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Abstract: This paper examines the thermal self-action of acoustic beams in a Maxwell relaxing fluid. This type of
thermal self-action differs from that in a Newtonian fluid and behaves differently depending on a ratio of
sound period and time of thermodynamic relaxation. The self-action which relates to sound beams con-
taining shock fronts is also discussed. In addition, stationary and non-stationary types of self-action are
considered.
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1. Introduction

Self-focusing of powerful light waves has attracted consid-erable attention to self-action in wave theory [1, 2]. Self-action of optic waves arises from a dependence of the com-plex dielectric constant on the intensity of a wave. Hence,the local sound speed also depends on the wave’s inten-sity. Theoretical studies on self-focusing of optic waveshad considerable impact on nonlinear acoustics. Opticwaves are strongly dispersive, this allows one to considerpropagation of quasi-harmonic waves individually. On thecontrary, the spectrum of sound waves is spread due tononlinear generation of higher harmonics, and their pro-file becomes distorted because they typically propagateover weakly dispersive media [3, 4]. Nonlinear self-action
∗E-mail: anpe@mif.pg.gda.pl

is especially significant in the case of intense ultrasoundwaves in weakly attenuating media. Nonlinearity of soundmay be weak but it increases with increasing distance froma transducer. In order to describe nonlinear dynamics ofsound, the general wave theory has been enriched by ana-lytical methods allowing one to describe acoustic pressurein the paraxial region of Gaussian beams [5] .Reference [6] records that acoustic beams can arise fromthermal self-action similar to laser beams. The nonlineartransfer of acoustic energy into that of a non-acoustic ther-mal mode, leads to variations in background temperatureduring propagation of sound over a medium. The typicalattenuation specific to Newtonian fluids always causesthe temperature to rise. This influences the sound speedand, as a consequence, yields refraction of the sound ina thermally inhomogeneous medium, altering the width ofa sound beam. This kind of self-action is also associ-ated with nonlinearity because the transfer of energy isa nonlinear process. However, the second specific neces-
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sary condition for this transfer is absorption of a medium,which along with nonlinearity, is a reason for interac-tion of acoustic and non-acoustic modes. In a Newto-nian gas, where sound velocity increases with increasingtemperature T , an acoustic beam is defocused, while ina liquid (except for water) with negative thermal coeffi-cient δ = (∂c/∂T )p/c < 0, it is focused (c denotes theinfinitely small-signal sound speed in a fluid). The firsttheoretical results were reviewed in Ref. [7], and the firstexperiments confirming the theory were described in Ref.[8, 9]. Considerable attention has been paid to the thermalself-action of quasi-harmonic sound waves because resultsobtained in nonlinear optics are related to the field ofacoustics [10]. The comprehensive review by Rudenko andSapozhnikov [11] concentrates on the thermal self-actionof beams containing shock fronts in media with quadraticand cubic nonlinearities. The scale of thermal inhomo-geneities is much larger than the acoustic wavelength, andthey form slowly, being characterized by a time of forma-tion much longer than the wave period. This allows oneto treat these inhomogeneities as almost stationary com-pared with quick acoustic perturbations. The approach ofgeometric acoustics implies a weak diffraction.The issue of "sound self-action" consists of two parts:firstly, to describe the sound pressure, and secondly, toaccount for slow variations of background temperaturedue to sound propagation over a relaxing fluid and in-fluence of these variations on a sound beam itself. A sim-plified system of equations includes the analogue of theKhokhlov-Zabolotskaya-Kuznetsov [KZK] [4, 5, 7] equa-tion supplemented by the term responsible for relaxation,and an equation which describes slow dynamics of an ex-cess temperature of the thermal mode. There are two dif-ferent equations, the first describing the low-frequencysound propagation, and the second describing the high-frequency sound propagation. The mathematical contentof description of sound thermal self-action is similar tothat which has been developed by Rudenko et al. in stud-ies of self-action of sound beams with discontinuities ina Newtonian fluid [11]. The thermodynamic model of aMaxwell fluid, which is refers to the form of the viscousstress tensor, which is different from a Newtonian fluid, isdescribed in detail in Refs. [12, 13]. The viscous stresstensor takes the form:
Pi,k = 2mρ0c20

