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Citation: Czyżewicz, J.; Jaskólski, P.;

Ziemiański, P.; Piwowarski, M.;

Bortkiewicz, M.; Laszuk, K.; Galara,

I.; Pawłowska, M.; Cybulski, K.

Towards Designing an Innovative

Industrial Fan: Developing

Regression and Neural Models Based

on Remote Mass Measurements.

Energies 2022, 15, 2425. https://

doi.org/10.3390/en15072425

Academic Editor: Fabio Polonara

Received: 25 February 2022

Accepted: 21 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Towards Designing an Innovative Industrial Fan: Developing
Regression and Neural Models Based on Remote
Mass Measurements
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Abstract: This article presents the process of the construction and testing a remote, fully autonomous
system for measuring the operational parameters of fans. The measurement results obtained made
it possible to create and verify mathematical models using linear regression and neural networks.
The process was implemented as part of the first stage of an innovative project. The article presents
detailed steps of constructing a system to collect and process measurement data from fans installed
in actual operating conditions and the results of analysis of this data. In particular, a measurement
infrastructure was developed, defined, and implemented. Measuring equipment was mounted on
selected ventilation systems with relevant fans. Systems were implemented that allowed continuous
measurement of ventilation system parameters and remote transmission of data to a server where it
was regularly analysed and selected for use in the process of modelling and diagnostics. Pearson’s
correlation analysis for p < 0.05 indicated that all seven parameters (suction temperature, discharge
temperature, suction pressure, current consumption, rotational speed, humidity, and flow) were
significantly correlated with efficiency (p < 0.001). A satisfactory level of correlation between the
selected parameters measured in actual conditions and the characteristics of the fan and the ventilation
system was experimentally verified. This was determined by finding 4 statistically significant
parameters at a confidence level of 95%. This allowed the creation of two mathematical models of
the fan system and the ventilation system using linear regression and neural networks. The linear
regression model showed that the suction temperature, discharge temperature, and air humidity
did not affect the fan efficiency (they are statistically insignificant, p > 0.05). The neural model,
which considered all measured parameters, achieved the same accuracy as the model based on four
significant parameters: suction pressure, current consumption, rotational speed, and flow.

Keywords: fans; measurements; remote measurement and diagnostic systems; fan characteristics;
linear regression; neural networks; managing innovative project; entrepreneurial organisation

1. Introduction

Companies operating in today’s business reality must deal with high pressure resulting
from frequent technological changes, emerging disruptive changes, and the necessity to
improve the products and services they offer to meet, on the one hand, customer needs
and on the other, the requirements and policies of regulators [1]. Adapting to rapidly and
significantly changing conditions requires strategic thinking, which includes recognizing
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megatrends, which are defined as major social, economic, political, and technological
changes that form slowly and affect people over an extended period [2]. In the literature,
the term entrepreneurial orientation is used to describe a company’s approach to strategy
creation and implementation that manifests itself in specific actions that are inherently
entrepreneurial [3]. This article describes the activities and results of the first phase of
the development project of a new product that can be considered a manifestation of
such an orientation. The project aims to develop an industrial fan with a unique design,
characterised by a reduced level of noise emission and increased energy efficiency. The
initiation and implementation of the project in question are tied to three aspects described as
elements of entrepreneurial orientation, namely innovation, risk taking, and proactivity [4].

The first element refers to creativity, the tendency to experiment as well as tolerance
and desire to promote innovative ideas [5]. The basic assumption of the project itself
and its activities is the belief that innovative design changes can be made. Moreover,
these changes are expected to lead to the creation of a product that will be more energy
efficient. The process of its development is based on advanced methods, including the use
of artificial neural networks and numerical modelling to optimise fan parameters. The
second element, i.e., risk taking, refers to activities that involve uncertainty about the final
outcome but whose success involves significant benefits [6]. The described project has
just such characteristics. The last element of entrepreneurial orientation, also representing
an aspect of project activities, is proactivity, which refers to taking the initiative to gain a
competitive advantage [7]. The level of fan parameters assumed in this project will be very
competitive globally.

The article consists of the following parts. The first part describes the types of fans. In
addition, it discusses the currently prevailing approach to their design, which results in
frequent oversizing of the equipment and, at the same time, provides the opportunity for
significant optimisations if an innovative approach is taken at the stage of finding solutions.
The next part of the article describes the assumptions and the course of activities performed
at the first stage of the innovative research and development project in question. The next
element of the article is a description of the process of creating a mathematical model
containing significant parameters that affect the efficiency of a fan in a given ventilation
system. A summary and conclusions are shown in the final part of the article.

