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Impacts between adjacent structures during earthquakes have been recen-
tly intensively studied with the help of different models of the impact force.
It has been verified through comparisons that the non-linear viscoelastic
model is the most accurate one among them. One of the aims of the pre-
sent paper is to derive a formula relating the impact damping ratio, as a
parameter of the non-linear viscoelastic model, with a more widely used
coefficient of restitution. Another aim is to determine the range of the
coefficients of restitution and the impact stiffness parameters for different
building materials, such as: steel, concrete, timber and ceramics, based on
the results of an impact experiment. Both aims are new and original ele-
ments of the study in the field of earthquake-induced structural pounding.
The results of the analysis show a wide range of the model parameters
obtained for various prior-impact velocity and mass values. The use of
these parametric values in numerical simulations allows us to study the
behaviour of colliding structures with the increased accuracy.
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1. Introduction

Interactions between insufficiently separated structures with different dyna-
mic characteristics have been repeatedly observed during earthquakes. This
phenomenon, often referred as the earthquake-induced structural pounding,
may lead to some minor damage at contact locations in the case of moderate
ground motions (see, for example, Zembaty et al., 2005) and may result in
substantial destruction or even collapse of interacting structures during severe
earthquakes (see Rosenblueth and Meli, 1986; Kasai and Maison, 1997). The
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problem of earthquake-induced structural pounding has been recently intensi-
vely studied with the use of different models of the impact force. The simplest
model applies a linear elastic spring (see, for example, Maison and Kasai,
1992) and does not take into consideration energy dissipation during impact
due to plastic deformations, local cracking or crushing, fracturing, friction,
etc. A more precise linear viscoelastic model (see Anagnostopoulos and Spi-
liopoulos, 1992; Jankowski et al., 1998) accounts for some energy loss, but the
force-deformation relation is still simplified. In order to simulate this relation
more realistically, a non-linear elastic model, which follows the Hertz law of
contact, has been adopted by a number of researchers (see Jing and Young,
1991; Chau and Wei, 2001). This model, however, does not account for the
energy dissipation during contact.
In order to overcome the disadvantages of the models mentioned, a non-

linear viscoelastic model of earthquake-induced structural pounding has been
proposed by Jankowski (2005c). It has been verified through experiments that
the model is the most precise one in simulating the impact force time history
during an impact as well as in simulating the pounding-involved structural
response during earthquakes. The model has been successfully used for study-
ing earthquake-induced pounding between two adjacent multi-storey buildings
(Jankowski, 2005b) as well as for the analysis of the pounding force response
spectrum under earthquake excitation (Jankowski, 2005a).
According to the non-linear viscoelastic model, the impact force, F , be-

tween two structural members with masses m1 and m2 is expressed by the
following formula (Jankowski, 2005c)

F =















0 for δ ¬ 0 (no contact)

β
√
δ3 + cδ̇ for δ > 0 and δ̇ > 0 (contact – approach period)

β
√
δ3 for δ > 0 and δ̇ ¬ 0 (contact – restitution period)

(1.1)

δ = x1 − x2 − d c = 2ξ

√

β
√
δ
m1m2
m1 +m2

where β is the impact stiffness parameter, ξ denotes the impact damping
ratio, which accounts for the energy dissipation during the impact, x1, x2
are displacements of the structural members and d is the initial in-between
separation gap. Although the above model has been proposed for earthquake-
induced structural pounding, due to its general form it can be also successfully
used to study impacts between other types of colliding bodies.
The precise determination of the parameters of the non-linear viscoelastic

model: β and ξ is essential in order to enhance the accuracy of the numerical
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analysis. Therefore, one of the aims of this paper is to derive a formula relating
the impact damping ratio with a coefficient of restitution, which is a parameter
widely used and studied in the literature (Goldsmith, 1960). The analogous
formula defined for the linear viscoelastic model has confirmed its applicability
(see Anagnostopoulos and Spiliopoulos, 1992). Another aim of the paper is
to assess the range of the coefficients of restitution and the impact stiffness
parameters for different building materials, such as: steel, concrete, timber
and ceramics, based on the results of an impact experiment. Both aims are
new and original elements of the study conducted by the author in the field
of earthquake-induced structural pounding.

