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A B S T R A C T   

In this work, catalytic activity of natural chalcopyrite (CuFeS2) was improved by thermal activation. The 
modified chalcopyrite was used as efficient catalyst for degradation of organic dye Rhodamine B (RhB) through 
advanced oxidation process (AOP). Effects of catalyst dosage, H2O2 concentration, reaction temperature, solution 
pH, anions, and natural organic matter on the degradation efficiency of RhB were investigated. This study 
revealed that thermal activation at 300 ◦C changed the chemical valency of surface elements rather than 
transforming the major chemical phase of natural chalcopyrite. The Fenton-like degradation of RhB was 
significantly improved by thermally activated chalcopyrite. RhB degradation could be obtained under broad pH 
and showed high resistance to natural organic matter and anions. Under optimal conditions of H2O2 43.0 mM, 
catalyst 0.75 g/L, initial pH 5.1, and reaction temperature 25 ◦C, the degradation of RhB reached 96.7% at 50 
min. Based on the rate constant of reaction kinetics, the activation energy for RhB degradation was calculated to 
be 9 kJ/mol. Radical scavenging experiments and electron paramagnetic resonance (EPR) technique demon-
strated that RhB degradation was dominated by the generated hydroxyl radicals in activated chalcopyrite/H2O2 
system. The formation of surface sulfates resulted from thermal activation induced the dissolved copper or iron 
ions, and promoted H2O2 activation and facilitated RhB degradation by reactive hydroxyl radicals. This work 
provides an in-depth understanding of the mechanism behind thermal activation to enhance the activity of 
natural chalcopyrite, offering a theoretical basis for utilizing natural minerals for Fenton-like treatment of 
organic wastewater towards cleaner production.   

1. Introduction 

In recent decades, with the accelerated industrialization of society, 
the discharge of organic wastewater significantly increases and causes 
serious threats to public health and eco-environment [26,35,66]. 
Organic wastewater contains a large number of toxic, harmful, and 

persistent organic pollutants, such as dyes, phenols, antibiotics, poly-
chlorinated biphenyls, aromatic amines, and petroleum pollutants [28, 
5,61]. These organic pollutants are discharged into the environment 
with wastewater, and are likely to accumulate in the aquatic environ-
ment, which will affect the transfer mechanism of oxygen molecules and 
weaken the self-purification capacity of the aquatic environment, 
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** Corresponding author at: Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Nar-

utowicza St. 11/12, 80-233 Gdansk, Poland. 
E-mail addresses: jiakai@zzu.edu.cn (K. Jia), grzegorz.boczkaj@pg.edu.pl (G. Boczkaj), zilangwang@126.com (C. Wang).  

Contents lists available at ScienceDirect 

Journal of Environmental Chemical Engineering 

journal homepage: www.elsevier.com/locate/jece 

https://doi.org/10.1016/j.jece.2023.111469 
Received 12 September 2023; Received in revised form 17 October 2023; Accepted 9 November 2023   

mailto:jiakai@zzu.edu.cn
mailto:grzegorz.boczkaj@pg.edu.pl
mailto:zilangwang@126.com
www.sciencedirect.com/science/journal/22133437
https://www.elsevier.com/locate/jece
https://doi.org/10.1016/j.jece.2023.111469
https://doi.org/10.1016/j.jece.2023.111469
https://doi.org/10.1016/j.jece.2023.111469
http://creativecommons.org/licenses/by/4.0/


Journal of Environmental Chemical Engineering 12 (2024) 111469

2

leading to water pollution [69]. 
Advanced oxidation processes (AOPs) have been shown to be an 

efficient method for treating organic pollutants in wastewater [37,57, 
77]. AOPs produce strongly oxidizing ⋅OH with an oxidation potential of 
2.80 V, and its oxidation capacity far exceeds that of common chemical 
oxidants (permanganate, H2O2, and O3), and it can non-selectively 
degrade most organic pollutants [6]. For example, ⋅OH can effectively 
decompose the conjugated double bonds of dye chromophores as well as 
other groups, and the subsequent formation of smaller 
non-chromophore molecules reduces the color of the dye effluent [1]. 
Fenton process is one of common AOPs that rapidly and non-selectively 
degrades most organic pollutants and even mineralize them into CO2 
and H2O [18]. In view of the limitations of the conventional Fenton 
process, such as strict reaction conditions, subsequent treatment of 
iron-containing sludge, and difficulty in recovering the catalyst, the 
heterogeneous Fenton or Fenton-like processes have attracted wide-
spread attention [8,58]. The use of solid catalysts extends the pH range 
of the reaction, reduces the production of iron sludge, and favors the 
recovery of catalysts [34,62,70]. 