∫ t

−∞

(
∂vi
∂xk

+ ∂vk
∂xi

)exp(−(t − t′)/tR )dt′,(1)where t denotes time, xi are spatial co-ordinates (i, k =1, 2, 3), m is the parameter responsible for relaxation, ρ0is the unperturbed density of a fluid, tR is the char-acteristic time of relaxation, vi denote components of afluid velocity, and c0 denotes the equilibrium speed of

an infinitely small-signal sound in a gas. The equilib-rium sound speed equals √ CP
CV kρ0 , where CP and CV arespecific heats under constant pressure and volume respec-tively, and k = ρ−10

(
∂ρ
∂p

)
T

is the compressibility of a fluid.
2. The foundations and governing
equations
The system of equations describing thermal self-action inan axially symmetric flow of a relaxing fluid take the form[4, 11, 14]:
∂
∂τ

(
∂p
∂x −

δT
c0

∂p
∂τ −

ε
c30ρ0 p

∂p
∂τ (2)

− m2c0
∂
∂τ

∫ τ

−∞

∂p
∂τ ′ e

−(τ−τ ′)/tRdτ ′
) = c02 ∆⊥p.

∂T
∂t −

χ
ρ0CP ∆⊥T = m

ρ20c20CP 〈
∂p
∂τ

∫ τ

−∞

∂p
∂τ ′ e

−(τ−τ ′)/tRdτ ′〉,(3)where x and r are cylindrical coordinates, the x axis co-incides with the axis of a beam, p is acoustic pressure,
τ = t − x/c0 is the retarded time in the reference framewhich moves with the sound speed c0 in the positive di-rection of axis x , ∆⊥ is the Laplacian with respect to theradial coordinate, ε is the parameter of nonlinearity, and
χ is the thermal conductivity. The angle brackets denoteaveraging over fast acoustic oscillations. The parameterresponsible for the thermodynamic relaxation, m, may beexpressed in terms of c0 and the linear sound speed atinfinitely large frequency, c∞:

m = c2
∞ − c20
c20 (4)

Eq. (2) describes an acoustic pressure in a beam whichpropagates in the positive direction of the axis Ox . In con-trast to the KZK equation, it accounts for variations in thewave speed due to changes in the temperature (the secondterm) [15]. Eqs. (2), (3) account for relaxation which is rep-resented by integrals in the both equations. The term re-flecting relaxation in Eq. (2), is well established [4]. Withregard to the right-hand side of Eq. (3), its derivation isexplained in detail in [14]. In Ref. [14], this is Eq. (23) with
m denoting c2∞−c202c20 . Also, the leading-order ratio for acous-tic pressure and acoustic density, ρa, p = c20ρa , has beenused to eliminate acoustic density in deriving the Eq. (3)above. Eq. (3) includes a linear term in its left-hand side
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originating from the thermal conduction. A discussion ofthe incorporation of the first and second viscosities andthe thermal conduction of a fluid in the dynamic equationfor acoustic heating, is found in [14]. In this study, we ac-count for thermal conduction in the linear part of Eq. (3)which governs the entropy mode, but consider attenuationof sound itself in Eq. (2) and the acoustic source of heatingonly due to relaxation. In the case when the acoustic non-linearity is important, and a beam is slightly divergent, theapproximation of the geometrical acoustics is successful.For the validity of approximation of geometrical acoustics,diffraction should be insignificant over the characteristiclength of self-focusing. An acoustic pressure may be foundin the form which follows from the theory of geometricalacoustics [11],
p = p(x, r, θ = τ − ψ(x, r)/c0). (5)

This leads to equations for unknown eikonal ψ and p,
∂p
∂x −

ε
c30ρ0 p

∂p
∂θ −

m2c0
∂
∂θ

∫ τ

−∞

∂p
∂θ′ e

−(θ−θ′)/tRdθ′
+ ∂ψ

∂r
∂p
∂r + ∆⊥ψ2 p = 0, (6)