2. The formula between the impact damping ratio and coefficient
of restitution

The coefficient of restitution is a well-known parameter used in the classical
theory of impact. It defines the relation between the post-impact relative ve-
locity, δ̇f (δ̇f ¬ 0), and the prior-impact relative velocity, δ̇0 (δ̇0 > 0), of two
colliding bodies (Goldsmith, 1960)

e =
|δ̇f |
δ̇0

(2.1)

The formula for the relation between the impact damping ratio, ξ, and the
coefficient of restitution, e, for the non-linear viscoelastic model can be obta-
ined by equating the loss in the kinetic energy (see Goldsmith, 1960) with the
energy loss through the work done by the damping force during the impact

m1m2
2(m1 +m2)

(1− e2)(δ̇0)2 =
δmax
∫

0

cδ̇ dδ = 2ξ

√

β
m1m2
m1 +m2

δmax
∫

0

4
√
δδ̇ dδ (2.2)

where δ̇ is the relative velocity between colliding structures during the appro-
ach period (δ̇ > 0) and δmax denotes the maximum deformation. In order to
determine the formula for δ̇ during the approach period (required to evaluate
the integral of equation (2.2)) let us first look at the energy balance during
the restitution period of collision, which is considered to be elastic (see equ-
ation (1.1)). Due to the energy transfer from the accumulated elastic strain
energy at the beginning of the period to the kinetic energy at the end of it,
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the following condition holds for each value of deformation δ ∈ 〈0, δmax〉 in
the restitution period

δ
∫

0

β
√
δ3 dδ +

m1m2
2(m1 +m2)

δ̇2 =
m1m2

2(m1 +m2)
(δ̇f )

2 (2.3)

Solving the above equation allows us to determine the formula for the relative
velocity, δ̇, during the restitution period (δ̇ ¬ 0) as equal to

δ̇ = −
√

(δ̇f )2 −
4β(m1 +m2)

5m1m2

√
δ5 (2.4)

Moreover, for the point of maximum deformation, when δ = δmax and δ̇ = 0,
from equation (2.3) we obtain

δmax =
5

√

√

√

√

(

5m1m2(δ̇f )2

4(m1 +m2)β

)2

(2.5)

Assuming that a similar expression as equation (2.4) concerns also the appro-
ach period of collision and ensuring that the relation between the post-impact
and prior-impact relative velocities, defined by equation (2.1), is satisfied, we
can express the formula for the relative velocity, δ̇, during the approach period
(δ̇ > 0) as

δ̇ =
1

e

√

(δ̇f )2 −
4β(m1 +m2)

5m1m2

√
δ5 (2.6)

Substituting equation (2.6) as well as the formula for (δ̇f )
2 obtained from

equation (2.5) into equation (2.2), yields

m1m2
2(m1 +m2)

(1− e2)(δ̇0)2 =
4
√
5

5

ξ β

e

δmax
∫

0

4
√
δ

√

√

δ5max −
√
δ5 dδ (2.7)

The detailed evaluation of the integral of equation (2.7) has been presented in
Appendix. Substituting equation (A.10), for b = δmax and c =

4
√

δ5max, into
equation (2.7) leads to

m1m2
2(m1 +m2)

(1− e2)(δ̇0)2 =
4
√
5

25
π
ξ β

e

√

δ5max (2.8)

Substituting equations (2.5) and (2.1) into equation (2.8) and solving for ξ
gives

ξ =

√
5

2π

1− e2
e

(2.9)
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3. Experimental determination of the coefficients of restitution
and impact stiffness parameters for different building

materials

The experimental study has been carried out in order to determine the range
of the coefficients of restitution and the impact stiffness parameters for the
most commonly used building materials, such as: steel, concrete, timber and
ceramics. The experiment has been conducted by dropping balls of different
masses, m1, on a rigid surface (m2 → ∞) of the same material and obse-
rving the impact force time histories as well as recording the prior-impact and
the post-impact velocities. The properties of balls used in the experiment are
specified in Table 1. The experimental setup is shown in Fig. 1.

Table 1. Properties of balls used in the experiment

Material
Type/grade/ Ball diameter Ball mass, No. of balls
class [mm] m1 [kg] tested

21 0.053 - 0.054 2
Steel 18G2A 50 0.538 - 0.541 2

83 2.013 2

103 1.329 - 1.350 5
Concrete C30/37 114 1.763 - 1.835 5

128 2.531 - 2.636 5

55 0.065 - 0.066 2
Timber pinewood 71 0.109 - 0.112 2

118 0.493 - 0.497 2

58 0.243 - 0.247 2
Ceramics 25 69 0.372 - 0.377 2

80 0.538 - 0.572 2

From the experimental results concerning the prior-impact and the post-
impact velocities, the coefficients of restitution, e, have been first calculated
with the help of equation (2.1). The values of e for different prior-impact
velocities are summarised in Table 2. It should be mentioned that due to
exceeding the allowable acceleration limit, the steel balls could not be tested
for the impact velocities higher than 2m/s, and therefore these results are
not given in the table. A graphical presentation of the relation between the
mean value of the coefficient of restitution and the prior-impact velocity for
different materials is also shown in Fig. 2. The results obtained indicate that
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Fig. 1. Experimental setup

the value of e does not depend on the mass of the balls tested but it is much
sensitive to the prior-impact velocity. The highest values of the coefficient
of restitution have been obtained for ceramic balls, whereas the lowest for
timber ones. Moreover, the general trend for all materials shows a decrease in
the coefficient of restitution with an increase in the prior-impact velocity.