Various iron-based materials have been studied for Fenton-like 
degradation of organic pollutants, and most of them are well-designed 
and chemically synthesized. Complex synthesis process and high cost 
of used chemical reagents limit their potential application. Recently, 
researchers have turned their attention to natural iron-containing min-
erals [38]. The minerals are more readily available and cheaper than 
synthetic iron-based materials, and exhibit good catalytic activity in 
peroxide activation due to their unique components and crystallinity 
[23]. Sun et al. found the good degradation of sodium sulfadiazine under 
broad pH in the system of siderite/H2O2 [47]. Zhang and coworkers 
reported the efficient degradation of carmine with degradation effi-
ciency of 99.97% in siderite/H2O2 system [71]. Studies have proven the 
feasibility of catalytic degradation of organic pollutants using natural 
minerals as catalysts, but the catalytic activity of natural minerals is 
commonly low. The catalytic activity of natural minerals can be 
enhanced by utilizing external energy. Pyrite has a narrow band gap 
(0.95 eV) and exhibits strong light absorption, which can be photo-
activated to produce photoelectrons (e-) and holes (h+) [20,72]. When 
pyrite was utilized in the photo-Fenton system, the Fe3+/Fe2+ cycle was 
significantly improved and the complete oxidation time of p-nitrophenol 
was reduced from 10 min to 4 min [76]. The introduction of an electric 
field in the AOP enhanced the oxidizing ability [38]. In addition to 
external physical fields, the degradation efficiency of natural minerals 
can be improved by adding reducing agents. Wang and colleagues 
demonstrated that the addition of hydroxylamine resulted in a more 
efficient degradation of acid orange 7 (55.5%) compared to the copper 
tailings/peroxydisulfate system (7.68%) [60]. Currently, catalytic 
degradation of organic pollutants using natural minerals is still poorly 
investigated, and strategies of improving catalytic activity of natural 
minerals are imperative. 

Chalcopyrite (CuFeS2) is a typical bimetallic iron sulphide mineral 
with potential for Fenton-like catalysis due to its efficient electron 
transfer properties [39,75]. In Li’s study, the synthesized CuFeS2 effec-
tively activated sodium percarbonate to induce effective degradation of 
sulfadiazine (86.4%) under neutral conditions [29]. Since natural min-
erals are accompanied by impurities, the fragility, oxidation and stoi-
chiometric ratio between unsaturated elements, the catalytic activity of 
natural chalcopyrite is detrimental [27]. In the previous work, natural 
chalcopyrite was proved to be potential heterogeneous catalyst for 
degradation of organic pollutants in H2O2-based AOP and 
persulfate-based AOP [67,75]. Mechanical activation induced the in-
crease of surface area and surface oxidation of natural chalcopyrite, 
which improved its catalytic activity [59]. In this work, an innovation 
thermal activation was proposed to improve the catalytic activity of 
natural chalcopyrite. The objectives of this studies are to (i) examine the 
thermal activation of natural chalcopyrite by multiple characterizations; 
(ii) evaluate the catalytic performance for the degradation of target 

pollutant; (iii) understand the catalytic mechanism of Fenton-like 
reactions. 

2. Materials and methods 

2.1. Materials 

The natural chalcopyrite used in this work was obtained from 
Dongchuan copper mine in Yunnan Province, China. The grade of 
CuFeS2 and Cu in the natural chalcopyrite was 90.3–92.1% and 
31.2–31.9%, respectively. All chemicals used in this work were analyt-
ically pure and used as received without further purification. Hydrogen 
peroxide (H2O2, 30%), isopropyl alcohol (C3H8O; IPA), and tert-butanol 
(C4H10O; TBA), were obtained from Shanghai Aladdin Bio-Chem Tech-
nology Co., LTD (China). Rhodamine B (C28H31ClN2O3, RhB) was pur-
chased from Tianjin Dehua Chemical Reagent Factory. Ultrapure water 
(18.25 MΩ⋅cm) was used in all experiments. 

2.2. Thermal activation of natural chalcopyrite 

The sample of natural chalcopyrite was smashed and manually 
ground, passed through a 200-mesh sieve, and the sieved powder was 
collected. A 10 g of the powder was placed in a crucible and located in a 
muffle furnace, and the temperature was heated to specific value at a 
rate of 5 ℃/min and treated for 2 h under air atmosphere. Preliminary 
experiments were conducted to examine the effect of the temperature 
(100, 200, 300, and 400 ◦C) of thermal activation, and 300 ◦C was 
selected as optimized temperature for thermal activation of natural 
chalcopyrite. The thermally activated chalcopyrite was used as catalyst 
for Fenton-like degradation of RhB. 

