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Abstract—In this paper, an optimization framework for 

multi-objective design of antenna structures is discussed which 

exploits data-driven surrogates, a multi-objective evolutionary 

algorithm, response correction techniques for design refinement, 

as well as generalized domain segmentation. The last mechanism 

is introduced to constrain the design space region subjected to 

sampling, which permits reduction of the number of training 

data samples required for surrogate model identification. The 

generalized segmentation technique works for any number of 

design objectives. Here, it is demonstrated using a three-objective 

case study of a UWB monopole optimized for best in-band 

reflection, minimum gain variability, and minimum size. The 

numerical results indicate that segmentation leads to reducing 

the cost of initial Pareto identification by around 21 percent as 

compared to the conventional surrogate-assisted approach. 

Keywords—Antenna design; multi-objective optimization; EM-

driven design; kriging interpolation; domain segmentation 

I. INTRODUCTION

Design of contemporary antennas is a challenging process 

due to several factors, one of them being stringent performance 

specifications imposed on electrical and field properties of the 

structure at hand. Many of these requirements are conflicting, 

i.e., improving one of them leads to degradation of others.

A typical example is design of compact wideband antennas,

where reduction of the physical dimensions of the structure

results in problems with achieving sufficient impedance

bandwidth [1], increased gain variability or degradation of

pulse stability [2]. On the practical side, handling multiple

design goals is difficult and it is often realized in a simple

manner, e.g., by selecting a primary objective and controlling

others using implicit [3] or explicit constraints [4]. There are

other reasons that make antenna design challenging, such as

geometrical complexity (typically implying a large number of

adjustable parameters), and necessity of using full-wave EM

simulations for antenna evaluation, which is computationally

expensive. Clearly, given the above challenges, simple design

methods involving parameter sweeping normally fail to

identify optimum designs.

Vast majority of reported design techniques and cases 

concern single-objective design. A typical situation is 

introduction of various topological alterations of the basic 

antenna structure and parameter tuning upon selecting the final 

topology. The tuning process is often oriented towards 

achieving a required impedance bandwidth whereas the values 

of other performance figures are not controlled explicitly (e.g., 

[5]-[7]). An improved control over multiple antenna 

characteristics can be achieved through numerical optimization 

[8]. Unfortunately, in many cases, conventional optimization 

algorithms [9] turn out to be prohibitively expensive. This 

particularly applies to population-based metaheuristics 

(genetic/evolutionary algorithms, particle swarm optimizers 

[10]-[12]). Design speedup can be obtained using adjoint 

sensitivities [13] or surrogate-based optimization (SBO) 

techniques [14]. The latter exploit faster representations of the 

structure under design either based on auxiliary data-driven 

models [15] or coarse-discretization EM simulations [14]. 

The most comprehensive information about the antenna 

structure and its capabilities in the context of a particular set of 

performance figures can be obtained by means of multi-

objective optimization (MOO). The goal of MOO is to find a 

Pareto set which represents the best possible trade-offs between 

considered design objectives. The most popular MOO 

techniques up to date are population-based metaheuristics [11], 

[12]. Their principal advantage is the ability to generate the 

entire Pareto set in a single algorithm run [16]. All major 

metaheuristic algorithms have their multi-objective versions. A 

disadvantage is high computational cost (typically, thousands 

and tens of thousands of objective function evaluations are 

necessary for the algorithm to converge). Obviously, this 

translates into unacceptable costs if the antenna evaluation is 

performed using full-wave EM analysis. 

Similarly as for single-objective optimization, the 

difficulties pertinent to high cost of MOO can be alleviated 

using surrogate-assisted methods. In [17], a technique 

involving variable-fidelity simulations and auxiliary kriging 

interpolation models has been proposed, further enhanced by 

means of design space reduction techniques [18], [19]. These 

methods are capable of yielding Pareto sets at the costs 

corresponding to only a few hundred evaluations of the high-

fidelity EM simulations of the antenna structure at hand, and 

handling highly-dimensional cases (> 20 parameters). In [20], a 

design segmentation approach has been introduced in order to 
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reduce the number of samples necessary to construct the 

kriging surrogate model for the method [18], leading to further 

reduction of the CPU cost of MOO. Segmentation works by 

defining—based on appropriately defined intermediate 

points—a set of compartments that cover the Pareto front and 

the total volume of which is significantly smaller than that of 

the original design space. Unfortunately, the segmentation of 

[20] only works for two objectives. In this paper, the 

segmentation approach is generalized to an arbitrary number of 

objectives. Our technique is demonstrated using a three-

objective case study of an ultra-wideband monopole antenna. 