Types of Fans, Prevailing Design Approach

Fans find a wide range of applications in virtually all areas of human life and are
intended for use in a variety of specific locations. They can be classified in a number of
ways, e.g., by the installation method (discharge, suction and combination of both), design
features, pressure value (low-pressure, high-pressure), number of rotors (single-rotor and
multi-rotor), application (transport, smoke extract, explosion-proof) and installation site
(mine, sea). Depending on the installation site, it is possible to distinguish e.g., wall, ceiling,
or roof fans. Other examples of fan applications include:

• ventilation equipment (room ventilation), foundries, power plants, mines, cinemas,
lecture halls, etc.;

• motor and electricity generator cooling;
• internal combustion engine cooling;
• fan cooling towers;
• air condensers in cooling systems;
• draft and blast fans,
• electronic systems for cooling components and many other applications [8–10].

Fans, as a device, are an often underestimated but very important component of larger
industrial systems due to the noise they generate, but above all, in terms of electricity
consumption. Nearly 80% of the electricity generated is consumed by electric motors, of
which about 15% is used by the motors that drive the fans [11]. Fans installed in the U.S.
industrial sector consume about 11% of the electricity of all industrial motor drives [12]. On
the other hand, in India, ceiling fans alone consume about 9% of all electricity produced [13].
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Improving fan efficiency is an essential step towards reducing energy consumption globally.
Fans should always be considered as a whole, in combination with the ventilation system,
i.e., elements such as: inlet (inlet nozzles, inlet boxes, vane diffusers, filters), outlet (guide
wheels, exhaust manifold, silencers), drive (direct, belt, gear) with control and regulation
system, heat exchangers, partitions, and proper equipment.

Economic operation and maintenance of a ventilation system require the right ap-
proach, not only an analysis of the needs of individual equipment components but also the
system as a whole. The system approach makes it possible to analyse not only the inlet to
and outlet from the system but also how they interact with each other. Ventilation system
designers often focus on the direct requirements for individual elements, neglecting the
system as a whole, which affects its individual components. This includes the specification
of current operating conditions and parameters, the temporary status of the machine, the
collection and analysis of operational data, the development of load cycles, the evaluation
of energy consumption in relation to operating conditions, or the continuous monitoring
and ongoing optimisation of the system. To ensure adequate reliability of fan operation, sys-
tem installers design fan systems conservatively and tend to compensate for uncertainties
in the design of the process by increasing fan efficiency and pressure [14]. Unfortunately,
oversizing fan systems increases their operating costs while reducing the reliability of the
fan itself. Due to service requirements, these fans do not work at the best operating points.
In extreme cases, they may operate unstably, generating excess flow energy, which results
in high levels of air flow noise and increased fan and system load.

While reviewing existing fan solutions and ongoing fan research, one can identify
several areas for improvement of gas transport processes using flow fans. These include
improving the energy efficiency of the fan itself as a device, together with the drive,
introducing measures to reduce the noise generated, and improving gas transport efficiency
within the ventilation system. The most significant opportunities lie in providing solutions
for the ventilation system, selecting the right fan for it, and then in the fan itself, its drive
system, and the adjustment method. All the mentioned measures are interrelated and
directly influence each other.

Choosing a fan is a complex process that starts with knowing the basic operating
requirements of the system and the operating conditions, such as airflow rate, temperature,
pressure, airflow properties, and ventilation system structure. The variability of these
factors and other considerations, such as cost, efficiency, service life, maintenance, speed,
type of material, spatial limitations, drive systems, temperature, and range of operating
conditions makes fan selection very complicated. However, factors that bring reduction
of energy consumption when modernising or expanding a system can be very helpful in
the process of fan selection. Often a given type of fan is chosen for non-technical reasons,
such as price, delivery conditions, availability, designer, operator, or familiarity with the
fan model. As a result, the noise level, energy costs, maintenance requirements, system
reliability, or fan efficiency can be worse than expected. Fans are usually selected from a
range of models and sizes rather than designed specifically for a particular application.
Fan selection is based on calculating the requirements for gas flow and pressure in the
ventilation system. Unfortunately, there is a high level of uncertainty associated with
predicting gas flow resistance in the system. This uncertainty, combined with the effects
of contamination and anticipated changes in system resistance, forces the introduction of
efficiency and pressure reserves beyond the potentially nominal state. The problems and
costs associated with poor fan choice can be eliminated in the future through the adequate
collection of data that will constitute feedback from the operation [15].

