coast (Correia et al, 2017; Ferreira et al., 2017; Strzelecki et al., 2018). However, 

several papers indicate geomorphological formations and soils evidencing permafrost-related 

processes in the ice-free area at low altitudes, e.g. seasonal thawing-freezing affected soils (Simas et 

al., 2015), patterned grounds (Dąbski et al., 2017), and frost mouds, sorted circles and stripes (Oliva 

and Ruiz-Fernández, 2017). Bockheim (1995) summarised that periglacial features related to freezing 

and thawing processes occur in the Antarctic as: gelifluction features (lobes, terraces, and sheets); 

patterned ground features (sorted and non-sorted circles, sorted and non-sorted polygons and nets, 

sorted polygons and nets, sorted steps, sorted and non-sorted stripes); ground ice features (ice wedges, 

rand wedges, rock glaciers, pingos, thermokarst, ice-cored drift). Inactive periglacial features also 

occur in Atarctic, namely: ice-wedge casts, inactive patterned ground, inactive rock glacier, inactive 

solifluction features. 

The last of the mentioned formartions as well as glacier retreat constitute evidence of climate 

change observed over the recent decades on the Antarctic Peninsula (e.g., Vaugan et al., 2003; Cook et 

al., 2005; López-Martínez et al., 2012; Mulvaney et al., 2012; Bockheim et al., 2013; Chaves et al., 

2017; Pętlicki et al., 2017; Hrbáček et al., 2018; Szopińska et al., 2018). Mean annual air temperature 

along the western Antarctic Peninsula increased by as much as 3.4°C, and mid-winter temperature 

increased by 6.0°C over the past 50 years, making the region one of the most affected by climate 

warming (Vaugan et al., 2003; Turner et al., 2005). Permafrost degradation was reported on the 

Antarctic Peninsula, even to the point of its disappearance at sites near the Palmer station (64°77′S) 

(Bockheim et al., 2013). Permafrost was much colder (−3°C) southwards, close to the Rothera 

research station (67°57′S) with an active layer ranging between 0.76 and 1.4 m (Guglielmin et al., 

2014). Guglielmin and Veira (2014) concluded that the active layer thickness is directly proportional 

to the mean summer air temperature, and inversely proportional to the maximum snow depth in 

autumn. Recent research has also shown much greater permafrost dynamics in the Antarctic 

environment, associated with the generally high dynamics of morphological processes in the area 

(Bockheim et al., 2013; Chaves et al., 2017; Almeida et al., 2014; 2017). 

3. Environmental fate of anthropogenic pollution remobilised from the cryosphere 

Recent decades have shown phases of the most rapid warming on the Antarctic Peninsula (Mulvaney 

et al., 2012; Bockheim et al., 2013). This raises a concern, especially in reference to potential changes 

in sea ice coverage and concurrent increase in anthropogenic emissions of contaminants from the 

southern hemisphere (Bargagli, 2008). This could enhance the transport and deposition of persistent 

contaminants in Antarctica (Xue et al., 2016). As already mentioned, the present chemical status of 

surface water in the Antarctic region is the effect of contemporary transport of pollutants, as well as 

the release of previously  accumulated contaminants from glaciers and permafrost thawing (Herbert et 

al., 2006a; Curtosi et al., 2007; Martins et al., 2010; Xue et al., 2016). It is assumed (Bengtson Nash, 

2011) that Persistent Organic Pollutants (POPs) contained in permafrost may have their source in 
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anthropogenic activities since the mid-1900’s. Because of their toxicity, extreme persistence and 

bioaccumulation capacity, this compounds spread, what have resulted in contamination of Antarctic 

environment. Some of the pollutants stored in permafrost can also come from natural sources, as 

described in detail in the subsections 3.1, 3.2 and 3.3 of this work. Climate change can also cause the 

intensification of the rate of glacier ablation and melt, resulting in higher concentrations of organic 

compounds from atmospheric deposition accumulated in meltwater, and then in glacier-associated 

persistent pollutants accumulated on the meltwater surface after the ice retreats or melts. Moreover, 

increased rain and thawing processes caused by global warming could cause a significant soil-

associated mobilisation of pollution, which could in turn have unpredictable knock-on effects on biota 

(Curtosi et al., 2007). Processes of contamination transport within abiotic media are presented in 

Figure 2. 

 

 

Figure 2. Environmental fate of contamination delivered to Antarctica via long-range atmospheric 

transport (LRAT) in abiotic components 

 

Based on literature data (Bargagli, 2008, Corsolini, 2009, Szopińska et al. 2017, Bengtson 

Nash et al., 2011), two main groups of contaminants can be distinguished which may be stored and/or 

remobilised from permafrost, namely persistent organic pollution (POPs) and heavy metals. 

POPs are toxic compounds produced by the industry and released to the environment through 

antropogenic activities. They are resistant to degradation, so they can accumulate in the environment 

over long periods of time in solid, liquid, or gas-phase reservoirs from which they pose risks to 

ecosystems and human health. Global contamination with POPs of all environmental matrices is 

caused by their extreme persistence and effective environmental dispersal mechanisms (Bengtson 

Nash, 2011).These contaminants include chemicals such as polychlorinated biphenyls (PCBs), 

pesticides, polycyclic aromatic hydrocarbons (PAHs), and unintentionally produced chemicals (such 
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as dioxins and furans) (Bengtson Nash, 2011). The accumulation of semi-volatile chemicals in cold 

environments is caused by thermodynamic forcing by temperature gradients (Bengtson Nash et al., 

2011; Ma et al., 2016). The authors also concluded that the long half-lives of these chemicals facilitate 

repeated cycles of volatilisation and deposition, which results in movement of semi-volatile chemicals 

away from temperate and tropical source regions towards colder climates. Bengtson Nash (2011) and 

Ma et al. (2016) point out that these compounds may be subject to ‘‘cold-trapping’’ in polar areas or at 

an altitude where colder temperatures further prolong their persistence. 

Metals of anthropogenic origin, predominant in various components of the Antarctic 

environment are as follows: Cr, Ni, Cu, Zn, Pb, Cd (Chaparro et al., 2007). Hg is also noteworthy, not 

because of high concentrations in the environment, but because of its high toxicity (de Ferro et al. 