Fig. 2. Coefficient of restitution vs. prior-impact velocity

After determination of the coefficients of restitution, the impact stiffness
parameters, β, have been determined by fitting the experimentally obtained
impact force time histories using the method of the least squares. The values
of β for different masses of the balls tested are presented in Table 3. The
results obtained indicate that the impact stiffness parameter does not depend
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Table 2. Values of the coefficient of restitution, e, obtained from the expe-
riment

Material
Prior-impact Range of coefficient

velocity, δ̇0 [m/s] of restitution, e [–]

0.2 0.6415 - 0.7438
0.5 0.5264 - 0.7142

Steel 1.0 0.5140 - 0.6239
1.5 0.4967 - 0.5652
2.0 0.4863 - 0.5057

0.2 0.7230 - 0.7840
0.5 0.6580 - 0.6859
1.0 0.5858 - 0.5981

Concrete 1.5 0.5378 - 0.5658
2.0 0.4419 - 0.5659
3.0 0.4311 - 0.5001
4.0 0.4278 - 0.4826

0.2 0.6567 - 0.6934
0.5 0.5852 - 0.6356
1.0 0.5334 - 0.5797

Timber 1.5 0.4851 - 0.5354
2.0 0.4281 - 0.5347
3.0 0.4076 - 0.4708
4.0 0.4002 - 0.4428

0.2 0.7575 - 0.7996
0.5 0.6870 - 0.7681
1.0 0.6270 - 0.6697

Ceramics 1.5 0.5770 - 0.6456
2.0 0.5115 - 0.5642
3.0 0.4737 - 0.5208
4.0 0.4330 - 0.4921

on the prior-impact velocity but it shows a dependence on mass of the tested
balls. The general trend for all tested materials shows a small increase in β
with an increase in the ball mass. Moreover, in the case of the impact stiffness
parameter, the highest values of β have been obtained for steel balls, whereas
the lowest for timber ones.
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Table 3. Values of the impact stiffness parameter, β, obtained from the
experiment

Material
Ball mass, Impact stiffness parameter, β [N/m3/2]
m1 [kg] Range Mean

0.053 - 0.054 1.1 - 1.5 · 1010 1.30 · 1010
Steel 0.538 - 0.541 2.4 - 4.4 · 1010 3.55 · 1010

2.013 3.8 - 6.6 · 1010 5.44 · 1010
1.329 - 1.350 3.9 - 10.0 · 109 7.90 · 109

Concrete 1.763 - 1.835 4.7 - 11.2 · 109 8.13 · 109
2.531 - 2.636 6.4 - 13.0 · 109 10.45 · 109
0.065 - 0.066 0.7 - 1.8 · 108 1.38 · 108

Timber 0.109 - 0.112 0.9 - 2.8 · 108 2.16 · 108
0.493 - 0.497 1.0 - 5.2 · 108 2.97 · 108
0.243 - 0.247 1.1 - 2.3 · 109 1.80 · 109

Ceramics 0.372 - 0.377 2.2 - 4.0 · 109 3.13 · 109
0.538 - 0.572 2.8 - 5.8 · 109 4.57 · 109

4. Concluding remarks

In this paper, the determination of parameters for the non-linear viscoelastic
model of structural pounding has been carried out. The formula relating the
impact damping ratio with a coefficient of restitution has been first derived.
Then, values of the coefficients of restitution and impact stiffness parameters
have been determined for different building materials based on the results of
an impact experiment. The paper deals with new and original elements of the
study conducted in the field of earthquake-induced structural pounding.

The results of the study show a wide range of parameters of the non-
linear viscoelastic model determined for steel, concrete, timber and ceramics
for various prior-impact velocities and masses of balls tested. The application
of the obtained parametric values to numerical simulations allows us to study
the behaviour of colliding structures with increased accuracy.

In this paper, the results of the experiment conducted by dropping re-
latively small balls on a rigid surface have been used. Further experimental
studies involving larger elements with different contact surface geometries are
therefore required to verify the results obtained. The confirmation of the range
of parameters of the non-linear viscoelastic model should also be done thro-
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ugh experiments of pounding between models of real structures conduced on
a shaking table under real earthquake excitations.
The use of the results of the study presented in this paper does not have to

be limited to simulation of pounding-involved behaviour of structures during
earthquakes. They can be also applied to study impacts between different
types of colliding bodies in other conditions.

