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Abstract:

This paper examines the thermal self-action of acoustic beams in a Maxwell relaxing fluid. This type of

thermal self-action differs from that in a Newtonian fluid and behaves differently depending on a ratio of
sound period and time of thermodynamic relaxation. The self-action which relates to sound beams con-
taining shock fronts is also discussed. In addition, stationary and non-stationary types of self-action are

considered.
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1. Introduction

Self-focusing of powerful light waves has attracted consid-
erable attention to self-action in wave theory [1, 2]. Self-
action of optic waves arises from a dependence of the com-
plex dielectric constant on the intensity of a wave. Hence,
the local sound speed also depends on the wave's inten-
sity. Theoretical studies on self-focusing of optic waves
had considerable impact on nonlinear acoustics. Optic
waves are strongly dispersive, this allows one to consider
propagation of quasi-harmonic waves individually. On the
contrary, the spectrum of sound waves is spread due to
nonlinear generation of higher harmonics, and their pro-
file becomes distorted because they typically propagate
over weakly dispersive media [3, 4]. Nonlinear self-action
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is especially significant in the case of intense ultrasound
waves in weakly attenuating media. Nonlinearity of sound
may be weak but it increases with increasing distance from
a transducer. In order to describe nonlinear dynamics of
sound, the general wave theory has been enriched by ana-
lytical methods allowing one to describe acoustic pressure
in the paraxial region of Gaussian beams [5] .

Reference [6] records that acoustic beams can arise from
thermal self-action similar to laser beams. The nonlinear
transfer of acoustic energy into that of a non-acoustic ther-
mal mode, leads to variations in background temperature
during propagation of sound over a medium. The typical
attenuation specific to Newtonian fluids always causes
the temperature to rise. This influences the sound speed
and, as a consequence, yields refraction of the sound in
a thermally inhomogeneous medium, altering the width of
a sound beam. This kind of self-action is also associ-
ated with nonlinearity because the transfer of energy is
a nonlinear process. However, the second specific neces-
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sary condition for this transfer is absorption of a medium,
which along with nonlinearity, is a reason for interac-
tion of acoustic and non-acoustic modes. In a Newto-
nian gas, where sound velocity increases with increasing
temperature T, an acoustic beam is defocused, while in
a liquid (except for water) with negative thermal coeffi-
cient 0 = (0c/dT),/c < 0, it is focused (c denotes the
infinitely small-signal sound speed in a fluid). The first
theoretical results were reviewed in Ref. [7], and the first
experiments confirming the theory were described in Ref.
[8, 9] Considerable attention has been paid to the thermal
self-action of quasi-harmonic sound waves because results
obtained in nonlinear optics are related to the field of
acoustics [10]. The comprehensive review by Rudenko and
Sapozhnikov [11] concentrates on the thermal self-action
of beams containing shock fronts in media with quadratic
and cubic nonlinearities. The scale of thermal inhomo-
geneities is much larger than the acoustic wavelength, and
they form slowly, being characterized by a time of forma-
tion much longer than the wave period. This allows one
to treat these inhomogeneities as almost stationary com-
pared with quick acoustic perturbations. The approach of
geometric acoustics implies a weak diffraction.

The issue of "sound self-action" consists of two parts:
firstly, to describe the sound pressure, and secondly, to
account for slow variations of background temperature
due to sound propagation over a relaxing fluid and in-
fluence of these variations on a sound beam itself. A sim-
plified system of equations includes the analogue of the
Khokhlov-Zabolotskaya-Kuznetsov [KZK] [4, 5, 7] equa-
tion supplemented by the term responsible for relaxation,
and an equation which describes slow dynamics of an ex-
cess temperature of the thermal mode. There are two dif-
ferent equations, the first describing the low-frequency
sound propagation, and the second describing the high-
frequency sound propagation. The mathematical content
of description of sound thermal self-action is similar to
that which has been developed by Rudenko et al. in stud-
ies of self-action of sound beams with discontinuities in
a Newtonian fluid [11]. The thermodynamic model of a
Maxwell fluid, which is refers to the form of the viscous
stress tensor, which is different from a Newtonian fluid, is
described in detail in Refs. [12, 13]. The viscous stress
tensor takes the form:

OX + ox;

t ",

) exp(—(t — t')/tr)dt’,
(M

where t denotes time, x; are spatial co-ordinates (i, k =

o0

1,2,3), m is the parameter responsible for relaxation, po
is the unperturbed density of a fluid, tg is the char-
acteristic time of relaxation, v; denote components of a
fluid velocity, and ¢y denotes the equilibrium speed of

an infinitely small-signal sound in a gas. The equilib-

Cp
, where Cp and Cy are
Cvkpo P v

specific heats under constant pressure and volume respec-

rium sound speed equals

tively, and k = p;’ (g—z ) . is the compressibility of a fluid.

2. The foundations and governing
equations

The system of equations describing thermal self-action in
an axially symmetric flow of a relaxing fluid take the form
(4,11, 14]:
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where x and r are cylindrical coordinates, the x axis co-
incides with the axis of a beam, p is acoustic pressure,
T = t — x/cg is the retarded time in the reference frame
which moves with the sound speed ¢y in the positive di-
rection of axis x, A, is the Laplacian with respect to the
radial coordinate, € is the parameter of nonlinearity, and
x is the thermal conductivity. The angle brackets denote
averaging over fast acoustic oscillations. The parameter
responsible for the thermodynamic relaxation, m, may be
expressed in terms of ¢y and the linear sound speed at
infinitely large frequency, cy:
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(4)

m =
2
€

Eq. (2) describes an acoustic pressure in a beam which
propagates in the positive direction of the axis Ox. In con-
trast to the KZK equation, it accounts for variations in the
wave speed due to changes in the temperature (the second
term) [15]. Egs. (2), (3) account for relaxation which is rep-
resented by integrals in the both equations. The term re-
flecting relaxation in Eq. (2), is well established [4]. With
regard to the right-hand side of Eq. (3), its derivation is
explained in detail in [14]. In Ref. [14], this is Eq. (23) with

23
2
2¢j

tic pressure and acoustic density, p,, p = c2p, , has been

m denoting

. Also, the leading-order ratio for acous-

used to eliminate acoustic density in deriving the Eq. (3)
above. Eq. (3) includes a linear term in its left-hand side
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originating from the thermal conduction. A discussion of
the incorporation of the first and second viscosities and
the thermal conduction of a fluid in the dynamic equation
for acoustic heating, is found in [14]. In this study, we ac-
count for thermal conduction in the linear part of Eq. (3)
which governs the entropy mode, but consider attenuation
of sound itself in Eq. (2) and the acoustic source of heating
only due to relaxation. In the case when the acoustic non-
linearity is important, and a beam is slightly divergent, the
approximation of the geometrical acoustics is successful.
For the validity of approximation of geometrical acoustics,
diffraction should be insignificant over the characteristic
length of self-focusing. An acoustic pressure may be found
in the form which follows from the theory of geometrical
acoustics [11],

p=pxr6=1—4xr)cq). )

This leads to equations for unknown eikonal ¢ and p,

Jp e dp m 0 /T ap e (0-9tr g gy

ox  aplo0 T 200 ). o0
dpop A
oy 1 [ag)\’
a'ﬁ‘i(g) +0T =0. (7)

The form of solution of Egs. (6), (7) depends on the product
wtr, where w is the sound frequency.

2.1. Low-frequency sound

Here, we consider wtp << 1. In the low-frequency
regime, e~ 9=¢)/®® varies much more quickly than dp/0¢,
and

ap _dp p
a6 ~ a0t a02® ~ O (®)

so that Eq. (6), (3) may be rearranged as
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where A denotes the magnitude of acoustic pressure in a
shock wave. One period of the shock wave profile may

be considered as a sum of a jump and straight sawtooth
portion, described by the formula [4]

w6

p(x,r,0) = A(x,r) (—7 +f (

0
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where p/py = f(6/tg) is the function which follows from
the equality describing the stationary dynamics of an
acoustic impulse, and

6, (14 plpy)ee
tp - (1- p/po)m/(ZaM)H '