2014). According to research by Lu et al. (2012), the average concentration of mercury in soil sampled 

from Fildes Peninsula is 0.0221 ng/g. Metals may affect biological processes positively or negatively, 

depending on their concentration. Trace elements in soils originate from natural and anthropogenic 

sources. The load of metals in the soil depends on the type of metal and soil, as well as on the 

subsequent accumulation of the metal in other elements of the environment. It has been proven that 

excessive levels of metal pollution in the environment may not only have negative effects on the soil’s 

fertility, but also cause ecological and human health risk (Robinson et al., 2005). In Antarctica, 

sediments and soils are a major reservoir for metals. Therefore, they are an excellent source of 

information about the load of metal pollution over the years. Some sediments can also act as a source 

of contaminants (Santos et al., 2007). Antarctica plays a significant role in the determination of global 

contamination levels and trends. Natural baseline levels of metals in the Antarctic environment are a 

gauge of changes in their global concentration (Lu et al., 2012). 

 

3.1. Pesticides and trace PCBs  

Polychlorinated biphenyls (PCBs) belong to the group of organochlorine compounds. The emissions 

of PCBs and pesticides is successful curtailing, although the chemicals still pervade global 

ecosystems. These compounds are present also in Antarctic. They generally come from LRAT via 

precipitation and cold condensation. Moreover, snow also has influence on the deposition and the fate 

of PCBs in cold environments (Klánová et al., 2008). 

Contemporary research (e.g. Cabrerizo et al., 2013; Bengtson Nash, 2011; Klánová et al., 

2008; Ma et al., 2011) suggests that the existence of many sources of PCBs and pesticides 

contamination in the Antarctic areas. First of all, polar regions receive the chemicals through 

atmospheric transport and deposition, and are accumulated in soils, ice, and waters. Nonetheless, 

contemporary research (Geisz et al., 2008; Ma et al., 2011, Cabrerizo et al., 2013) on polar regions has 

shown evidence that historical burdens of PCBs and pesticides are currently being remobilised from 

retreating permafrost cover in Antarctica. This remobilisation may be enhanced under climate change 
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and result in an increase in their availability for exchange with the atmosphere, whereby the 

ecosystem’s exposure to previously immobilised PCBs and pesticides is increasing (Noyes et al., 

2009; Cabrerizo et al., 2013). Moreover, due to the intensifying effect of climate warming, vapour 

pressure increases, resulting in an alteration of the thermodynamic equilibria for partitioning of PCBs 

among various environmental media (Ma et al., 2016) and e.g. their distribution into aquatic 

environment. 

According to Klánová et al. (2008), whose research included the James Ross Island area, soil 

concentrations of PCB ranged between 0.510 and 1.82 ng/g. Cabrerizo et al. (2012) studied soils from 

the surface layer and 5 cm under its surface from the Livingston and Deception Islands. According to 

the authors, PCB concentrations were between 0.005 and 0.320 ng/g. Studies covering soils from the 

eastern part of Antarctica (Borghini et al., 2005; Negoita et al., 2003) suggest that levels of PCB 

contamination were similar to those in West Antarctica, as presented in Table 2. Cabrerizo et al. 

(2012) showed that the concentrations of pesticides in soils from the western part of Antarctica are 

significantly lower compared to PCB concentrations. According to the authors, hexachlorobenzene 

(HCB) concentrations fluctuated in the range of <LOQ-0.07 ng/g, while concentrations of p,p'-

Dichlorodiphenyldichloroethylene (p, p'-DDE) from loq to 0.20 ng/g. Borghini et al. (2005) and 

Negoita et al. (2003) stated the presence of HCB and p, p'-DDE in soils from East Antarctic in 

concentrations: 0.02-25 ng/g, and 0.03-4 ng/g, respectively. 

Chemicals present in soil after remobilisation may pass into water, the food web, and then top 

aquatic predators. Aquatic food webs are particularly prone to the biomagnification of PCBs (Ma et 

al., 2016). PCBs and organochlorinated pesticides (OCPs) bioaccumulate through food webs and reach 

significant levels in top predators because of their lipophilicity (Klánová et al., 2008). Furthermore, 

PCBs were among the earliest groups of man-made chemicals to be encountered in food webs. These 

compounds are the most widespread in the environment and biota, compared with others POPs (Baert 

et al., 2013). It is due to their durability in the environment and persistence to common (bio)-

degradation pathways (Baert et al., 2013). In the Antarctic marine food web, biomagnification 

proceeds e.g. from microalgae to fish (Trematomus newnesi), with the higher trophic levels 

contributing to the traditional diet of Chinstrap Penguin (Fig. 3), therefore posing risk (Mello et al., 

2016). Indirect connections exist between climate change and PCBs contamination to wildlife. An 

example is migration of marine species caused by climate warming and loss of ice cover (Cabrerizo et 

al., 2012, Lana et al., 2014; Mello et al., 2016). The effect may be altered exposure to PCBs on 

account of eating organisms containing high concentrations of PCBs, even if the migratory transport 

of the chemicals is small relative to quantities transported by other ways (Cabrerizo et al., 2012, 

Klánová et al., 2008). The altered climate of Antarctic also entails certain changes in the type of food 

consumed. Studies on levels of concentration in the tissues of birds inhabiting Antarctic proved that 

transequatorial migrant species such as skuas (Chataracta spp.) have higher PCBs burdens than 

penguins (Pygoscelis sp.). Based on the above, migratory seabirds, e.g. south polar skua, can affect a 
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vehicle transport of chemicals. The result is contaminants of PCBs and pesticides from the northern 

regions to Antarctica (Mello et al., 2016). 

 

Figure 3. Schematic view of ΣPCB bioaccumulation and bioamplification in Antarctica’s 

marine food. Sources of PCBs concentrations are microalgae (Cabrerizo et al., 2012); marine 

sediments (Klánová et al., 2008); Trematomus newnesi (Lana et al., 2014); and Chinstrap Penguin 

Eggs (Mello et al., 2016).  