∂ψ
∂x + 12

(
∂ψ
∂r

)2 + δT = 0. (7)
The form of solution of Eqs. (6), (7) depends on the product
ωtR , where ω is the sound frequency.
2.1. Low-frequency sound
Here, we consider ωtR << 1. In the low-frequencyregime, e−(θ−θ′)/tR varies much more quickly than ∂p/∂θ′,and

∂p
∂θ′ ≈

∂p
∂θ + ∂2p

∂θ2 (θ′ − θ), (8)
so that Eq. (6), (3) may be rearranged as

∂p
∂x −

ε
c30ρ0 p

∂p
∂θ −

mtR2c0
∂2p
∂θ2

+ mt2R2c0
∂3p
∂θ3 + ∂ψ

∂r
∂p
∂r + ∆⊥ψ2 p = 0, (9)

∂T
∂t −

χ
ρ0Cp∆⊥T = bω2

π2ρ30c40CP A
2, (10)

where A denotes the magnitude of acoustic pressure in ashock wave. One period of the shock wave profile may

be considered as a sum of a jump and straight sawtoothportion, described by the formula [4]
p(x, r, θ) = A(x, r) (−ωθπ + f

(
εθ

mtRp0 A(x, r))) , (11)
where p/p0 = f (θ/tR ) is the function which follows fromthe equality describing the stationary dynamics of anacoustic impulse, and

θ
tR

= ln (1 + p/p0)m/(2εM)−1(1− p/p0)m/(2εM)+1 , (12)
where M is the initial acoustic Mach number. In accountof low-frequency relaxation, asymmetry in the wave pro-file decreases at increasing distances from a transducer.Note that the formula for acoustic pressure in a Newto-nian fluid includes the term tanh ( εθb A(x, r)) instead of thesecond term in the brackets in Eq. (11), where b is the to-tal attenuation of a Newtonian fluid. The profile of theshock wave in a Newtonian fluid is always symmetric.The term similar to the Newtonian attenuation in Eq. (9)(which is proportional to ∂2p

∂θ2 ), is much larger than the termresponsible for dispersion. In this limit, a relaxing mediumbehaves as a Newtonian fluid with
b = mtRρ0c20 . (13)

We will consider the case of relatively strong nonlinearity ,
m/(2εM) < 1. This allows one to consider the saw-toothwave profile as a limit of viscous shock in a Newtonianfluid when its width tends to zero. The saw-tooth wave isperiodic with the period 2π/ω. One period takes the form:
p(x, r, θ) = A(x, r) ·{ − θω

π − 1, −π < θω < 0,
− θω

π + 1, 0 < θω < π . (14)
2.2. High-frequency sound
Here, we consider ωtR >> 1, where e−(θ−θ′)/tR varies in-significantly over one period of sound and may be ex-panded in a series as 1− (θ −θ′)/tR + . . . . Hence Eq. (2)takes the form
∂p
∂x −

ε
c30ρ0 p

∂p
∂Θ + m2c0tR p+ ∂ψ

∂r
∂p
∂r + ∆⊥ψ2 p = 0, (15)

where Θ = ω(t − x/c∞) − ψ(x, r)/c∞. Eqs (15), (7)in the following new variables P = exp(Bx)p, Ψ =
− exp(Bx)ψ/B, X = exp(−Bx)− 1, where

B = m2c0tR , (16)
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may be readily rearranged into the set
∂P
∂X + ε

Bc30ρ0P
∂P
∂Θ + ∂Ψ

∂r
∂P
∂r + ∆⊥Ψ2 P = 0, (17)

(X +1) ∂∂X ((X +1)Ψ)+ 12
(
∂Ψ
∂r

)2 (X +1)2 + δTB−2 = 0.(18)The dimensionless distance from a transducer where theshock wave forms (if the initial wave emitted by a trans-ducer is sinusoidal), Xs, equals
Xs = −ρ0c30Bπ

P0εω = −c0Bπ
Mεω . (19)

We highlight that Xs is negative, but the correspondingdimensional distance from a transducer, − 1
B ln(1 + Xs) (ifit exists in real numbers) should always be positive fora beam propagating in the positive direction of axis Ox .For large negative B responsible for strong attenuation,a discontinuity does not form at all. This corresponds to