2.3. Characterizations 

Morphology was examined using a FEI Quanta FEG 250 scanning 
electron microscope (SEM, USA), and elemental distribution was 
determined by energy dispersive spectroscopy (EDS). N2 adsorption/ 
desorption isotherm was conducted using a Micromeritics ASAP 2020 
surface area analyzer (USA), and Brunauer-Emmett-Teller method and 
Barret-Joyner-Halenda method were used to calculate the surface area 
and pore size, respectively. A Rigaku Ultimate IV X-ray diffraction 
spectrometer (XRD, Japan) was used to analyze chemical phases and 
crystal structures. Surface elemental valence changes were detected by 
Thermo ESCALAB 250XI X-ray photoelectron spectroscopy (XPS, USA). 
The leached metal ions during the reaction were determined using an 
Avio 500 PerkinElmer inductively coupled plasma-optical emission 
spectrometer (ICP-OES; USA). Electron paramagnetic resonance (EPR) 
signals were measured by a JES FA200 spectrometer (JEOL, Japan) 
using 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) as trapping agent to 
identify hydroxyl radical. The concentration of RhB was measured 
spectrophotometrically with a detection wavelength of 554 nm using a 
Shimadzu UV-2600 spectrometer (Japan). 

2.4. Degradation experiments 

Degradation experiments were carried out in 150 mL conical flasks 
placed in a thermostatic oscillator and shaken at 150 rpm. The thermally 
activated chalcopyrite and H2O2 were added into RhB solution to 
initiate catalytic degradation reaction. The effects of H2O2 concentra-
tion, catalyst dosage, initial pH, anions, natural organic matter, and 
temperature on RhB degradation were studied. The initial pH of RhB 
solution was adjusted to specific value (3.0, 4.0, 5.1, 7.0, 9.0, and 11.0) 
using HCl or NaOH solution. The solution samples were taken out at 
regular time intervals, centrifuged for 1 min, and measured the absor-
bance of the solution by UV-Vis spectroscopy. The mean values of 
degradation experiments were given in this work. The degradation (%) 
of RhB was calculated by Eq. (S1). The reaction kinetics were examined 
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using a pseudo-first-order model (Eq. (S2)), and the activation energy 
was calculated according to the Arrhenius equation (Eq. (S3)). 

3. Results and discussion 

3.1. Characterizations of thermally activated chalcopyrite 

The phase composition of natural chalcopyrite before and after 
thermal activation were examined by XRD analysis. As shown in Fig. 1a, 
the characteristic peaks of CuFeS2 at 2θ = 29.4◦, 33.9◦, 48.7◦, 49.1◦, 
57.9◦, 58.6◦, 71.3◦, 78.9◦, and 79.6◦ are observed in XRD pattern of 
natural chalcopyrite, corresponding to the (1 1 2), (2 0 0), (2 2 0), (2 
0 4), (3 1 2), (1 1 6), (4 0 0), (3 3 2), and (3 1 6) planes of CuFeS2 (PDF 
#37–0417), respectively [15]. The intensity of the characteristic peaks 
of chalcopyrite increases significantly and becomes sharper after ther-
mal activation, indicating an increase in the crystallinity of chalcopyrite 
[17]. The position of the characteristic peaks does not shift before and 
after thermal activation, and no new peaks appear, indicating that no 
other phases of chalcopyrite form after thermal activation of natural 
chalcopyrite. 

The pore structure and surface area of chalcopyrite are characterized 
by N2 adsorption/desorption isotherms (Fig. 1b). Chalcopyrite before 
and after thermal activation is characterized by type IV isotherm [67]. 
The specific surface area and pore volume are listed in Table S1. The 
specific surface area of natural chalcopyrite before and after thermal 
activation is 0.989 and 1.037 m2/g, while the pore volume and pore size 
decrease slightly. The results are similar to the surface area and pore size 
of CuFeS2 reported by Rupa Ranjani et al. [44] Thus, thermal activation 
does not change the surface area and pore size of chalcopyrite. 