 

3.2. Polycyclic Aromatic Hydrocarbons and alkanes  

Any human activity in Antarctica, even limited to conducting scientific research, carries with it 

environmental risks associated with the use of fossil fuels. Scientific operations and the related logistic 

support require using them as an energy source for heating and lighting at the research stations, as well 

as a fuel for research boats, terrestrial vehicles, and re-supply vessels (Curtosi et al., 2007; Martins et 

al., 2010). In a year, fuel consumption by research stations amounts to approximately 90 million litres 

75% of which is diesel fuel (Martins et al., 2004). Increasing tourist activities in Antarctica and 

fisheries may also cause a risk for direct releases of hydrocarbons to the environment (Curtosi et al., 

2007). In order to determine the record of human activities and remote contamination transported to 

the Antarctica, it is necessary to apply appropriate indicators such as concentrations of specific groups 

of polycyclic aromatic hydrocarbons (PAHs), alkanes, and even spheroidal carbonaceous particles 

(Martins et al., 2010). These compounds are transported to surface sediments by binding with 

suspended particulate matter in the water column (Martins et al., 2010). They are rarely found as 
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products of biosynthesis. These compounds reach the marine environment mainly by human activity, 

and due to their properties they have a toxic effect on the environment (Martins et al., 2004). 

Although Antarctica is considered as one of the most pristine areas of the world (Pongpiachan 

et al., 2017), several previous works (Martins et al., 2004; Cripps and Shears, 1997; Kennicutt et al., 

1991) reported sporadic hydrocarbons pollution events (e.g. oil splits) in various components of this 

environment. Moreover, PAHs are produced in the process of fossil fuel combustion, especially during 

the process of its incomplete combustion. Fossil fuels are the most widespread source of energy in the 

southern hemisphere. PAHs generated in combustion processes enter the Antarctic environment, 

disturbing the functioning of ecosystems, as detailed in Chapter 4. Due to this, these compounds are 

one of the most important anthropogenic contaminants of the Antarctic environment (Martins et al., 

2004; Martins et al., 2010). The compounds can also be formed during the combustion of wood and 

other organic materials (Curtosi et al., 2007). Anthropogenic sources of PAHs in the marine 

environment and soils of Antarctic are sewage discharge, vehicular emissions, and spillages of 

petroleum and its by-products containing complex mixtures of petrogenic PAHs (Martins et al., 2004; 

Martins et al., 2010). Although these external sources of hydrocarbons do not originate from the 

territory of Antarctica but at a considerable distance from this area, hydrocarbons are transferred to the 

Antarctic environment on account of LRAT (Martins et al., 2004). Little information about the natural 

sources of PAHs in the Antarctic environment has been found in the literature. Based on the work of 

Cabrerizo et al. (2012), one can assume that the significant source of these compounds may be the 

eruptions of the volcanos e.g. on Deception Island.  In the case of n-alkanes, in addition to 

anthropogenic sources such as diesel oil degradation, there are also ones of biogenic origin, identified 

in many species of marine organisms. N-alkanes from biogenic sources are variable depending on the 

organisms present in a given study area (Martins et al., 2004). All hydrocarbon sources mentioned 

above (natural or anthropogenic) originate from local activities in Antarctica and therefore they can be 

classified as so-called in situ sources. 

Some studies (Martins et al., 2004; Cripps and Shears, 1997; Kennicutt et al., 1991) on 

hydrocarbon contaminants discuss past incidents of oil spills in Antarctica which have caused severe 

localised effects on the fauna and flora, e.g. reduction of the survival of species and ecosystems 

(Cripps and Shears, 1997). It was also evidenced that such effects were of short-term character, and 

the recovery was rapid (Martins et al., 2004). Cripps and Shears (1997) showed that a diesel spill at 

Faraday Research Station that occurred on 2 March 1992 caused immediate toxic effect in the 

intertidal zone. However, because fuel dispersed quickly, as a result of evaporation, solution, and 

dispersal, the best strategy for small coastal fuel spills is initial cleaning followed by leaving the rest of 

the fuel to natural degradation processes. 

Anderson et al. (1978) described the process of a slow sieving in permafrost, which happens 

because of repetitive cycles of freezing and thawing. Authors stated that during this process, small 

particles of soil migrate from surface to depth. In research of Krauss and Wilcke (2002), it was proved 
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that PAHs are most of all adsorbed to the smallest particles. Additionally, Biggar et al. (1998) and 

McCarthy et al. (2004) hydrocarbon migration mechanisms are based on the gravity drainage through 

interconnected air voids in permafrost and in a minor extent the diffusion of this compounds in liquid 

water in soil, because permafrost is a barrier to water flow. 

Cabrerizo et al. (2012) found the presence of PAHs on the Deception Island, Livingstone 

Island near Juan Carlos I Station, and Byers Peninsula (an Antarctic Specially Protected Area) in soils, 

mosses, lichens, algae, and some local plants. Researched by Curtosi et al. (2007) focused on soils 

from the vicinity of the Jubany Station and sediments from Potter Cove. The soil was taken from 

various depths. In the environmental samples, 25 compounds from the PAHs group were determined. 

Fourteen of the compounds were found in soils and six in marine sediments. Pongpiachan et al. (2017) 

also studied concentrations of PAHs in soil samples collected near the Great Wall Station (Chinese 

research station) located on the Fildes Peninsula on the King George Island. Martins et al. (2004), in 

addition to determining the concentration of PAHs, also confirmed the presence of aliphatic 

hydrocarbons in marine surface sediments around the Brazilian station in the Admiralty Bay. Bı́cego 

et al. (2009) studied concentrations of PAHs and hydrocarbons in water and sediments from the 

Admiralty Bay near research stations on the King George Island operated by Brazil, Poland, Peru, the 

United States of America, and Ecuador. The authors monitored the concentration of the compounds 

for 15 years. Table 1 presents results of PAHs content in soil from East and West Antarctic regions. 

The majority of the studies were performed in the South Shetland Archipelago region. There and other 

study results from West Antarctica are presented in Table 1. Based on this analysis it was found that 

levels of PAHs were variable in time and space. Since 2004, for the following 3 years, the minimum 

values of these compounds in western Antarctica have generally remained at the same level. A 

disturbing increase in the maximum concentration of PAHs occurred, however, in the years 2004-2009 

in areas near the Antarctic research stations on the Antarctic Peninsula. The comparison of 

concentrations of PAH from 1999 and 2005 from eastern Antarctica shows a decrease in the level of 

soil pollution with these chemical compounds, both in terms of minimum and maximum values. From 

2004 to 2009 in western Antarctica, a rapid increase in maximum concentration occurred from 45.0 to 

3718 ng/g . Curtosi et al. (2007) concluded that rapid drainage of porous soils developed as a result of 

rainfall and melting snow and ice during summer could cause a considerable inter-annual change in 

PAH concentrations in soils. They also linked high concentrations of these compounds to local sources 

of pollution such as accidental diesel spillage and low-temperature combustion of organic materials. 