Xs ≤ −1. Otherwise, discontinuity always forms when
ωtR >

m2εM . (20)
Assuming that the saw-like wave is periodic with period2π/ω, and that its amplitude varies in space, the waveformover one period is described by an equality
P(X, r,Θ) = A(X, r) ·{ −Θω

π − 1, −π < Θω < 0,
−Θω

π + 1, 0 < Θω < π . (21)
Hence, Eqs. (17), (3) result in the following equations:

∂A
∂X −

εω
Bπc30ρ0 A2 + ∂Ψ

∂r
∂A
∂r + ∆⊥Ψ2 A = 0, (22)

∂T
∂t −

χ
ρ0CP ∆⊥T

= 2BtR
ρ20c0CP (X + 1)2〈∂P∂Θ

∫ Θ
−∞

∂P
∂Θ′ e−(Θ−Θ′)/tRdΘ′〉

= 2B(ωtR )2
π2ρ20c0CP (X + 1)2A2. (23)

3. Non-stationary thermal self-
action of a sound beam
If the heat conduction is small then the self action is notstationary and the diffusion term in Eq. (3) may be ne-glected. This occurs at initial stage of evolution, when
t < t0, where

t0 = ρ0Cpa212χ (24)
is the characteristic time of temperature establishment,and a is an initial beam’s radius at a transducer (x = 0).
3.1. Low-frequency sound
The self-focusing of saw-tooth waves in Newtonian flu-ids is well-studied in the stationary and non-stationaryregimes of propagation of the beams which are Gaussianat a transducer. The details of the self-focusing may befound in the review [11]. In this review by Rudenko andSapozhnikov, a Newtonian viscosity in the acoustic sourceof heating was eliminated by use of sound periodicity,which in the leading order yields

ε〈p2 ∂p
∂θ 〉 = b2 〈p ∂2p

∂θ2 〉 = −b2 〈
(
∂p
∂θ

)2
〉. (25)

This allows one to eliminate viscosity, because an acousticsource may be considered to be proportional to εA3(x, r)instead of bA2(x, r). In this study, we consider the acous-tic source proportional to bA2(x, r) in order to compareself-focusing in the low and high-frequency regimes independence on dispersion.In account of Eq. (14), Eq. (10) takes the form
∂T
∂t − = bω2

π2ρ30c40CP A
2. (26)

Eq. (9) can be solved by-considering the parabolic wavefront in the eikonal described by Eq. (7)
ψ(x, r, t) = ψ0(x, t) + r22 ∂

∂x lnF (x, t). (27)
Eq. (27) reflects the sphericity of the wave front, only itscurvature may vary during propagation of a beam. Theunknown function of two variables F (x, t) is responsi-ble for these variations, and ψ0(x, t) is a phase shift ofthe wavefront at the axis of a beam. In accordance withEqs. (7), (27), an evolution of eikonal ψ is described byequation 1

F

(
∂2F
∂x2

) = δT2, (28)
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where T2(x, t) is the coefficient in the transverse-coordinate expansion of temperature,
T = T0 − r22 T2 + . . . (29)

With regard to Eq. (27), the exact solution of the nonlinearequation (with respect to Eqs. (9), (14))
∂A
∂x + εω

πc3ρ0 A2 + ∂A
∂r

∂ψ
∂r + A2 ∆⊥ψ = 0, (30)

is
A(x, r) = P0

F Φ( r
aF

)[1 + 1
xs

Φ( r
aF

)∫ x

0
dx ′

F (x ′, t)
]−1

,(31)where P0 is the initial amplitude at the beam axis, and xsdenotes the distance at which a break of a wave which issinusoidal at a transducer, occurs. xs determines the scaleof the nonlinear absorption,
xs = ρ0c30π

P0εω = −XsB . (32)
With regard to the function Φ which describes the initialtransverse distribution, A(x = 0, r) = P0Φ( ra) we will ini-tially consider Gaussian beams, where Φ(ξ) = exp(−ξ2).Using Eqs. (28), (29) and performing the expansion of Ain the transverse coordinate in the vicinity of a beam axis,one arrives at the equation for F (x, t):