The SEM images shown in Fig. 2 illustrate the morphology of chal-
copyrite before and after thermal activation. The particle size of natural 
chalcopyrite is relatively large, and shows smooth surface without 
porous structure. Thermal activation does not significantly change the 
surface of natural chalcopyrite, and the surface becomes slightly wrin-
kled and fragmented. This can be ascribed to the surface oxidation of 
iron sulphide minerals during thermal activation in air atmosphere [49]. 
EDS analysis reveals that the main elements in natural chalcopyrite are 
iron (36.7%), copper (35.1%), and sulfur (25.1%). The content of the 
copper and iron in thermally activated chalcopyrite significantly de-
creases, while the content of oxygen increases, indicating that the sur-
face of chalcopyrite can be oxidized during the thermal activation [49]. 

The XPS spectra of chalcopyrite before and after thermal activation 
are shown in Fig. S1. The presence of Fe 2p, Cu 2p, S 2p, and O 1 s is 
verified by the characteristic peaks at the binding energies of 713.1 eV, 
932.1 eV, 162.1 eV, and 533.1 eV, respectively [33]. The significant 
enhancement of the intensity of O 1 s peak after thermal activation 
suggests the potential surface oxidation of chalcopyrite. The 

high-resolution Cu 2p spectra are represented in Fig. 3a. For the natural 
chalcopyrite, the two peaks at the binding energies of 932.1 eV and 
952.1 eV correspond to Cu 2p3/2 and Cu 2p1/2, demonstrating the 
presence of Cu+ and Cu2+ in natural chalcopyrite [43]. For thermally 
activated chalcopyrite, the peaks assigned to Cu+ and Cu2+ are not 
significantly changed, indicating minor Cu oxidation on the surface of 
chalcopyrite. The high-resolution spectra of Fe 2p of chalcopyrite are 
represented in Fig. 3b. The peaks at 707.7 eV, 711.3 eV, and 721.7 are 
attributed to Fe2+, while the peaks at 712.8 eV and 725.8 are assigned to 
Fe3+ [54]. After thermal activation, the Fe 2p3/2 peaks shift to higher 
binding energies, demonstrating the oxidation of iron on the surface of 
the chalcopyrite. The peaks at about 710–718 eV prove the presence of 
iron oxides (e.g., Fe2O3 at about 710.69 eV) [10] and sulfates (e.g., 
FeSO4 at about 713.1 eV) [22]. In addition, the significant enhancement 
of the Fe 2p1/2 peak at 724.8 eV after thermal activation is related to 
the content of iron sulphate [11]. The high-resolution spectra of S 2p of 
chalcopyrite before and after thermal treatment are shown in Fig. 3c. 
The four peaks at 161.5 eV, 162.7 eV, 163.6 eV, and 169.2 eV are 
attributed to S2-, S2

2-, Sn
2-, and SO4

2- of natural chalcopyrite surface. After 
thermal activation, the intensity of the S2-, S2

2-, and Sn
2- peaks is signifi-

cantly reduced, and new peaks at 168.3 eV and 169.5 eV attributed to 
the sulphate species (SO4

2-) can be observed after thermal activation 
[21]. Fig. 3d depicts the high-resolution spectra of O 1 s of chalcopyrite 
before and after thermal treatment. The peaks at 529.7 eV and 531.3 eV 
correspond to metal oxide and sulphate species, and the intensity of the 
characteristic sulphate peaks is enhanced after the thermal activation. 
This further confirms that sulphate is formed on the surface of chalco-
pyrite during the thermal activation. In summary, XPS analysis verifies 
that thermal activation changes the chemical valence of Cu, Fe and S 
species and induces surface oxidation of natural chalcopyrite. 

3.2. Comparison of RhB removal in different systems 

RhB is chosen as the target organic pollutant to evaluate the catalytic 
performance of the thermally activated chalcopyrite. Currently, dyes 
related pollutant gained high attention in the field of AOP based 
wastewater treatment [3,40,41]. Fig. S2 shows the comparison of RhB 
removal in different systems. In the presence of H2O2 and chalcopyrite 
alone, 6.7% and 3.7% of RhB is removed within 50 min, suggesting the 
limited contribution of H2O2 oxidation and adsorption by chalcopyrite 
to RhB removal. RhB degradation in thermally activated chalcopyr-
ite/H2O2 system reaches 96.7% at 50 min. The rate constant of 
first-order kinetics is 0.2000 min− 1, remarkably higher than that for 
H2O2 (0.0080 min− 1) and chalcopyrite (0.0091 min− 1) alone. There-
fore, the thermally activated chalcopyrite is effective for Fenton-like 
degradation of RhB degradation. 