Cabrerizo et al. (2012) showed that the mean concentrations of PAH in soil samples are in the range of 

0.59-25.5 ng/g dw. They also stated that the exceptionally high PAHs concentration (3718 ng/g dw) 

detected in one sample is probably related to the fact that the soil samples were collected in the area 

where fossil fuel is usually stored, which might suggest accidental spillages. Moreover, Curtosi et al. 

(2007) pointed out that the active layer/permafrost transition zone showed the highest level of PAHs, 

and permafrost was revealed to be a low-permeability barrier to downward migration of these 

ACCEPTED MANUSCRIPT
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

13 
 

compounds. The thawing of the upper layer of permafrost, however, would have deep consequences in 

the transport and fate of the PAHs spilled on Antarctic soils, and would result in an increased flow of 

PAHs to coastal marine environments with unpredictable ecological consequences. In water, organic 

compounds such as PAHs and n-alkanes can be easily transported and accumulated in marine (Xue et 

al., 2016) and lake (Yao et al., 2016) sediments. 

Table 1. PAHs concentrations in soils [ng/g dry weight] 

Sampling area/ 

Antarctic region 

Year of 

research 

Minimum value 

of ΣPAHs  

Maximum value of 

ΣPAHs  

References 

Scott Base (Ross 

Island)/East 

Antarctic 

1999 41 8105 Aislabie et al., 1999 

Jubany Station (King 

George Island, South 

Shetland Islands) 

/West Antarctic 

2004 11 45 Curtosi et al., 2007 

Jubany Station (King 

George Island, South 

Shetland Islands) 

/West Antarctic 

2005 11 588 Curtosi et al., 2007 

Scott Base (Ross 

Island)/East 

Antarctic 

2005 34.9 171 Klánová et al., 

2008 

Jubany Station (King 

George Island, South 

Shetland Islands) 

/West Antarctic 

2007 10 1182 Curtosi et al., 2007 

Juan Carlos I 

(Livingston Island, 

South Shetland 

Islands) /West 

Antarctic 

2009 0.59 3718 Cabrerizo et al., 

2012 

Great Wall Station 

(King George Island, 

South Shetland 

Islands) /West 

Antarctic 

2014 1.59 4.83 Pongpiachan et al., 

2017 

 

The presence of PAHs in such a pristine environment is even visible in penguins (Montone et 

al., 2016). Monotone et al. (2016) have investigated the presence of PAHs in the main three species of 

penguins: the Gentoo (Pygoscelis papua); the Chinstrap (Pygoscelis antarcticus), and the Adelie 

(Pygoscelis adealiae) which constitute 95% of the biomass of breeding communities in this area 

(Sander et al., 2005). The levels of concentration in the fat are up to 238.7 ngg
-1

 wet weight. This 

evidences that PAHs, while moderately persistent in the environment, can be bio-accumulated. This 

phenomenon is also observed in fish fat tissues, e.g. in rock cod fish (Trematomus bernacchii) – 1520-

1840 ngg
-1

 lipid wt (Hale et al., 2008). PAHs in penguins were dominated by two- and three-aromatic-

ring compounds (Montone et al., 2016). 
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The literature provides no information on PAH concentrations after 2014. However, due to the 

increase in human activity in the regions of Antarctica, monitoring the level of concentration of these 

compounds can help improve and enhance legal acts protecting the environment of Antarctica. 

3.3. Heavy metals and other elements 

Heavy metals are a natural part of the Earth's crust. Based on the results of Lu et al., (2012); Carrasco 

and Préndez, (1991); Zhao et al., (1989), Santos et al., (2005), Crockett, (1998), it can be concluded 

that the dominant trace metals in the Antarctic environment are Al, Ca, Cd, Cr, Cu. These elements 

can get into the Antarctic environment via long-distance atmospheric transport and global circulation 

(Lu et al., 2012), and as a result of human activity in the vicinity of polar stations. Some of them (e.g. 

Al, Cu) can considered to be of natural origin (Szopińska et al, 2018). Research on soil samples 

(Martins et al., 2002; Alam and Sadiq, 1993; Tin et al., 2009) has shown the relationship between the 

presence of several metals e.g. V, Ni, Zn, Cu, Cr, Pb, Ba with petroleum contamination. Potential 

sources of contamination with Pb and Cu include paints used for painting the internal and external 

surfaces of building walls (Webster et al., 2003). Point sources of Pb, Zn, and Cu in soils can be used 

batteries and rubbish resulting from activities in McMurdo Sound region (Santos et al., 2005). The 

main source of Pb in the Antarctic environment is fuel combustion. Hong et al., 1998 also stated that 

the source of Pb transported from areas distant from Antarctic is industrial activity and fuel 

consumption in large urban centers in South America. Several studies (Santos et al., 2005; Abakumov 

et al., 2017; Kennicutt et al., 1995; Lenihan, 1992) showed that concentrations of metals in sediments 

around the sewage outfall were higher than in sediments from areas far from the station, so another 

important source of metals is sewage. Not all research stations can use wastewater treatment plants. 

An increased concentration of trace elements, and particularly mercury, was observed in soils from the 

vicinity of Antarctic research stations that discharge untreated wastewater directly into the 

environment (Abakumov et al., 2017). Land relief has an effect on retention of these elements in the 

soil. On the other hand, anthropogenic input of organic matter to sediments favours sulfide formation, 

causing reduction of metal bioavailability, and consequently reducing adverse effects on local biota 

(Santos et al., 2005). 