∂
∂t

( 1
F
∂2F
∂x2

) = (33)
4mtRδω2P20

a2π2ρ20c20CPF 4 (1 + 1
xs

∫ x

0 F−1(x ′)dx ′)2 ,

which in dimensionless variables
η = t

t0 , z = x
x0 , zs = xs

x0 (34)
takes the form

∂
∂η

( 1
F
∂2F
∂z2

) = sgn(δ)Π
F 4 (1 + 1

zs

∫ z

0 F−1(z′)dz′)2 , (35)
where Π = Bx0 = − 3mπ2χ4ρ0|δ|tR (ωtR )2M2c40 . (36)
Eq. (35) may be solved numerically under conditions
F (z = 0, η) = F (z, η = 0) = 0, ∂F∂z (z = 0, η) = x0

R , (37)
where R−1 is the initial curvature of a beam which equalszero for planar beams.

3.2. High-frequency sound
As outlined and similar to the previous subsection, Eq. (22)can be solved by assuming the parabolic wave front

Ψ(X, r, t) = Ψ0(X, t) + r22 ∂
∂X lnF (X, t). (38)

Eq. (38) reflects the sphericity of the wave front, only itscurvature may vary during propagation of a beam. In ac-cordance with Eqs. (18),(38), an evolution of eikonal Ψ isdescribed by the equation
1
F

(
∂2F
∂X 2 + 1

X + 1 ∂F∂X
) = δT2

B2(X + 1)2 , (39)
where T2(X, t) is the coefficient in the transverse-coordinate expansion of the temperature, Eq. (29). Withregard to Eq. (38), the exact solution of nonlinear Eq. (22)is
A(X, r) = P0

F Φ( r
aF

)[1 + 1
Xs

Φ( r
aF

)∫ X

0
dX ′

F (X ′, t)
]−1

,(40)where notations P0 and Φ(ξ) are the same as defined inthe previous subsection. Using Eqs (39), (29) and per-forming expansion of A in the transverse coordinate in thevicinity of a beam axis, one arrives at the equation for
F (X, t):

∂
∂t

(
F−1 (∂2F

∂X 2 + 1
X + 1 ∂F∂X

)) =
8δ(ωtR )2P20

π2Bρ20c0CPa2F 4 (1 + 1
Xs

∫ X

0 F−1(X ′)dX ′))2 , (41)

which in dimensionless variables, Eq. (34) takes the form
∂
∂η

(
F−1 ∂2F

∂z2
) = (42)

sgn(δ)Π exp(−2Πz)
F 4 (1 + 1

zs

∫ z

0 F−1(z′) exp(−Πz′)dz′)2 .

Eq. (42) may be solved numerically under initial con-ditions as expressed in Eq. (37). Hence, in the high-frequency case, where dispersion is strong, the solutioncan not be expressed in terms of one parameter.
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4. Stationary thermal self-action of
a sound beam
At the later stages of evolution, t > t0, the temporalderivative of an excess temperature in Eq. (3) may be de-fined as zero.
4.1. Low-frequency sound
With regard to Eq. (14), Eq. (10) is rearranged as

− χ
ρ0Cp∆⊥T = bω2

π2ρ30c40CP A
2. (43)

Expanding T and A in the series in the vicinity of the axisof a beam propagation, one arrives at
1
F
∂2F
∂x2 = δT2 = δbω22χπ2ρ20c40 A

2 (44)
= 6δM2mtR t0ω2c20

a2π2CPF 2
(1 + 1

xs

∫ x

0 F−1(x ′)dx ′)−2
,

which in dimensionless variables takes the form
F d

2F
dz2 = 3sgn(δ)Π

2(1 + 1
zs

∫ z

0 F−1(z′)dz′)2 , (45)

which may be readily solved numerically with initial con-ditions as expressed in Eq. (37).
4.2. High-frequency sound
Using Eqs. (39), (29) and performing expansion of A in thetransverse coordinate in the vicinity of a beam axis, onearrives at the equation for F (X, t):

F
(
∂2F
∂X 2 + 1

X + 1 ∂F∂X
)(1 + 1

Xs

∫ X

0
dX ′
F (X ′)