Fig. 1. (a) XRD spectra and (b) N2 adsorption and desorption isotherms of chalcopyrite before and after thermal activation.  
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3.3. Effect of H2O2 concentration 

In the reaction system, the concentration of the oxidant H2O2 de-
termines the amount of hydroxyl radical (⋅OH) produced [50]. Fig. 4a 
shows the effect of H2O2 concentration (0, 0.4, 21.5, 43.0 and 64.5 mM) 
on RhB degradation. The degradation of RhB is only 3.7% in absence of 
H2O2. As H2O2 concentration increases from 21.5 to 64.5 mM, the RhB 
degradation at 50 min increases from 79.7% to 97.2%. The production 
of •OH in solution can be increased by increasing H2O2 concentration in 
the Fenton-like system, thus promoting RhB degradation [31]. Fig. 4b 
exhibits that the rate constant increases from 0.0081 min− 1 to 

0.2236 min− 1 as the concentration of H2O2 increases. When H2O2 con-
centration increases from 43.0 mM to 64.5 mM, the degradation effi-
ciency of RhB does not change significantly, which is attributed to the 
scavenging effect of excess H2O2, producing HO2• and •O2

- with much 
lower oxidation potentials than •OH (Eqs. (1) and (2)) [52].  

•OH + H2O2 → HO2• + H2O                                                           (1)  

HO2• → •O2
- + H+ (2)  

Fig. 2. (a, b) SEM images of chalcopyrite and (c) elemental content of natural chalcopyrite, (d, e) SEM images of chalcopyrite and (f) elemental content of chal-
copyrite after thermal activation. 

Fig. 3. High-resolution XPS spectra of chalcopyrite before and after thermal activation: (a) Cu 2p, (b) Fe 2p, (c) S 2p, (d) O 1 s.  
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3.4. Effect of catalyst dosage 

Solid catalysts are essential in Fenton-like process, promoting the 
generation of reactive radical species for pollutant degradation [73]. 
The effect of chalcopyrite (0, 0.25, 0.50, 0.75 and 1.00 g/L) on RhB 
degradation is shown in Fig. 5a. The degradation of RhB is significantly 
increased by adding chalcopyrite from 0 g/L to 1.00 g/L. The degrada-
tion of RhB at 50 min gradually increases from 6.7% to 97.8%. Since the 
adsorption of RhB onto chalcopyrite is negligible, RhB removal is mainly 
due to the reaction of H2O2 with chalcopyrite to generate reactive rad-
icals. The degradation efficiency of RhB at 50 min is 96.7% in the 
presence of 0.75 g/L chalcopyrite. However, there is no significant 
change in the degradation efficiency when catalyst increases from 
0.75 g/L to 1.00 g/L, suggesting the saturation between the active site 
and H2O2 [16]. In Fig. 5b, the rate constant for RhB degradation in-
creases from 0.0091 to 0.3309 min− 1 by increasing chalcopyrite from 
0.75 g/L to 1.00 g/L. The result can be attributed to the availability of 
more active sites on the catalyst surface and dissolved metal ions, which 
is beneficial to increase the reaction rate [29]. Since the excess chalco-
pyrite may cause the loss of reactive oxygen species and the leaching of 
metal ions [63], 0.75 g/L chalcopyrite is selected for subsequent ex-
periments. Table S2 compares the degradation of RhB by different cat-
alysts. The degradation of RhB by thermally activated chalcopyrite is 
comparable to or higher than that of previously reported catalysts such 
as natural chalcopyrite [67], pyrite [13], Fe@BC [56], CoFe2O4 @PPy 
[12], w-PCB [51]. Consequently, thermally activated chalcopyrite can 

efficiently activate H2O2 to achieve RhB degradation. 

3.5. Effect of reaction temperature 

The effect of reaction temperature (25, 30, 35, 40, and 45 ◦C) on RhB 
degradation is studied in the catalytic system. As shown in Fig. 6a, 
increasing the reaction temperature from 25 ◦C to 45 ◦C results in a 
slight increase in the degradation of RhB, and the degradation efficiency 
at 10 min is 72.5%, 75.1%, 77.1%, 81.9%, and 83.3%, respectively. The 
rate constant increases slightly from 0.1971 min− 1 to 0.2409 min− 1 

(Fig. 6b). The positive correlation between RhB degradation and tem-
perature is attributed to the fact that the increase in temperature ac-
celerates the decomposition of RhB and promotes the production of ⋅OH 
[51]. In thermally activated chalcopyrite/H2O2 system, desirable RhB 
degradation can be achieved under ambient conditions. The activation 
energy for the degradation of RhB in the thermally activated chalco-
pyrite/H2O2 system is calculated from the Arrhenius equation to be 
9 kJ/mol. The activation energy of RhB degradation for thermally 
activated chalcopyrite based AOP system is much lower than that of 
other previously reported catalysts, such as 40 kJ/mol for CuCo2S4 [65] 
or 69 kJ/mol for Fe2O3 [24]. The lower activation energy indicates that 
thermally activated chalcopyrite is promising for Fenton-like degrada-
tion of RhB. 