Numerous studies on the King George Island (e.g. Lu et al., 2012, Santos et al. 2005, 

Abakumov et al., 2017) proved that, as a result of human activity, large loads of elements are 

introduced into the Antarctic environment. Anthropogenic activity significantly affects the 

concentration levels of various elements in the environment, and makes it difficult to assess, whether 

the metals originate from natural or anthropogenic sources. Sediments and soils are major reservoirs 

for metals. They act as indicators of the quality of the environment (Santos et al. 2005). On the other 

hand, research by Szopińska et al. (2018) and Nędzarek et al. (2014) shows that the Arctowski Station 

(Polish Antarctic Station, King George Island) does not cause a significant increase in metal specific 

concentration (e.g. Pb). The studies evidenced that the recorded increased concentrations of trace 
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elements may be associated with natural processes, and not necessarily with anthropogenic pollution 

such as researchers’ activities. According to Lu et al. (2012), Nędzarek et al. (2014), by a equilibrium 

is possible to maintain metal values in Antarctic soils on baseline levels. The authors also concluded 

that this is caused by physical, e.g. mechanical erosion (Szopińska et al., 2018, Anderson et al., 2000), 

chemical e.g. geochemical weathering, of volcanic rocks (Nędzarek et al., 2014), as well as biological 

processes (Malandrino et al., 2009) occurring in the soil environment and interactions between them.  

Another natural source of metals in Antarctic environment are birds, which have been 

determined to play a significant role in the alteration of chemical composition of soils and sediments. 

Such conclusions were drawn from research on the content of trace metals in guano. Some vascular 

plants, e.g. Antarctic hair grass (Deschampsia Antarctica), can concentrate some trace elements. These 

plants can be collected by birds, transported, and used to build nests. Based on the aforementioned 

circumstances, trace elements were found to be accumulated in ornithogenic soils (Abakumov et al., 

2017). 

According to Bockheim and Hall (2002), the process of soil formation in Antarctic is 

evidently slower in comparison to other continental environments. According to the literature, soil 

development as well as chemical and mineralogical changes in Antarctic are inhibited by factors such 

as low temperature and limited quantity of liquid water (Navas et al., 2008; Simas et al., 2006; 

Vennum and Nejedly, 1990), characteristic of this area. As shown in Figure 4, there are some further 

processes, including ligand exchange, adsorption, precipitation, and acid-base reactions, which have 

an effect on the distribution of dissolved and particulate metals in soils. Research by Basta and 

McGowen (2004) and White et al. (2012) shows that the mobilisation of some trace metals in soil (e.g. 

As or Sb) is caused by changes in the pH or redox conditions. For example, accumulation of birds and 

penguins guano promotes soil acidification (Poggere et al., 2017). Although pH of fresh guano is 

alkaline, it is quickly acidified up to a pH value of 4.0 as a result of sulfuric and nitric acid formation 

caused by its biological stabilisation on the ground (Tatur, 1989). As a result of guano accumulation, 

the chemical weathering process in the clay fraction becomes more intense. This in turn increases the 

intensity of short-range order phases (Poggere et al., 2016). Their characteristic feature is highly 

specific surface, where groups that are reactive e.g. silanol (eSiOH), aluminol (eAlOH), ferrol 

(eFeOH) are present (Poggere, 2017; Wada, 1989). These reactive groups present in the Antarctic 

environment have been evidenced to cause an increase in the intensity of adsorption of heavy metals 

(Mendonça et al., 2013). In addition to soil acidification in the Antarctic environment, guano also 

causes leaching of exchangeable bases, and transformation of primary minerals. According to 

Mendonça et al. (2013), metals ( e.g. Fe, Al) in the form of ions or amorphous metals are released into 

the soil environment, and then bind to phosphorus compounds derived from ornithogenic activity 

forming compounds such as leucophosphite [KFe
3+

2(PO4)2(OH)·2H2O] and metavariscite 

[AlPO4·2H2O]. 
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Moreover, a relationship has been observed between the content of total organic carbon (TOC) 

in soil samples and the concentration of some heavy metals, e.g. Hg (de Ferro et al. 2014). The 

chemical processes of metals in Antarctic soils are governed by processes such as adsorption on 

various solid phases and reactions with organic matter. As a result of the latter, complexes and metal 

chelates are formed, quite persistent in the environment, and precipitation of compounds, generally 

stable or moderately soluble, occurs (Bradl, 2004). Poggere et al. (2017) have recently shown that in 

permafrost-affected areas of Antarctica, erosion of rocks plays a significant role in the transport of 

trace metals. For example, as a result of pyrite oxidation (FeS), a sulphate is formed and minerals such 

as jarosite [KFe
3+

3 (SO4)2(OH)6] and natrojarosite [NaFe
3+

3 (SO4)2(OH)6] precipitate (Simas 2006). 

 

  

Figure 4. A diagram presenting processes by which heavy metals pass to the soil (McLean and 

Bledsoe, 1992; Robinson et al., 2005; Nagare et al., 2012) 

 

According to research from permafrost areas (e.g. Panin and Kazantsev, 1986; Ostroumov et 

al., 1998; Ostroumov et al., 2001; Streletskii et al., 2003), the transport of metal ions in long-term 

permafrost in the Antarctic is closely related to the movement of water. It is possible through water 

films adsorbed by soil particles. Water films can then transport these chemical entities. In many 

scientific studies (e.g. Cary and Mayland, 1972; Chamberlain, 1983; Henry, 1988; Marion, 1995) 

regarding the redistribution of soluble components in permafrost-affected soils, a dependence was 

observed between freeze-thaw processes and selected chemical elements in soils. Water transport in 

freezing soils particularly takes place through the capillary phenomena. Cryogenic suction occurs 

through a pressure deficit or negative pressure. In Antarctic soils affected by permafrost, the 
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temperature gradient does not change despite seasonal changes of its direction in autumn and spring 

(Antcibor, 2014). A decrease in heat input to the surface soil horizons in autumn causes downward 

freezing from the top soils, and upward freezing of the active layer from the permafrost table. The 

migration process of water molecules in the soil profile depends on their movement from the unfrozen 

side to the frozen side along with water films adsorbed to soil particles. If the soil begins to freeze, 

water that is least attached to soil particles freezes first. Then in the soil pore spaces, ice crystals are 

formed. Many studied (e.g. Illuminati et al., 2016; de Oliveira et al., 2017; Vodopivez et al., 2015; 

Husmann et al., 2012 ) discusse the occurrence of heavy metals in the tissues of living organisms. 