(12)
where M is the initial acoustic Mach number. In account
of low-frequency relaxation, asymmetry in the wave pro-
file decreases at increasing distances from a transducer.
Note that the formula for acoustic pressure in a Newto-
nian fluid includes the term tanh (£2A(x, r)) instead of the
second term in the brackets in Eq. (11), where b is the to-
tal attenuation of a Newtonian fluid. The profile of the
shock wave in a Newtonian fluid is always symmetric.
The term similar to the Newtonian attenuation in Eq. (9)
(which is proportional to g%g), is much larger than the term
responsible for dispersion. In this limit, a relaxing medium
behaves as a Newtonian fluid with

b = mtrpoci. (13)

We will consider the case of relatively strong nonlinearity,
m/(2eM) < 1. This allows one to consider the saw-tooth
wave profile as a limit of viscous shock in a Newtonian
fluid when its width tends to zero. The saw-tooth wave is
periodic with the period 2r/w. One period takes the form:

% _ 1 _7<Bw<0,

p(x,r,0) =A(x,r)- { 4

—% 41,0< 0w < (4)

2.2. High-frequency sound

4 . .
(6-0)/tr yaries in-

Here, we consider wtg >> 1, where e~
significantly over one period of sound and may be ex-
panded in a series as 1 — (60— 6')/tg +.... Hence Eq. (2)

takes the form
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where © = w(t — x/cs) — Y(x,r)/co. Egs (15), (7)
in the following new variables P = exp(Bx)p, ¥ =
—exp(Bx)y/B, X = exp(—Bx) — 1, where

_ m
- 2CotR '

(16)



http://mostwiedzy.pl

Thermal self-action effects for acoustic beams containing fronts in a Maxwell relaxing fluid

Downloaded from mostwiedzy.pl

AN\ MOST

may be readily rearranged into the set
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The dimensionless distance from a transducer where the
shock wave forms (if the initial wave emitted by a trans-

ducer is sinusoidal), X, equals

9
oX

3
pocyBr coBr
X, = — =— ) 1
Poew Mew (19)

We highlight that X is negative, but the corresponding
dimensional distance from a transducer, —% In(1 + X) (if
it exists in real numbers) should always be positive for
a beam propagating in the positive direction of axis Ox.
For large negative B responsible for strong attenuation,
a discontinuity does not form at all. This corresponds to
Xs < —1. Otherwise, discontinuity always forms when

m
te> - 20
Wik > 5 eM (20)

Assuming that the saw-like wave is periodic with period
27 /w, and that its amplitude varies in space, the waveform
over one period is described by an equality

_ew_q _
P(er,@)=A(X,r)-{ > —1,-1<Bw<0,
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Hence, Egs. (17), (3) result in the following equations:
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3. Non-stationary thermal self-
action of a sound beam

If the heat conduction is small then the self action is not
stationary and the diffusion term in Eq. (3) may be ne-
glected. This occurs at initial stage of evolution, when
t < ty, where

_ poC,a’

0=t (24

is the characteristic time of temperature establishment,
and a is an initial beam'’s radius at a transducer (x = 0).

3.1. Low-frequency sound

The self-focusing of saw-tooth waves in Newtonian flu-
ids is well-studied in the stationary and non-stationary
regimes of propagation of the beams which are Gaussian
at a transducer. The details of the self-focusing may be
found in the review [11]. In this review by Rudenko and
Sapozhnikov, a Newtonian viscosity in the acoustic source
of heating was eliminated by use of sound periodicity,
which in the leading order yields

p. b, & b (dp)
or' )= 332 =21 L)) @

This allows one to eliminate viscosity, because an acoustic
source may be considered to be proportional to £A3(x, r)
instead of bA%(x, r). In this study, we consider the acous-
tic source proportional to bA%(x, r) in order to compare
self-focusing in the low and high-frequency regimes in
dependence on dispersion.