By determining the relationship between the practical conditions and the characteris-
tics of the fans and the ventilation system themselves, and by knowing the significance of
the influence of individual system components, we can substantially influence the process
of designing and selecting a fan. For this reason, before starting research work on the
design of a high-efficiency and thus low-noise fan, it is necessary to have a mathematical
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model of its operation within the system, verified numerically and experimentally in actual
operating conditions.

In the subject literature, the authors have not found comprehensive solutions for a
remote, fully autonomous system for measuring the operational parameters of fans. There
are attempts to build a digital model of interconnected ventilation networks and the possi-
bility of using the development of a ventilation network for prospective calculations [16].
It is possible to encounter control and diagnostic systems that provide only current control
of fan station parameters and signalling of emergency conditions [17,18]. It is also possible
to find a system for monitoring the operation of master ventilation mining fans, including
control systems for fan drives and dampers, and a fan operation supervision system, whose
task is to monitor and visualise the operation of the fans [19]. There are also analytical
methods for creating a system for optimal control of the operation of a simple ventilation
system that uses measurement data [20]. For fans, there also exists a diagnostic system that
prevents failures by using vibration measurement and a predictive model that uses neural
networks. However, this only applies to protection against failures [21].

As part of building a remote system for measuring the operational parameters of fans
in actual conditions, a selection of points and parameters measured at selected locations
was made to collect mass data. This selection was intended to ensure adequate repeatability
and relevance of the measurements. The selection of data was made in the form of a time
series (daily characteristics with a sampling frequency of 1 Hz) for future algorithm training,
sample description, and selection and extraction of attributes. A mathematical model was
then created using linear regression and neural networks to evaluate the condition of a given
fan in a specific installation configuration on the basis of selected measurement parameters.

The innovativeness of the current approach lies in its comprehensiveness. Installing a
number of sensors determined the fans’ characteristics and began identifying significant
parameters. Based on this data, models were built that will be further used in the fan
design process. They are likely to be an efficient tool for generating and verifying ideas for
the modernization of fans and fan systems after further development. As was previously
highlighted, the authors did not find such comprehensive solutions in the literature. There
are only solutions with limited functionality that include, e.g., diagnostic systems to prevent
breakdowns and signal emergency states. It might be possible to maintain satisfactory
model accuracy while reducing the number of measuring devices (suction or discharge
pressure, current consumption, rotational speed, and flow). In particular, eliminating the
need to measure flow, the sensors of which are most expensive, would be beneficial. We
believe that there is a novelty in the approach described in the present paper.

2. Description of the Conducted Research

As part of the project activities, a selection of centrifugal fans operating in actual
conditions produced by Nyborg–Mawent was made. The selection was guided by several
criteria, including fan type, fan operating conditions, and the availability of local internet
infrastructure. One of the main criteria was the strategic importance of a given fan in
the Nyborg–Mawent offer. This is because it was crucial to concentrate the works and
research on those fans that are purchased and installed most frequently. Their potential
modification and increased efficiency would be the most beneficial to the manufacturer, its
customers, and the wider environment. For the measurements, representative centrifugal
fan designs were selected from among Nyborg–Mawent’s ZWP, ZWWOax, ZWPSe, and
WPSS types working in actual operating conditions to analyse their operational parameters
at the installation site in comparison to the design assumptions.

In the course of site inspections and installation, the team encountered a problem with
power, which had to be supplied to the measurement set. For some fans, this was difficult
due to the distance between the fan and the power source. This problem was successfully
solved by designing an original, innovative device that enables obtaining power directly
from the inverter of a fan. The experiments performed in laboratory conditions made it
possible to create a unique power supply solution, thanks to which electrical energy with
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the right parameters can be supplied with sufficiently good accuracy to all measurement
sensors. It is currently the subject of a patent clearance study.

Further activities included defining the essential measurement equipment, namely
sensors of pressure, temperature, flow, humidity, electrical, and electronic components
to take remote mass measurements. This was necessary to perform the measurements
correctly, i.e., to precisely determine the physical quantities measured and the method
of measuring them. To this end, a technical specification was developed for each of the
measurement elements according to the assumed requirements of the dataset.

The selection, arrangement, and installation of temperature, pressure, current con-
sumption, rotational speed, humidity, and flow velocity sensors were planned and made in
accordance with the EN-ISO-5802: 2008E-1 standard. (Industrial fans–performance testing
in situ) [22]. It was similar for each measured fan; however, it was conditioned by the
assembly possibilities.