According to Goutte et al. (2015), the concentrations of trace elements increase along with higher 

trophic level of organisms as a result of bioaccumulation and bioamplification processes within 

trophic webs occurring in Antarctica (Atwell et al., 1998; Morel et al., 1998). Moreover, that level of 

exposure to trace metals was found to be dependent on the foraging habitat (Goutte et al., 2015). For 

example, fish species inhabiting the benthic boundary layer will have a higher level of Hg in the 

tissues than those foraging in the water column and underneath sea ice (Fitzgerald et al., 2007). 

Seabirds were evidenced to be excellent bioindicators of Hg pollution (Burger and Gochfeld, 2004), 

because feathers are the main route of Hg excretion in birds (Monteiro and Furness, 1995). Research 

by Carravieri et al. (2013) showed that in long-lived animals, Hg can bioaccumulate in their tissues 

over their whole life span. The mechanism of metal accumulation was also observed in the tissues of 

lichens (Guerra et al., 2011). The authors concluded that some chemicals naturally occurring in 

lichens, e.g. usnic, pulvinic, and rhizocorpic acids, can promote the formation of stable complexes 

with metals. Grotti et al. (2008) showed that as a result of low temperature of Antarctic water, specific 

ways of feeding, and longevity, the bioaccumulation of metals in Antarctic organisms may be more 

intense than in other environments. 

 

4. Possible environmental consequences of the presence of contaminants released 

from permafrost or the cryosphere 

Recent years have seen higher temperatures (Chapman et al., 2006; Turner et al., 2005) and 

changing stocks of soil organic matter (SOM) on the Antarctic Peninsula (Vaughan et al., 2005; Hill et 

al., 2011; Cabrerizo et al., 2012). This is probably related to a number of factors such as changes in the 

soil metabolism, changes in vegetation cover, or increase in impact from human settlements. A 

significant change has been observed in the extent of terrestrial biota habitats in the Antarctic 

Peninsula (Cabrerizo et al., 2013; Hill et al., 2011). This is exemplified by growth rates of lichen 

Usnea Antarctica. On the Livingstone Island, its annual growth rate in length of 2 mm per year with 

an increase in the lichen diameter from 50 in 1991 to 72 mm in 2002 was observed. This is probably 

correlated with rising temperatures and glacier retreat in the Antarctic (Cabrerizo et al., 2012). 

Changes in vegetation occurring on the Antarctic Peninsula can be a source of changes in C and N 

circulation. Cabrerizo et al., (2013) concluded that it can potentially exert a significant influence on 
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POPs circulation through the changing SOM pools. In the context of combined climatic and 

biogeochemical factors, global change involving different temperatures and organic matter stocks will 

affect the revolatilisation and reservoirs of POPs (Cabrerizo et al., 2013). 

The determination of the exact impact of POPs on Antarctic species and systems, or making 

forecasts for the future is not yet possible due to the still insufficient number of studies on the 

Antarctic environment in this aspect. The map of selected POPs (Fig. 5) shows that investigations  

were focused mainly on the selected parts of Antarctica (South Shetland Islands, Antarctic Peninsula, 

Victoria Land and Scott Sea), less often they were conducted in the central part of the continent 

(Vecchiato et al., 2015). However, it is very likely that POPs may be present in the whole Antarctica. 

Toxic responses to these chemicals, however, have been widely reported in research based on 

experiments with primarily temperate species under standard test conditions (Bengtson Nash, 2011). It 

provides the basis for risk assessment for high latitude environments. Polar environments have 

evolved a “boom and bust” ecology governed by seasonal irradiation and primary production 

(Bengtson Nash, 2011). Moreover, pollutants present in Antarctica may have a number of adverse 

effects on living organisms, as shown in Table 2. In view of little exposure to POPs and other 

anthropogenic xenobiotics in the past, the Antarctic organisms probably have not developed 

detoxification mechanisms like their temperate and tropical counterparts. Sensitivity tests of Antarctic 

echinoid Sterechinus neumayeri on heavy metals showed that its sensitivity was comparable with that 

of its temperate and tropical counterparts, considering toxicity endpoints at equal exposure durations. 

Polar organisms, however, are characterised by gigantism as well as slow metabolism and 

development. Toxicity endpoints can be a good ecological indicator of toxicity comparison only in 

parallel comparable developmental stages (Bengtson Nash, 2011). 
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Figure 5. Location of research areas in Antarctica, where selected POPs have been determined 

in biotic and abiotic samples. Abbreviation: TN – total number of researched points, KGI – number of 

researched points in King George Island, LI – number of researched points in Livingstone Island, 

VLRS – number of researched points in Victoria Land and Ross Sea, Others – total number of other 

researched points (prepared based on results obtained by Platt and Mackie, 1980; Subramanian et al., 
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1983; Bacci et al., 1986; Risebrough et al., 1990; Focardi et al., 1991; Larsson et al., 1992; Caricchia 

et al., 1995; Kennicutt et al., 1995; Bicego et al., 1996; Fuoco et al., 1996; Inomata et al., 1996; Sen 

Gupta et al., 1996; Court et al., 1997; Kallenborn et al., 1998; Aisable et al., 1999; Mazzera et al., 

1999; Montone et al., 2001; Corsolini et al., 2002a; Corsolini et al., 2002b; Crockett and White, 2003; 

Negoita et al., 2003; Montone et al., 2003; Weber and Goerke, 2003; Borghini et al., 2005; Gambaro 

et al., 2005; Montone et al., 2005; Bustnes et al., 2006; Corsolini et al., 2006; Kim et al., 2006; Negri 

et al., 2006; Nemirovskaya, 2006; Corsolini et al., 2007; Curtosi et al., 2007; Krahn et al.. 2007; 

Borghesi et al., 2008; Choi et al., 2008; Cincinelli et al., 2008; Geisz et al.. 2008; Klánová et al., 2008; 

Curtosi et al., 2009; Fuoco et al., 2009; Schiavone et al., 2009a; Schiavone et al., 2009b; Stortini et al., 

2009; Taniguchi et al., 2009; Yogui and Sericano et al., 2009; Cipro et al., 2010; Martins et al., 2010; 

Park et al., 2010; Corsolini et al., 2011; van den Brink et al., 2011; Cabrerizo et al., 2012; Fuoco et al., 

2012; Li et al., 2012; Trumble et al., 2012; Cabrerizo et al., 2013; Kallenborn et al., 2013; Zhang et al., 

2013; Cabrerizo et al., 2014; Lana et al., 2014; Dauner et al., 2015; Jara-Carrasco et al., 2015; 

Vecchiato et al., 2015; Alexander et al., 2017; Mello et al., 2016; Pongpiachan et al., 2017; the basic 

maps of Antarctica have been obtained from British Antarctic Survey Geodata Portal, 

http://add.antarctica.ac.uk/repository/). 