In account of Eq. (14), Eq. (10) takes the form

aT bw?
=A% 26
ot m2pdcdCr (20

Eq. (9) can be solved by-considering the parabolic wave
front in the eikonal described by Eq. (7)

Yix, r,t) = o(x, t)+ %2(% In F(x, t). (27)

Eq. (27) reflects the sphericity of the wave front, only its
curvature may vary during propagation of a beam. The
unknown function of two variables F(x,t) is responsi-
ble for these variations, and (x(x, t) is a phase shift of
the wavefront at the axis of a beam. In accordance with
Egs. (7). (27), an evolution of eikonal ¢ is described by
equation
2

1? (ZTE) =0T, (28)
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where T(x,t) is the coefficient in the transverse-
coordinate expansion of temperature,

r2
T=To—5Tt... (29)

With regard to Eq. (27), the exact solution of the nonlinear
equation (with respect to Eqgs. (9), (14))

0A ew ,, O0AOY A

ox + 73 po or or + fAll’b =0. (30)
is
P r 1 r *dy 17
A =7 (F) [1 +Xt“’(07)/0 ﬁ] '
(31)

where Py is the initial amplitude at the beam axis, and x,
denotes the distance at which a break of a wave which is
sinusoidal at a transducer, occurs. x; determines the scale
of the nonlinear absorption,

pocam X,

T Pew B (32)

With regard to the function ® which describes the initial
transverse distribution, A(x = 0, r) = Py® (5) we will ini-
tially consider Gaussian beams, where ®(&) = exp(—&?).
Using Eqgs. (28), (29) and performing the expansion of A
in the transverse coordinate in the vicinity of a beam axis,

one arrives at the equation for F(x, t):

o [ 1 0%F
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Eq. (35) may be solved numerically under conditions
oF X0
Flz=0,0)= Flz.n=0)=0, 5 (z=0,0) = 2, (37)

where R is the initial curvature of a beam which equals
zero for planar beams.

3.2. High-frequency sound

As outlined and similar to the previous subsection, Eq. (22)
can be solved by assuming the parabolic wave front

2

)+ r?aix WF(X, 8.  (38)

WX, r, t)=Wo(X,t
Eq. (38) reflects the sphericity of the wave front, only its
curvature may vary during propagation of a beam. In ac-
cordance with Egs. (18),(38), an evolution of eikonal ¥ is
described by the equation

1 [0°F 1 oF ol

Floxx Txs1ox) “ B+ 9

where T,(X,t) is the coefficient in the transverse-
coordinate expansion of the temperature, Eq. (29). With
regard to Eq. (38), the exact solution of nonlinear Eq. (22)
is

Py (1 INERYARZEE
AX. 1) = fq’(ﬁ) [1 +Z¢(F)/O F(X’,t)] ’
(40)
where notations Py and (&) are the same as defined in
the previous subsection. Using Eqs (39), (29) and per-
forming expansion of A in the transverse coordinate in the

vicinity of a beam axis, one arrives at the equation for
F(X, t):

O (g (OF 1 0F\\_
ot 0X2 X +10X -
86(wtg)2P?
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which in dimensionless variables, Eq. (34) takes the form
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Eq. (42) may be solved numerically under initial con-
ditions as expressed in Eq. (37). Hence, in the high-
frequency case, where dispersion is strong, the solution
can not be expressed in terms of one parameter.
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4. Stationary thermal self-action of
a sound beam

At the later stages of evolution, t > t; the temporal
derivative of an excess temperature in Eq. (3) may be de-
fined as zero.

41. Low-frequency sound

With regard to Eq. (14), Eq. (10) is rearranged as

X buw? 2
— AT= A 43
oGy * 72p3ciCe *3)

Expanding T and A in the series in the vicinity of the axis
of a beam propagation, one arrives at

1 0%F obw?
e = 0= A? (44)
F ox? 2xm2picy

66M? mtptyw’cd 1T\

= —OZJTZCsz 1+X—S/O F(x")dx ,

which in dimensionless variables takes the form

d’F 3sgn(8)

— = , 45

dz2 1 (7, 2 (4)
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zs Jo

which may be readily solved numerically with initial con-
ditions as expressed in Eq. (37).