The objectives are minimization of in-band reflection, 

minimization of gain variability, and reduction of the antenna 

size. Numerical results indicate that segmentation leads to 21-

percent reduction of the cost of initial Pareto set identification. 

II. SURROGATE-BASED MULTI-OBJECTIVE OPTIMIZATION 

The primary computational model used to evaluate 

performance of the antenna structure at hand is a high-fidelity 

EM simulation model Rf(x). Here, x is a vector of designable 

antenna parameters. The design problem is stated as 

simultaneous minimization of Nobj objectives Fk(Rf(x)), k = 1, 

…, Nobj. Comparison of two designs x and y can be realized 

using a dominance relation  defined as follows: y  x (or y 

dominates over x) if Fk(Rf(y))  Fk(Rf(x)) for all k = 1, …, Nobj, 

and Fk(Rf(y)) < Fk(Rf(x)) for at least one k [16]. MOO aims at 

identifying a set XP of Pareto-optimal designs (i.e., those that 

are not dominated by any other designs). The Pareto set 

represents the best possible trade-offs between objectives Fk. 

The benchmark optimization approach is a methodology of 

[18]. It is a surrogate-based approach that exploits a coarse-

discretization model Rcd and an auxiliary kriging interpolation 

model Rs. It can be summarized as follows: 

1. Design space reduction. Set the lower/upper bounds of the 

design space X0 as l = min{x
*(1)

, x
*(2)

, …, x
*(Nobj)} and u = 

max{x
*(1)

, x
*(2)

, …, x
*(Nobj)}, where x

*(k)
 = argmin{x : 

Fk(Rcd(x))} are extreme Pareto-optimal designs obtained 

through single-objective optimization runs. 

2. Surrogate model construction. Allocate training data 

samples within X0, acquire Rcd simulation data, and 

identify kriging interpolation model Rs. 

3. Obtaining initial Pareto set. Optimize Rs using multi-

objective evolutionary algorithm (MOEA) [18].  

4. Design refinement. Select K designs xs
(k)

, k = 1, …, K; 

obtain high-fidelity-level design xf
(k)

 as 
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Procedure (1) can be iterated; typically 2-3 iterations are 
sufficient for convergence. 

The above algorithm permits low-cost MOO (optimization 
cost typically corresponds to a few hundred of high-fidelity 
model evaluations [17], [18]). Further cost reduction can be 
achieved by domain segmentation briefly discussed and 
generalized in Section III. 

III. GENERALIZED DESIGN SPACE SEGMENTATION 

The original concept of design space segmentation (defined 

for two-objective case) has been illustrated in Fig. 1(a). Given 

d
(1)

 = [d1
(1)

 d2
(1)

 … dn
(1)

]
T
 = |x

*(1)
 – x

*(2)
| (the size vector of the 

design space X0 ), the volume of X0 is V0 = k = 1,…,ndk
(1)

. By 

introducing one intermediate point xI
(1)

, two reduced sub-

domains are created, X1.1 and X1.2 with the volumes of 

V1.l = k = 1,…,ndk
(I.l)

, where d
(I.1)

 = [d1
(I.1)

 … dn
(I.1)

]
T
 = |x

*(1)
 – 

xI
(1)

|, and d
(I.2)

 = [d1
(I.2)

 … dn
(I.2)

]
T
 = |x

*(2)
 – xI

(1)
|. The 

intermediate point is obtained as 
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where the threshold F2.I
(1)

 is set to place the intermediate point 

around the middle of the Pareto front, i.e., F2.I
(1)

 = [F2(x
*(1)

) + 

F2(x
*(2)

)]/2. The cost of finding xI
(1)

 is low because the starting 

point [x
*(1)

 + x
*(2)

]/2 provides its good approximation 

(assuming low curvature of the Pareto front, which is usually 

the case of antenna design problems). 

In a general two-objective case, K intermediate points xI
(l)

, 

l = 1, …, K, are created along with K + 1 sub-domains XK.l, l = 

1, …, K + 1 of the volumes VK.l = k = 1,…,ndk
(I.l)

, where d
(I.1)

 = 

|x
*(1)

 – xI
(1)

|, d
(I.l)

 = |xI
(l–1)

 – xI
(l)

| for l = 2, …, K, and d
(I.K+1)

 = 

|x
*(2)

 – xI
(K)

|. We have xI
(l)

 = argmin{x : F1(Rcd(x)), F2(x) ≤ 

F2.I
(l)

}, where F2.I
(l)

 = (1 – l)F2(x
*(1)

) + lF2(x
*(2)

), l = l/K. 