 

 

Table 2. Examples of negative effects of selected pollutants on living organisms occurring in the 

Antarctic area. 

Contaminants Species Observed biological changes Ref 

PAHs 
Fish Notothenia 

coriiceps 
- carcinogenic effects on fish; 

- damage to liver cells; 

Curtosi et 

al., 2009 

Hydrocarbons 

(PAHs, 

alkanes) 

Antarctic sea urchins 

(Sterechinus neumayeri) 

- increased toxiceffects immediately 

following hatching 

Alexander 

et al., 2017 

PCBs, HCB, 

DDT, α-

endosulfan, β-

endosulfan 

Chinstrap penguin 

(Pygoscelis antarctica) 

- decreased reproductive success; 

- increased risk of parasitism; 

- greater wing asymmetry; 

- immunohematological disorders; 

Jara-

Carrasco et 

al., 2015 

Hg, Pb 

Nacella polaris (Nacella 

concinna) 

 

- disorders of the functioning of gills 

and muscles; 

- inhibitors of arginase activity; 

de Oliveira 

et al., 2017 

Hg, Cd, Pb 

Bald notothen (Pagothenia 

borchgrevinki); Antarctic 

silverfish (Pleuragramma 

antarcticum); Notothenia 

coriiceps; Emerald rockcod 

- endocrine disruption; 

- DNA damage; 

- immunotoxicity; 

- reprotoxicity 

Goutte et 

al., 2015 
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(Trematomus bernacchii); 

Trematomus hansoni; 

Trematomus newnesi, 

Trematomus pennellii 

 

4.1. Pesticides and trace PCBs  

Global warming could have a negative effect on the West Antarctic's environment, potentially 

becoming a net sink of POPs, including pesticides and PCBs (Cabrerizo et al., 2013). Moreover, due 

to the high storage capacity of soils, the amount of PCBs stored in soils would be up to 74 times 

higher than in the atmosphere (Cabrerizo et al., 2013). The appearance of relevant sorbing phases at 

each site (fugacity capacity) in soils of Antarctica can cause better uptake of POPs in Antarctic 

vegetation. Various factors, including the lipid content, and to a lesser extent age and growth rate, 

have influence on the accumulation of these compounds in vegetation. The literature provides no 

information on the age of Antarctic vegetation in the study area. Nonetheless, the organisms are 

assumed to have been present in the area for a long time, because their growth rate is limited to the 

environmental conditions which may affect POPs storage.  

Mosses and lichens can accumulate and concentrate toxic substances even when POPs are 

present at low concentrations in the local environment (Cabrerizo et al., 2012). Table 3 shows the 

concentrations of selected POPs for Antarctic vegetation. POPs concentration values, including PCBs, 

hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), determined in 

tissues of mosses and lichens from the eastern part of Antarctica, range from 0.2 to 34 ng/g dw. In 

contrast, concentrations of these compounds in mosses and lichens from the western part of Antarctica 

range from 0.002 to 40 ng/g dw. Microalgae, hair grass, pearl-wort, and green algae are also excellent 

bioindicators of air pollution of Antarctica (Park et al., 2010; Bacci et al., 1986; Negoita et al., 2003; 

Cabrerizo et al., 2012; Borghini et al., 2005; Focardi et al., 1991; Montone et al., 2001). 

A compared with the range of concentrations of PCBs and pesticides in soils from western 

Antarctica, concentrations in Antarctic biota have a larger range of concentrations of these compounds 

(PCB: 0.005-3,86 ng / g dw; HCB: 0.002-2.16 ng / g dw; p, p'-DDE: 0.003- 0.60 ng/g dw). In the case 

of samples from eastern Antarctica, PCB concentrations in Antarctic biota were significantly higher 

than in soils (soil: 0.005-0.32 ng / g dw; biota: 3.3-34 ng / g dw). HCB concentrations were higher in 

soils (0.02-25 ng / g dw) than in Antarctic biota (0.3-1.9 ng/g dw), while the level of p,p'-DDE in soil 

and Antarctic biota were higher. Some samples of mosses, however, were characterised by a higher 

content of these pesticides (soil: 0.03-4 ng/g dw; biota: 0.2-7.9 ng/g dw). 

Table 3. Concentration of selected POPs in Antarctic biota  

Sample 

type 

Sampling site/ 

Antarctic sector 

ΣPCBs 

(ng g
−1

 dw) 

ΣHCB 

(ng g
−1

 dw) 

p,p′-DDE Ref 

ACCEPTED MANUSCRIPT
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

22 
 

(ng g
−1

 dw) 

lichens King 

George 

Island/West 

Antarctica 

0.005−0.04   Park et al., 

2010 

lichens Antarctic 

Peninsula/West 

Antarctica 

 0.32−2.16 0.10−0.60 Bacci et al., 

1986 

lichens Russian stations: 

Novolazarevskaya, 

Molodezhnaya, 

Stornes Peninsula, 

Progress, 

Druzhnaya IV and 

Mirny /East 

Antarctica 

3.3 0.3 0.4 Negoita et al., 

2003 

lichens South Shetland 

Islands /West 

Antarctica 

0.043−0.61 0.002−0.31 0.003−0.01 Cabrerizo et 

al., 2012 

mosses Victoria Land 

/East Antarctica 

23−34 0.85−1.90 1.10−7.90 Borghini et 

al., 2005 

mosses Kay Island, Ross 

Sea /East 

Antarctica 

5−16 0.30−0.80 0.20 Focardi et al., 

1991 

mosses Antarctic 

Peninsula/West 

Antarctica 

 0.30−0.68 0.17−0.53 Bacci et al., 

1986 

mosses South Shetland 

Islands /West 

Antarctica 

0.04−0.76 0.021−0.12 0.005−0.04 Cabrerizo et 

al., 2012 

microalgae King George 

Island /West 

Antarctica 

0.46−3.86   Montone et 

al., 2001 

hair grass South Shetland 

Islands /West 

Antarctica 

0.39−2.40 0.080−0.20 0.061−0.09 Cabrerizo et 

al., 2012 

pearl-wort South Shetland 

Islands /West 

Antarctica 

0.31 0.04 0.04 Cabrerizo et 

al., 2012 
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green algae South Shetland 