)2

= δ(ωtR )2
Bχπ2ρ0c0P20 , (46)

which in dimensionless variables as stated in Eqs. (34)takes the form
F d

2F
dz2 = 3sgn(δ)Π exp(−2Πz)

2(1 + 1
zs

∫ z

0 F−1(z′) exp(−Πz′)dz′)2 . (47)

5. Discussion

Liquids are mostly weakly viscous and relaxation timesare very small. For example, the relaxation time of ben-zene equals 2, 7 · 10−10 s. In compounds such as carbontetrachloride, benzene, and chloroform, the relaxation liesin the frequency range of the order of 109−1010 Hz, whereordinary ultrasonic methods of measurement are not ap-plicable and dispersion of sound can be measured onlyby use of optical methods. Acoustic methods are the onlyway to measure the second viscosity of a fluid, which de-pends on sound frequency, while the first viscosity doesnot as a rule (exceptions are very weakly damping liq-uids at very high frequencies), and may be measured bymeans of other methods [16]. Thermal conductivity of liq-uids is relatively weak. With respect to the low-frequencydomain of sound frequencies, ωtR << 1, where liquids be-have as Newtonian, the second viscosity may be dominantcompared with the first viscosity and thermal conduction.For benzene, the first viscosity µ equals 6 · 10−4Pa · s,and b = mtRρ0c20 = 8 · 10−2Pa · s, so that only the relax-ing second viscosity may be accounted for. For the ten-centimeter transducer, the characteristic time in benzene,
t0, equals 145 minutes under normal conditions. Prac-tically, the non-stationary self-focusing is of importance,which is described by Eq. (35). The stationary and non-stationary thermal self-action of shock waves in a Newto-nian fluid has been considered in detail by Rudenko andSapozhnikov [11].Polyatomic gases, to a greater extent, are relaxing. Theirthermal conductivity is much greater than that of stan-dard liquids. Since the characteristic relaxation time ofpolyatomic gases are typically much smaller than that ofthe majority of liquids, the high-frequency regime takesplace at megahertz frequencies. As an example, we con-sider carbon dioxide which is probably the oldest objectof investigation of dispersion since first reports by Pierceand Abello [17, 18]. The physical properties of carbondioxide are determined at temperature 18oC and atmo-spheric pressure [19]. The relaxation time of carbon diox-ide is 3, 6 · 10−5s. The characteristic time of tempera-ture establishment, t0, equals 80s. For smaller times, thenon-stationary regime takes place. If ω = 104Hz (thiscorresponds to the low-frequency regime) and M = 0.1,Π = 0.07, zs = 198, and for the characteristic radius ofa transducer a = 0.1m, then zd = 56. The Mach number
M = 0.1 is associated with strong nonlinearity as com-pared with relaxation, which presumes propagation of theshock waves, and m/2εM = 0.16. Figure 1 illustrates awidth of a beam and its amplitude at the axis of propa-gation in the low-frequency and high-frequency regimes,non-stationary and stationary, as a function of distance
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from a transducer. The second plot in Fig. 1 relates tothe high-frequency regime with ω = 106Hz, M = 5 ·10−3,Π = 0.0003, zs = 991, and zd = 1.4 · 105 correspondingto the same size of a transducer. In this case, Xs = −0.3,so that discontinuity forms at a distance of 0.16m. Inboth plots, the approach of geometrical acoustics is validbecause the characteristic length of a broadening beamis much shorter than the diffraction length (z = 0 cor-responds to the distance of discontinuity forming). Theinitial wavefront is supposed to be planar with R−1 = 0.

Ω=104Hz M=10-1

low-frequency

Η=0.1

stac

Η=1

Η=1

stac

Η=0.1

2 4 6 8
z

1
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a0

,
pA

P0

Ω=106Hz M=5×10-3

high-frequency

Η=0.1

stac

Η=1

Η=1

stac

Η=0.1

20 40 60 80
z

0.5

1.0

1.5

2.0

2.5

a

a0

,
pA

P0

Figure 1. The dimensionless width of a beam (solid lines) and am-
plitude of sound pressure (dashed lines) at the axis of a
beam with an initial planar front in the non-stationary and
stationary regimes.