Fig. 4. (a) Effect of H2O2 concentration on RhB degradation, (b) rate constant at different H2O2 concentrations. Reaction conditions: chalcopyrite 0.75 g/L, pH 5.1, 
RhB 10 mg/L, and temperature 25℃. 

Fig. 5. (a) Effect of catalyst dosage on RhB degradation, (b) rate constant for different catalyst dosages. Reaction conditions: H2O2 43.0 mM, pH 5.1, RhB 10 mg/L, 
and temperature 25℃. 
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3.6. Effect of solution pH 

The pH of the solution can significantly affect the Fenton system, 
influencing the stability of H2O2, the activity of the catalyst, the species 
of organic pollutant, and the oxidation potential of ⋅OH [36,48]. The 
homogeneous Fenton reaction is generally more efficient at acidic pH 
conditions, and Fenton-like process operated at neutral pH is imperative 
[53]. Fig. 7a shows the effect of initial pH (3.0, 4.0, 5.1, 7.0, 9.0, and 
11.0) on the RhB degradation in the thermally activated chalcopyr-
ite/H2O2 system. It can be seen that increasing pH causes the decline in 
RhB degradation. RhB degradation within 20 min is 97.7%, 98.2%, 
83.3%, 71.1%, 40.1%, and 8.7% for pH 3.0, 4.0, 5.1, 7.0, 9.0, and 11.0, 
respectively. At an initial pH of 3.0, the degradation reaches 97.7% 
within 5 min, achieving a rapid degradation of RhB, which is consistent 
with the phenomenon of most Fenton reaction [9,14]. At neutral pH, 
complete degradation cannot be achieved at 50 min, but it may be ob-
tained by extending the reaction time. As shown in Fig. 7b, the rate 
constant decreases from 0.6857 to 0.0142 min− 1 when the pH increase 
from 3.0 to 11.0. Compared to the pyrite reported previously [45], 
thermally activated chalcopyrite has a wider reaction pH range. 

Fig. S3 shows that solution pH rapidly decreases as the reaction 
proceeds, and this may be ascribed to the oxidation of S2- in chalcopyrite 
(Eq. (3)) [74]. The oxidation of S2- promotes Fe2+/Fe3+ cycle and en-
hances H2O2 activation for the formation of hydroxyl radicals. Fig. S4 
displays the final pH of the solution after the reaction, and the corre-
sponding pH is 3.1, 3.8, 4.0, 4.5, 5.1, and 11.0, respectively. Fe2+ species 

in iron-bearing minerals are released more rapidly under acidic condi-
tions than under alkaline conditions [2]. Chalcopyrite introduces dis-
solved iron and copper into solution and also increases the concentration 
of hydrogen ions lowering the pH of the solution [42]. At pH 3.0 and 4.0, 
metals in chalcopyrite are leached faster, favoring the generation of 
more ⋅OH for the degradation of RhB [25]. The decrease in RhB 
degradation at neutral pH may be due to the low leaching of metals as 
well as the precipitation of metal ions [7], which consume Fe2+ and Cu+

and inhibit the Fenton-like reactions, leading to a decrease in the RhB 
degradation. The alkaline condition is unfavorable for the generation of 
⋅OH. Under alkaline conditions, H2O2 is transformed to less reactive 
species. In addition, S vacancies are created on the surface of chalco-
pyrite under acidic conditions, leading to the exposure of Cu and Fe 
active sites [55]. As a result, more Cu and Fe active sites can be released 
at low initial pH. This facilitates the activation of H2O2 and the degra-
dation of RhB.  

8Fe3++S2-+4 H2O→8Fe2++SO4
2-+8 H+ (3)  

3.7. Effect of natural organic matter and anions 

To further evaluate the feasibility for practical application of ther-
mally activated chalcopyrite, the effect of co-existing substances such as 
natural organic matter and anions in wastewater is examined. Natural 
organic matter is a complex mixture of molecules, including humic 

Fig. 6. (a) Effect of temperature on the degradation of RhB, (b) rate constant for different temperature. Reaction conditions: chalcopyrite 0.75 g/L, H2O2 43.0 mM, 
pH 5.1, and RhB 10 mg/L. 