Islands /West 

Antarctica 

0.86 0.033 0.08 Cabrerizo et 

al., 2012 

penguin 

blood 

Lenie Field 

Station, 

Admiralty Bay, 

King George 

Island/West 

Antarctica 

3.4-9.8 2.7-6.7 4-8.2 Corsolini et 

al., 2007 

penguin 

blood 

Livingston Island, 

Kopaitic Island, 

King 

George 

Island/West 

Antarctica 

7.35-8.04 0.79-0.90  Jara-Carrasco 

et al., 2015 

eggs of 

seabirds 

Admiralty Bay, 

King George 

Island/ West 

Antarctica 

44.31-1670 118-152  Mello et al., 

2016 

tissues of 

fish 

Potter 

Cove, King 

George 

Island/West 

Antarctica 

11.1-99.0  4.59-20.6 Lana et al., 

2014 

 

 

 

 

An additional factor increasing the risk of POPs accumulation in the tissues of Antarctic 

organisms are periodic shortages of food and low temperatures (Bengtson Nash, 2011). In conditions 

of food shortage, lipids are mobilised to satisfy it. This causes a load on contaminants, e.g. POPs 

contained in lipids. This phenomenon has previously been demonstrated in humans as well as wildlife. 

The highest vulnerability to the harmful effects of POPs is observed in animal species pushed to 

physiological extremes through shortage of food, reproduction, or migration, e.g. baleen whales and 

certain penguin species. It is caused by the re-mobilisation of POPs contained in the adipose tissue and 

therefore exposure of the body to the toxic effects of these compounds. 

4.2. Polycyclic Aromatic Hydrocarbons and alkanes 

Environmental risks regarding the accumulation of PAHs have increased in recent decades due to the 

growth of anthropogenic emissions from the southern hemisphere (Bargagli, 2008; Xue et al., 2016). 

Moreover, results showing the capacity for bioaccumulation of PAHs in living organisms, their 

toxicity, and mutagenity (Yang et al., 2015) demonstrate increased environmental burden of PAHs, 

particularly in reference to the sensitive Antarctic environment (Cabrerizzo et al., 2012). The exposure 

of PAHs in the Antarctic environment constitutes a threat to Antarctic biota. Mosses are one of the 

primary components of terrestrial flora in this region. Because they have no root system, they are 
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largely reliant for the nutrients supply on atmospheric deposition (Borghini et al., 2005). PAH 

accumulation in mosses (Cabrerizzo et al., 2012; Colabuono et al., 2015) suggests that Antarctica may 

become an important sink in the global PAH cycle (Cabrerizzo et al., 2012).  

Furthermore, Pongpiachan et al. (2017) calculated the quantitative ecological risk assessment 

of inhabitants exposed to polycyclic aromatic hydrocarbons present in soil samples. The study was 

conducted on the King George Island, near the Great Wall station in January 2014. The environmental 

exposure to PAHs for humans in terms of cancer and non-cancer risks were found to be at an 

“acceptable level”.  

4.3. Heavy metals and other elements 

An increase in human activities in Antarctica, particularly in the “hot spots” near research stations, 

may further threaten the purity status of the continent if proper precautions are not taken (Lu et al., 

2012). At least until the 1990’s, no adequate procedures of waste management existed there, leading to 

the deterioration of the metal pollution situation. As a result of accumulation of progressively adverse 

effects of different magnitude, the biological, physical, and landscape component of the Antarctic was 

affected (Chaparro et al., 2007). One of the most noticeable effects of human activity is the 

accumulation of the trace metals in soils and plant tissues. It has been proven (Amaro et al., 2016) that 

mercury accumulates more intensively in soils than in mosses. Moreover, the storage of waste causes 

the emission of chromium and nickel to the soil, where the accumulation of these metals takes place 

(Abakumov et al., 2017). It has been proved that in Arctic, trace metals are released from permafrost 

in larger quantities in the summer season, when air temperatures are higher than for the rest of the year 

(Robinson et al., 2005). Due to the presence of long-term permafrost in Antarctic, the same effect can 

be assumed to take place. Such a sharp increase in the trace metal load may pose a threat to the 

environment. 

5. Conclusions 

Due to prevailing extreme weather, Antarctica provides conditions favourable for permafrost 

occurrence. According to the available literature, soils of areas free from ice constitute a place of 

accumulation of heavy metals, PCBs, and PAHs. Due to the sensitivity of permafrost to climate 

change, the pollution of anthropogenic origin accumulated over the years may be released into the 

Antarctic environment under the variable conditions. In the context of climate change (depending on 

the part of Antarctic), either trapping of the compounds  (places where cooling is observed/forecasted) 

or their release can occur (in places of observed/forecasted warming). Moreover, the cycles of 

accumulation and release of pollutants are also believed to be of seasonal character (winter-summer). 

Nonetheless, the greatest threat for the environment is posed by pollution reemission. Unfortunately, 

the literature still provides on information concerning the detailed description of the circulation of 
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pollutants in the Antarctic environment, including the degree of effect of permafrost degradation on 

pollution remobilisation. 

It can be concluded that climate change has become an integral component of research on 

POPs and heavy metals in Antarctica. These chemical compounds have a negative effect on living 

organisms occurring in Antarctica, and consequently disturb natural ecosystems in the area. In order to 

understand the anthropogenic processes and sources of contamination POPs and heavy metals better, 

their concentration in Antarctica should be constantly monitored. Considering the fact that chemical 

compounds described in the paper also have their natural sources, there is a need to create indicators of 

anthropogenic pollution. This would allow to distinguish which of the pollutants are related to human 

activity, learn about the mechanisms of their migration and limit their emission to the environment. 

The acquired knowledge can be used in the future for rapid response and environmental renewal in the 

event of ecological disasters, e.g. oil spills. It will permit limiting the negative impact of humans on the 

Antarctic environment (e.g. via applying enhanced environmentally friendly solutions), and therefore preserving 

the environment not only for Antarctic fauna and flora, but also for future generations. 
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