A. Appendix

The present appendix shows the evaluation of the definite integral of the form

b
∫

0

4
√
δ

√

c2 −
√
δ5 dδ (A.1)

where b and c are positive constants and c2 
√
δ5.

Let us start the evaluation by making a substitution, 4
√
δ = y. Then, we

can write
b
∫

0

4
√
δ

√

c2 −
√
δ5 dδ = 4

4
√

b
∫

0

y4
√

c2 − y10 dy (A.2)

After making the second substitution, y5 = t, we receive (for c > 0)

b
∫

0

4
√
δ

√

c2 −
√
δ5 dδ =

4

5

4
√

b5
∫

0

√

c2 − t2 dt = 4
5
c

4
√

b5
∫

0

√

1−
( t

c

)2

dt (A.3)

The next substitution, t/c = z, gives

b
∫

0

4
√
δ

√

c2 −
√
δ5 dδ =

4

5
c2

4
√

b5

c
∫

0

√

1− z2 dz (A.4)

Let us now try to evaluate the integral of the right-hand side of equation (A.4).
Note that

4
√

b5

c
∫

0

√

1− z2 dz =

4
√

b5

c
∫

0

1− z2√
1− z2

dz =

4
√

b5

c
∫

0

1√
1− z2

dz −

4
√

b5

c
∫

0

z
z√
1− z2

dz

(A.5)
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Indeed

4
√

b5

c
∫

0

√

1− z2 dz = arcsin z
∣

∣

∣

4
√

b5

c

0
−

4
√

b5

c
∫

0

z
z√
1− z2

dz =

(A.6)

= arcsin
4
√
b5

c
−

4
√

b5

c
∫

0

z
z√
1− z2

dz

In order to evaluate the integral of the right-hand side of equation (A.6), let
us apply the method of integrating by parts. It yields

4
√

b5

c
∫

0

√

1− z2 dz = arcsin
4
√
b5

c
−
(

−z
√

1− z2
∣

∣

∣

4
√

b5

c

0
+

4
√

b5

c
∫

0

√

1− z2 dz
)

(A.7)

So
4
√

b5

c
∫

0

√

1− z2 dz = arcsin
4
√
b5

c
+

4
√
b5

c

√

1−
√
b5

c2
−

4
√

b5

c
∫

0

√

1− z2 dz (A.8)

Hence 4
√

b5

c
∫

0

√

1− z2 dz = 1
2

(

arcsin
4
√
b5

c
+

4
√
b5

c2

√

c2 −
√
b5
)

(A.9)

Substituting the above into equation (A.4), finally gives

b
∫

0

4
√
δ

√

c2 −
√
δ5 dδ =

2

5

(

c2 arcsin
4
√
b5

c
+

4
√
b5
√

c2 −
√
b5
)

(A.10)
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Analityczne i eksperymentalne szacowanie wartości parametrów
nieliniowego lepkosprężystego modelu zderzeń pomiędzy konstrukcjami

budowlanymi

Streszczenie

Zjawisko zderzeń pomiędzy sąsiednimi konstrukcjami budowlanymi podczas trzę-
sień ziemi jest w ostatnim czasie intensywnie badane z wykorzystaniem różnych mode-
li numerycznych siły zderzenia w czasie kontaktu. Wyniki badań eksperymentalnych
pokazują, iż nieliniowy model lepkosprężysty jest najdokładniejszy wśród modeli sto-
sowanych do analizy. Model ten zdefiniowany jest poprzez dwa parametry: liczbę
tłumienia zderzenia oraz parametr sztywności zderzenia. Jednym z celów niniejszego
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artykułu jest wyprowadzenie wzoru na zależność pomiędzy liczbą tłumienia zderzenia
a współczynnikiem odbicia, który jest parametrem często stosowanym i opisywanym
w literaturze. Kolejnym celem jest wyznaczenie zakresu wartości współczynników od-
bicia i parametrów sztywności zderzenia dla różnych materiałów budowlanych (stali,
betonu, drewna i ceramiki) na podstawie wyników badań eksperymentalnych. Wy-
niki analizy pokazują szeroki zakres wartości parametrów nieliniowego modelu lep-
kosprężystego zderzeń otrzymanych dla różnych wartości prędkości zderzenia oraz
masy testowanych elementów. Zastosowanie tych wartości w symulacjach numerycz-
nych prowadzi do zwiększenia dokładności uzyskiwanych wyników w analizie zjawiska
zderzeń pomiędzy konstrukcjami budowlanymi podczas trzęsień ziemi.

Manuscript received February 21, 2007; accepted for print May 23, 2007
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