Fig. 7. (a) Effect of initial pH on the degradation of RhB, (b) rate constant for different initial pH. Reaction conditions: chalcopyrite 0.75 g/L, H2O2 43.0 mM, RhB 
10 mg/L, and temperature 25℃. 
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acids, fulvic acids, and humus, and is present in large quantities in water 
sources [46]. Natural organic matter like humic acids can be harmful to 
aquatic organisms at high concentrations. Fig. 8a demonstrates that the 
degradation efficiency of RhB at 50 min decreases from 96.7% to 84.7% 
with increasing humic acid concentration from 0 mg/L to 20 mg/L. The 
negative effect of humic acid on RhB degradation can be ascribed to the 
competitive reactions with reactive oxygen species as well as adsorption 
onto catalyst surface. Humic acids could react rapidly with reactive 
radicals (104 L/(mg s)) [16]. Humic acids adsorb to the chalcopyrite 
surface, and competes with oxidants for surface active sites, inhibiting 
the activation process. 

Fig. 8b represents the effect of Cl- with different concentrations (0, 
10, 20, 50 and 100 mM) on RhB degradation. The addition of chloride 
ions results in a slight decline in RhB degradation. Chloride ion can be a 
common radical scavenger in AOPs, as it can react with reactive radicals 
[64]. At high concentration, Cl- reacts with more ⋅OH to produce the less 
oxidative chlorine radical (Cl⋅) (Eq. (4)) [30]. Fig. 8c shows RhB 
degradation in the presence of NO3

- . The degradation of RhB is slightly 
inhibited with the addition of NO3

- , decreasing from 96.73% to 78.48% 
with adding 100 mM of NO3

- . This is attributed to the reaction of NO3
- 

with ⋅OH (Eq. (5)), which forms redox NO3⋅⋅with lower potential 
(2.30 V) [4]. RhB degradation is nearly unchanged with the addition of 
SO4

2- up to 100 mM (Fig. 8d). Overall, effective RhB degradation can be 
even under high-salt conditions, demonstrating the feasibility of ther-
mally activated chalcopyrite for practical applications.  

Cl-+⋅OH→OH-+Cl                                                                          (4)  

NO3
-+⋅OH→OH-+NO3⋅                                                                    (5)  

3.8. Identification of radical species 

Degradation of organic pollutants by Fenton-like process highly de-
pends on reactive ⋅OH [54]. Radical scavenging experiments are an 
effective strategy to reveal the role of different radicals in pollutant 
degradation. Isopropanol and tert-butanol can be used to scavenge ⋅OH 
(⋅OH in solution) and total ⋅OH (⋅OH in solution and ⋅OH adsorbed on 
catalyst surface), while p-benzoquinone is used to scavenge •O2

- [19]. As 
shown in Fig. 9a, the degradation of RhB is significantly inhibited with 
the addition of tert-butanol and isopropanol. The little difference in RhB 
degradation after adding tert-butanol and isopropanol, the ⋅OH in so-
lution plays a dominant role in Fenton-like degradation of RhB. The 
addition of p-benzoquinone also inhibits the degradation of RhB, indi-
cating that •O2

- contributes to RhB degradation. This is same to the re-
sults of Co-mediated removal of tetracycline using chalcopyrite [32]. 

To further identify the existence of radicals, EPR signals are deter-
mined using 5,5-Dietyl-1-pyrroline-N-oxide as the spin trapping agent. 
As shown in Fig. 9b, no distinct characteristic peaks are observed in the 
EPR spectrum before adding chalcopyrite (0 min). After reaction 5 min 
and 10 min, DMPO-⋅OH signals with an intensity ratio of 1:2:2:1 appear 
in the spectra (aN =aH=14.9 g). The intensity of the signal peaks in-
creases with the increase of reaction time as more ⋅OH is generated in 
the solution. 