4.2. High-frequency sound

Using Egs. (39), (29) and performing expansion of A in the
transverse coordinate in the vicinity of a beam axis, one
arrives at the equation for F(X, t):

foF, 1o 1[fax
X2 " X+ 10X X. Jo F(X)
d(wtr)?

= R _p2 (46

BXJTZPOCO 0 ( )

which in dimensionless variables as stated in Egs. (34)
takes the form

d’F _ 3sgn(0)exp(—2Mz)
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0

Zs

5. Discussion

Liquids are mostly weakly viscous and relaxation times
are very small. For example, the relaxation time of ben-
zene equals 2,7 - 107" s. In compounds such as carbon
tetrachloride, benzene, and chloroform, the relaxation lies
in the frequency range of the order of 10°—10"" Hz, where
ordinary ultrasonic methods of measurement are not ap-
plicable and dispersion of sound can be measured only
by use of optical methods. Acoustic methods are the only
way to measure the second viscosity of a fluid, which de-
pends on sound frequency, while the first viscosity does
not as a rule (exceptions are very weakly damping lig-
uids at very high frequencies), and may be measured by
means of other methods [16]. Thermal conductivity of lig-
uids is relatively weak. With respect to the low-frequency
domain of sound frequencies, wtg << 1, where liquids be-
have as Newtonian, the second viscosity may be dominant
compared with the first viscosity and thermal conduction.
For benzene, the first viscosity p equals 6 - 107*Pa - s,
and b = mtgrpycd = 8-1072Pa - s, so that only the relax-
ing second viscosity may be accounted for. For the ten-
centimeter transducer, the characteristic time in benzene,
to, equals 145 minutes under normal conditions. Prac-
tically, the non-stationary self-focusing is of importance,
which is described by Eq. (35). The stationary and non-
stationary thermal self-action of shock waves in a Newto-
nian fluid has been considered in detail by Rudenko and
Sapozhnikov [11].

Polyatomic gases, to a greater extent, are relaxing. Their
thermal conductivity is much greater than that of stan-
dard liquids. Since the characteristic relaxation time of
polyatomic gases are typically much smaller than that of
the majority of liquids, the high-frequency regime takes
place at megahertz frequencies. As an example, we con-
sider carbon dioxide which is probably the oldest object
of investigation of dispersion since first reports by Pierce
and Abello [17, 18] The physical properties of carbon
dioxide are determined at temperature 18°C and atmo-
spheric pressure [19]. The relaxation time of carbon diox-
ide is 3,6 - 107°s. The characteristic time of tempera-
ture establishment, t;, equals 80s. For smaller times, the
non-stationary regime takes place. If w = 10*Hz (this
corresponds to the low-frequency regime) and M = 0.1,
1= 0.07, zz = 198, and for the characteristic radius of
a transducer a = 0.1m, then z; = 56. The Mach number
M = 0.1 is associated with strong nonlinearity as com-
pared with relaxation, which presumes propagation of the
shock waves, and m/2eM = 0.16. Figure 1 illustrates a
width of a beam and its amplitude at the axis of propa-
gation in the low-frequency and high-frequency regimes,
non-stationary and stationary, as a function of distance
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from a transducer. The second plot in Fig. 1 relates to
the high-frequency regime with w = 10°Hz, M =5-1073,
M = 0.0003, z; = 991, and z; = 1.4 -10° corresponding
to the same size of a transducer. In this case, X; = —0.3,
so that discontinuity forms at a distance of 0.16m. In
both plots, the approach of geometrical acoustics is valid
because the characteristic length of a broadening beam
is much shorter than the diffraction length (z = 0 cor-
responds to the distance of discontinuity forming). The
initial wavefront is supposed to be planar with R~ = 0.

a pa

ay Py

af w=10"Hz M=10""
[ low—frequency

2 4 6 8
am
ay Py
250 w=10°Hz M=5-107°

high—frequency

Figure 1. The dimensionless width of a beam (solid lines) and am-
plitude of sound pressure (dashed lines) at the axis of a
beam with an initial planar front in the non-stationary and
stationary regimes.