The width of a beam increases with time, and its amplitudedecreases. This is a common property of a beam propa-gating over attenuating gases, where the thermal coeffi-cient is positive. At some distances from a transducer, thecross section of a beam which is Gaussian at a transducer,becomes almost flat, as it was reported in the paper byRudenko and co-authors, devoted to Newtonian fluids [20].The shear viscosity of carbon dioxide under atmosphericpressure and temperature 18oC equals 1, 4 · 10−5 Pa · s,while b = mtRρ0c20 = 0, 17 Pa · s, which is responsiblefor the bulk viscosity, is much larger.

6. Concluding remarks
With respect to the estimation of the relaxation time, theissue is to separate different relaxation processes in afluid. The rates of individual relaxation processes maydiffer strongly. Generally speaking, molecular collisionsin a gas are accompanied by variations in the transla-tional, rotational, vibrational and electronic energy of thecollision partners. The physical difference in relaxationtimes follows from the variance of probabilities (or crosssections) of the different elementary events. At temper-atures up to the order of 103K, the characteristic timesof the individual relaxation processes in a molecular gasform the following hierarchy:

τTT < τRT � τVV � τVT , (48)
where τTT ,τRT ,τVT are characteristic times of establish-ment of equilibrium among translational, rotational andvibrational degrees of freedom, τVV is the characteristictime of exchange of vibrations among molecules. The maindifficulty is to separate different relaxation processes es-pecially if their relaxation times are close. Often, chemicalreactions are accompanied by a non-equilibrium excitationof the internal degrees of freedom of molecules [21]. Thedispersive properties of chemically reacting gases whereadditional relaxation of molecules’ vibrational degrees offreedom takes place, are considered in [22].In fact, thermodynamic relaxation imposes dissipation, andvice versa. The Kramers-Kronig relations in optics may berecalled, which connect relaxation and attenuation of lightwaves [23]. As for attenuation of sound over its wavelengthin a Maxwell fluid, it depends on the sound frequencyand achieves a maximum for the frequencies ω = 1/tR[4]. The low-frequency sound propagates over a Maxwellfluid similar to a Newtonian fluid. The high-frequencysound almost does not attenuate, but its speed increases,
c∞ = (1 + m/2)c0. The thermal self-action of sound alsodepends strongly on the sound frequency.Similarly to the thermal self-action, another inertial self-action process can occur by means of formation of hydro-dynamic streams in a medium ("acoustic streaming") dueto the loss of momentum of an intense sound wave. Thestream velocity in the paraxial area coincides with thedirection of beam propagation. This mechanism alwaysleads to additional divergence because the drift caused bystreaming causes the wave velocity to increase in the cen-tral part of a beam. The sound beam in a gas is divergentdue to nonlinear generation of both non-acoustic motions:the entropy mode (acoustic heating), which forms a ther-mal lens, and the vortex mode (acoustic streaming), whichis responsible for a bulk motion of a gas. Since shock
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positive pulses travel in unperturbed media with super-sonic velocities, this leads to instantaneous self-refractionof shock pulse beams. This kind of self-action is knownto be the reason for limiting of the maximal intensity thatcan be achieved in strong focused signals [4]. This kind ofself-action is not considered in this study.In this study, we assume that the thermal self-actionoccurs in a static medium. The effects associated withthe occurrence of flows in sawtooth wave fields in New-tonian fluids were discussed in Ref.[24]. The relaxingMaxwell gases with dispersive second viscosity in the low-frequency regime behave as Newtonian fluids. In the high-frequency regime, the term responsible for attenuation isdifferent, and is proportional to acoustic pressure but notto its second derivative with respect to the retarded time(Eq. (15)). Figure 1 reveals some important features ofthermal self-action of the shock sound beams propagat-ing over a relaxing gas. The width of a beam alwaysincreases, and amplitude of acoustic pressure decreasesalong the axis of a beam. The nonlinear broadening ofa beam can be explained by flattening of the transversebeam profile due to stronger absorption near the axis (theso-called isotropization of the directional distribution). Inthe non-stationary self-action, the thermal lens becomesstronger with time and the focal point moves towards thetransducer, which is more significant in the low-frequencynonlinear regime.
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