The fundamental benefit of segmentation is that the total 

volume VK = VK.1 + … + VK.K+1 is much smaller than V0 (cf. [20] 

for details) so that the overall number of training samples 

necessary to build the kriging model (set up independently for 

each segment) is smaller than in case of constructing the model in 

X0. According to [20], increasing the number of segments makes 

these benefits more pronounced but they are counterweighted by 

the increasing cost of finding the intermediate points. In practice, 

selecting one or two intermediate points seems to be optimal for 

typical two-objective antenna problems.  
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Fig. 1. The concept of design space segmentation (illustrated for three-
dimensional design space): (a) two design objectives: three cases shown with 
no segementation, two-fold, and three-fold segmentation, (b) three design 
objectives: two cases shown with no segmentation and two-fold segmentation. 
The overall volume of the segments is smaller than the volume of the original 
space and the benefits increase with the number of segments. Generalization 
for higher number of objectives is straightforward. 
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Figure 1(b) illustrates segmentation for a three-objective 

case. Here, for two-fold segmentation, one needs three 

intermediate points xI
(1.2)

, xI
(1.3)

, xI
(2.3)

, which results in four 

segments covering the entire Pareto set. The points are 

obtained as (k, j = 1, 2, 3, k < j) 

 
(1)

.

( . )

, ( )
arg min ( )

j j I

k j

I k cd
F F

F



x x

x R x                         (3) 

Note that the intermediate points are obtained by optimizing 

one of the objectives with constraints imposed on the second 

while disregarding the third one. This way, one can relocate the 

intermediate points to the boundaries of the Pareto front. 

Three-fold (and higher-order) segmentation can be defined 

analogously. We omit details here because of complexity of 

notation involved. In a similar way, one can define 

segmentation for a larger number of objectives. In case of four 

objectives, two-fold segmentation has four intermediate points 

and five segments. 

IV. DEMONSTRATION EXAMPLE AND RESULTS 

The concept of generalized segmentation is demonstrated 

using a UWB monopole antenna with two radiator slots and an 

elliptical slit below the feed line shown in Fig. 2 [21]. The 

antenna is implemented on FR4 substrate (r = 4.3, h = 1.55 

mm). The design parameters are x = [Lg L0 Ls Ws d dL ds dWs 

dW a b]
T
; W0 = 2.0. The unit for all dimensions is mm. The EM 

antenna models are implemented in CST Microwave Studio 

[22] (Rf : ~2,200,000 mesh cells, simulation time 15 minutes, 

and Rc : ~160,000 cells, 40 seconds); the SMA connector to 

ensure reliability of antenna evaluation. We consider three 

objectives: F1 – minimization of reflection in 3.1 GHz to 10.6 

GHz band, F2 – minimization of antenna footprint (defined as 

A(x) = (2dW + 2dWs + 2Ws + d)(L0 + 2ds + Ls + dL)), and F3 – 

minimization of realized gain variability within UWB frequency 

range. Furthermore, we are only interested in designs for which 

the maximum in-band reflection does not exceed–10 dB. 

The extreme Pareto-optimal designs have been found using 

trust-region gradient search. These are x1
*
 = [8.86 12.96 9.39 

0.35 3.89 6.46 1.22 1.58 2.58 0.33 0.55]
T
, x2

*
 = [9.27 13.20 8.90 

0.25 3.29 0.00 0.70 1.46 0.72 0.67 0.61]
T
, and x3

*
 = [8.38 12.82 

9.89 0.65 3.84 14.99 1.54 1.68 2.65 0.39 0.55]
T
. Consequently, 

the lower/upper bounds of X0 are l
*
 = [8.38 12.82 8.9 0.25 3.29 

0.0 0.7 1.46 0.72 0.33 0.55]
T
 and u

*
 = [9.27 13.2 8.89 0.65 3.89 

14.99 1.54 1.68 2.65 0.67 0.61]
T
. 

 

W0

Lg
L0

a

b

Ws

Ls

dW
dL

d

ds

dWs

     
               (a)                                                       (b) 

Fig. 2. UWB monopole antenna with elliptical slit below the feed line: (a) top 
view, (b) 3D view. The ground plane marked with light-gray shade. 

The three intermediate points have then been obtained using 
(3) as follows: xI

(1.2)
 = [9.12 13.04 8.79 0.29 3.43 2.91 0.87 1.38 

1.48 0.53 0.57]
T
, xI

(1.3)
 = [8.72 12.8 9.53 0.51 3.95 11.36 1.33 1.61 

2.5 0.35 0.54]
T
, xI

(2.3)
 = [8.8 12.99 9.42 0.45 3.59 7.25 1.1 1.57 1.6 

0.54 0.57]
T
. The ratio of the volume V0 of X0 and the combined 

volume V1 of the four segments X1.j (cf. Fig. 1(b)) is around 10
2
. 