3.9. Catalytic mechanism 

Thermal activation induces surface oxidation of natural chalcopy-
rite, and this promotes the leaching of Cu and Fe metal ions from 
chalcopyrite during the degradation of RhB. The change of Cu and Fe 
ions in solution during reaction is shown in Fig. S5. The leaching of Cu 

Fig. 8. Effect of natural organic matter and anions on the degradation of RhB: (a) humic acid, (b) Cl-, (c) NO3
- , and (d) SO4

2-. Reaction conditions: chalcopyrite 0.75 g/ 
L, H2O2 43.0 mM, pH 5.1, RhB 10 mg/L, and temperature 25℃. 
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and Fe ions from chalcopyrite can be observed, and the metal ions in-
crease slightly with increasing reaction time. The metal leaching agrees 
with the poor reusability of the chalcopyrite catalyst in this catalytic 
system. Metal leaching can be attributed to the formation of dissolved 
sulfates on the surface of thermally activated chalcopyrite, and metals 
react rapidly with H2O2 to form ⋅OH. As the reaction proceeds, the 
concentration of Cu and Fe in the solution increases, which is respon-
sible for the continuous leaching of metal ions from the catalyst. The 
degradation mechanism of RhB by thermally activated chalcopyrite can 
be shown in Fig. 10. The dissolution of surface sulphates from thermally 
activated chalcopyrite occurs first, and the metal ions in the solution can 
rapidly activate H2O2 to produce⋅OH, which is the main reason for 
effective RhB degradation. In addition, Cu+ and Fe2+ species on the 
surface of chalcopyrite can also activate H2O2 to produce⋅OH accom-
panied by Cu2+/Fe3+ via electron transfer reactions (Eq. (6)). Mean-
while, the sulphur atoms on the chalcopyrite surface can easily capture 
protons in solution and form sulphur vacancies, thus promoting the 
exposure of surface active sites [68]. The generated Cu2+ (ECu

2+
/Cu
+ =0.17 V) 

and Fe3+ (EFe
2+
/Fe
3+ = 0.77 V) can be reduced by sulfur species such as S2- 

(ES
0
/S
2-=− 0.508 V) and S2

2- (ES2
2-
/S
2-=− 0.48 V) (Eqs. (7)–(9)). Fe2+ can be re-

generated by the interaction between Cu+ and Fe3+ (Eq. (10)). The Cu+

and Fe2+ species regenerated on the chalcopyrite surface can again 
activate H2O2 and continue to produce reactive radicals for RhB 
degradation.  

Cu+/Fe2++H2O2→Cu2+/Fe3++•OH+OH− (6)  

S2-+Cu2+/Fe3+→Cu+/Fe2++S2
2-                                                         (7)  

S2
2-+Cu2+/Fe3+→Cu+/Fe2++ Sn

2-                                                        (8)  

Sn
2-+Cu2+/Fe3+→Cu+/Fe2++SO4

2-                                                      (9)  

Cu++Fe3+→Fe2++Cu2+ (10)  

4. Conclusions 

In this work, thermal activation is proposed to improve the catalytic 
activity of natural chalcopyrite. The physicochemical properties of the 
thermally activated chalcopyrite are characterized by multiple tech-
niques. The RhB degradation reaches 96.7% at 50 min under the con-
ditions of H2O2 concentration 43.0 mM, chalcopyrite 0.75 g/L, initial 
pH 4.0, and reaction temperature 25℃. RhB degradation can be ob-
tained under broad pH and exhibits high resistance to natural organic 
matter and anions. The activation energy for RhB degradation in the 
catalytic system is 9 kJ/mol. The radical scavenging experiments and 
EPR techniques prove the dominant role of hydroxyl groups in RhB 
degradation. Sulphates on the surface of thermally activated chalcopy-
rite readily produce metal ions and activate H2O2 to produce hydroxyl 
radicals through Fenton-like reactions. The Cu+ and Fe2+ species on the 

Fig. 9. (a) Effect of free radical trapping agents on the degradation of RhB, (b) EPR spectrum of⋅OH captured by 5,5-Dimethyl-1-pyrroline-N-oxide. Reaction 
conditions: chalcopyrite 0.75 g/L, H2O2 43.0 mM, pH 5.1, RhB 10 mg/L, temperature 25℃, isopropanol 10 mM, tert-butanol 10 mM, p-benzoquinone 5 mM. 

Fig. 10. The mechanism of RhB degradation in thermally activated chalcopyrite/H2O2 system.  
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surface of chalcopyrite can activate H2O2 to generate ⋅OH accompanied 
by Cu2+/Fe3+ through electron transfer reactions. This study prelimi-
narily reveals the mechanism of thermal activation to improve the ac-
tivity of natural chalcopyrite, and provides a theoretical basis for 
enhancing the efficient degradation of organic pollutants by natural 
minerals. It is clear that proposed method of chalcopyrite activation is 
possible and easy to implement in industrial practice. Further studies 
should be conducted to improve the stability and reusability of the 
chalcopyrite catalyst, as well as the catalytic degradation of emerging 
organic pollutants in wastewater. 
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