The width of a beam increases with time, and its amplitude
decreases. This is a common property of a beam propa-
gating over attenuating gases, where the thermal coeffi-
cient is positive. At some distances from a transducer, the
cross section of a beam which is Gaussian at a transducer,
becomes almost flat, as it was reported in the paper by
Rudenko and co-authors, devoted to Newtontian fluids [20].
The shear viscosity of carbon dioxide under atmospheric
pressure and temperature 18°C equals 1,4 - 107> Pa -s,
while b = mtRpocg = 0,17 Pa-s, which is responsible
for the bulk viscosity, is much larger.

6. Concluding remarks

With respect to the estimation of the relaxation time, the
issue is to separate different relaxation processes in a
fluid. The rates of individual relaxation processes may
differ strongly. Generally speaking, molecular collisions
in a gas are accompanied by variations in the transla-
tional, rotational, vibrational and electronic energy of the
collision partners. The physical difference in relaxation
times follows from the variance of probabilities (or cross
sections) of the different elementary events. At temper-
atures up to the order of 10°K, the characteristic times
of the individual relaxation processes in a molecular gas
form the following hierarchy:

7 < TrT K Tyy KL Tyr, (48)

where Tr7,Tr7,TyT are characteristic times of establish-
ment of equilibrium among translational, rotational and
vibrational degrees of freedom, 7,y is the characteristic
time of exchange of vibrations among molecules. The main
difficulty is to separate different relaxation processes es-
pecially if their relaxation times are close. Often, chemical
reactions are accompanied by a non-equilibrium excitation
of the internal degrees of freedom of molecules [21]. The
dispersive properties of chemically reacting gases where
additional relaxation of molecules’ vibrational degrees of
freedom takes place, are considered in [22].

In fact, thermodynamic relaxation imposes dissipation, and
vice versa. The Kramers-Kronig relations in optics may be
recalled, which connect relaxation and attenuation of light
waves [23]. As for attenuation of sound over its wavelength
in a Maxwell fluid, it depends on the sound frequency
and achieves a maximum for the frequencies w = 1/tg
[4]. The low-frequency sound propagates over a Maxwell
fluid similar to a Newtonian fluid. The high-frequency
sound almost does not attenuate, but its speed increases,
Coo = (1 4+ m/2)co. The thermal self-action of sound also
depends strongly on the sound frequency.

Similarly to the thermal self-action, another inertial self-
action process can occur by means of formation of hydro-
dynamic streams in a medium ("acoustic streaming") due
to the loss of momentum of an intense sound wave. The
stream velocity in the paraxial area coincides with the
direction of beam propagation. This mechanism always
leads to additional divergence because the drift caused by
streaming causes the wave velocity to increase in the cen-
tral part of a beam. The sound beam in a gas is divergent
due to nonlinear generation of both non-acoustic motions:
the entropy mode (acoustic heating), which forms a ther-
mal lens, and the vortex mode (acoustic streaming), which
is responsible for a bulk motion of a gas. Since shock

321
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positive pulses travel in unperturbed media with super-
sonic velocities, this leads to instantaneous self-refraction
of shock pulse beams. This kind of self-action is known
to be the reason for limiting of the maximal intensity that
can be achieved in strong focused signals [4]. This kind of
self-action is not considered in this study.

In this study, we assume that the thermal self-action
occurs in a static medium. The effects associated with
the occurrence of flows in sawtooth wave fields in New-
tonian fluids were discussed in Ref[24]. The relaxing
Maxwell gases with dispersive second viscosity in the low-
frequency regime behave as Newtonian fluids. In the high-
frequency regime, the term responsible for attenuation is
different, and is proportional to acoustic pressure but not
to its second derivative with respect to the retarded time
(Eqg. (15)). Figure 1 reveals some important features of
thermal self-action of the shock sound beams propagat-
ing over a relaxing gas. The width of a beam always
increases, and amplitude of acoustic pressure decreases
along the axis of a beam. The nonlinear broadening of
a beam can be explained by flattening of the transverse
beam profile due to stronger absorption near the axis (the
so-called isotropization of the directional distribution). In
the non-stationary self-action, the thermal lens becomes
stronger with time and the focal point moves towards the
transducer, which is more significant in the low-frequency
nonlinear regime.
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