The kriging model Rs constructed in X0 requires 843 data samples 
(average RMS error of 2.5 percent). The total number of samples 
required to establish the kriging models in X1.j is 103 + 83 + 63 + 
123 = 372 (average errors of 2.4, 2.5, 2.1, and 2.5 percent, 
respectively). This represents noticeable savings.  

Figure 3 shows the initial Pareto set obtained by 
optimizing the kriging surrogate using MOEA (Step 3 of the 
MO procedure of Section II) as well as the Pareto set found in 
the segmented space. The latter is obtained by selecting the 
non-dominated designs from the concatenated Pareto sets 
obtained in all segments. It can be observed that the 
representations are similar to one another which indicates that 
segmentation does not result in Pareto front quality 
degradation. At the same time, the cost of MO is smaller when 
using design segmentation as indicated in Table I. 

Figure 4 shows the final (high-fidelity) Pareto set obtained 
using the methodology of Section II with design segmentation. 
Table II gathers antenna dimensions for high-fidelity Pareto-
optimal designs. Reflection and realized gain responses for the 
selected designs have been shown in Figs. 4 and 5.   
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Fig. 3. Pareto set representations found in the original design space X0 (black) 
and in the segmented space (gray). 
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Fig. 4. Refined (high-fidelity) Pareto set obtained using design space 
segmentation. Designs marked using filled squares are listed in Table II. 

 

TABLE I   MULTI-OBJECTIVE OPTIMIZATION COST BREAKDOWN 
 

Cost contributor No segmentation Two-fold segmentation 

Extreme and  

intermediate points 
347 Rcd 569 Rcd 

Data acquisition 843 Rcd 372 Rcd 

MOEA optimization N/A N/A 

Refinement 45 Rf 45 Rf 

Total cost 97.9 Rf (24.5 h) 86.8 Rf (21.7 h) 
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Fig. 5. Reflection responses of the selected high-fidelity Pareto-optimal 
designs (cf. Table II): xf

(1) (∙∙∙∙), xf
(3) (–∙–), xf

(5) (– –), xf
(7) (––),xf

(9) (○○). 
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Fig. 6. Realized gain responses of the selected high-fidelity Pareto-optimal 
designs (cf. Table II): xf

(1) (∙∙∙∙), xf
(3) (–∙–), xf

(5) (– –), xf
(7) (––),xf

(9) (○○). 

 

TABLE II   HIGH-FIDELITY PARETO-OPTIMAL DESIGNS 

 Pareto-optimal design 

 x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) 

F1 –10.1 –13.7 –12.6 –11.0 –10.8 –12.9 –12.9 –11.0 –11.5 –13.7 

F2 400 428 476 298 253 497 380 496 261 446 

F3 3.5 4.3 3.7 4.8 5.4 3.6 4.4 3.0 5.1 4.1 

Lg 8.60 9.00 8.77 8.90 9.14 8.80 8.93 8.57 9.19 9.07 

L0 12.81 12.92 12.85 12.88 13.07 12.84 12.83 12.88 13.02 12.94 

Ls 9.86 9.22 9.53 9.15 9.26 9.47 8.92 9.64 8.99 9.15 

Ws 0.57 0.43 0.58 0.44 0.36 0.52 0.50 0.61 0.39 0.51 

d 3.85 3.71 3.83 3.62 3.50 3.88 3.84 3.89 3.53 3.75 

dL 8.44 9.31 11.61 2.91 1.86 12.67 7.93 13.76 2.30 11.25 

ds 1.34 1.09 1.14 1.29 0.79 1.10 0.95 1.38 0.72 1.08 

dWs 1.63 1.56 1.64 1.60 1.46 1.64 1.56 1.64 1.49 1.52 

dW 1.80 2.51 2.43 1.57 1.33 2.58 2.03 2.16 1.42 2.38 

a 0.44 0.35 0.36 0.44 0.55 0.35 0.44 0.37 0.53 0.38 

b 0.56 0.55 0.56 0.56 0.59 0.56 0.55 0.56 0.60 0.55 
 

V. CONCLUSION 

In the paper, a generalized design space segmentation 
technique for accelerated multi-objective optimization of 
antennas has been discussed. Our approach allows for reducing 
the number of training data samples necessary to establish the 
kriging surrogate model, thus leading to the lower overall 
optimization cost. The proposed method has been demonstrated 
using a UWB monopole antenna with three design objectives 
concerning reflection response, realized gain, and the structure 
footprint. For this case study, space segmentation results in 
lowering the cost of initial Pareto set generation by 21 percent. 
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