Due to the various operating conditions of the fans in the ventilation systems (weather
conditions, high dust concentration, vibrations, lack of local internet infrastructure), the
equipment used required an individual approach. For this purpose, technical solutions
were developed for this equipment that allowed the collection of measurements of cur-
rent operating parameters, their acquisition, and subsequent transmission to the server
(Figure 1). The measuring equipment, installed on selected devices with different power,
purpose, operating at low or high temperatures (around 200 ◦C), was verified for correct
operation [23].

Figure 1. Several installed measuring sensors (a) and an electrical connection box with measuring
signals and a modem for data transmission to the server (b).

Thanks to this solution, data could be collected from enough fans and, in subsequent
stages, used to construct mathematical models. The sensor data previously uploaded to
the server was verified, i.e., its accuracy was analysed by comparing the current operating
points against the characteristics of the respective fan types [24]. The following is the
methodology for converting the data from measurement sensors (formulae 1 to 13), which
is verified, archived, and collected on the server [9].

Absolute pressure:
P = Pb ± p1,2 (1)

where:
Pb–atmospheric pressure (Pa),
p1–suction gauge pressure (‘−’ sign) (Pa),
p2–discharge gauge pressure (‘+’ sign) (Pa).
Air density:

ρ =
Pst

R · T (2)
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where:
Pst–static absolute pressure of the mixture (Pa),
T–absolute temperature of the mixture (K),
R–gas constant of the mixture (kJ/kgK) determined using an empirical formula:

R = 0.462 · 0.622 + x
1 + x

(3)

where x is the moisture content calculated according to the formula:

x =
0.622 · φ · PS
Pst − φ · PS

(4)

and where:
φ—measured relative humidity (−),
PS—water vapour saturation pressure for a given temperature (Pa),
Pst—static absolute pressure of the mixture (Pa).
Volumetric efficiency:

V = A · w (5)

where:
A–cross-sectional area of the suction or discharge pipeline (m2),
w–measured average medium velocity in the suction or pressure pipeline (m/s).
Mass efficiency:

m = V · ρ (6)

where:
V–volumetric efficiency (m3/s),
ρ–medium density (kg/m3).
Static pressure increase:

∆Pst = P2 − P1 (7)

where:
P1–absolute pressure in the suction pipeline (Pa),
P2–absolute pressure in the discharge pipeline (Pa).
Dynamic pressure increase:

∆Pd = Pd2 − Pd1 =
ρ2 · w2

2
2
−

ρ1 · w2
1

2
(8)

where:
Pd1–dynamic pressure in the suction pipeline (Pa),
Pd2–dynamic pressure in the discharge pipeline (Pa),
w1–average gas velocity in the suction pipeline (m/s),
w2–average gas velocity in the discharge pipeline (m/s),
ρ1–gas density in the suction pipeline (kg/m3),
ρ2–gas density in the discharge pipeline (kg/m3).
Total pressure increase:

∆PC = ∆Pst + ∆Pd (9)

Effective power:
Nu = V · ∆PC (10)

where:
V–volumetric efficiency (m3/s),
∆PC–total pressure increase (Pa).
Unit efficiency:

ηz =
Nu

Nel
(11)
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where:
Nu–effective power (W),
Nel–electrical power input (W), determined using the formula:

Nel =
√

3 ·U · I · cos(ϕ) (12)

where:
I–measured current intensity value (A),
cos(ϕ)–for modern asynchronous motors can be estimated at ~0.85,
U–current voltage (V) determined based on rotational frequency (f) from the relationship:

U =
f

50
· 400 (13)

The calculated and analysed data is compared to the current operating points against
the characteristics of the respective fan types. This was followed by continuous measure-
ments, ongoing analysis of the collected data, and selection of data for use in the process of
modelling and model verification. Several measurement points collected between June and
November 2021 determined using the above calculation methodology are presented below
against the background of the characteristics of an exemplary 20,093 fan (Figure 2). The
sample measurement results presented against the characteristic of the fan clearly show
that in this case, the fan was selected with a large oversizing of the efficiency. The operating
points deviate significantly from the optimal efficiency value. Such measurements and the
constructed model will make it possible to verify the process of selecting a machine for a
given ventilation system, among other things.

Figure 2. Selected measurement results in the period from June to January 2022 against the back-
ground of the characteristics of an exemplary 20,093 fan, where: (a) efficiency η as a function of flow
Q, (b) pressure increase ∆ps as a function of flow Q, (c) power Nel as a function of flow Q, blue line
characteristic, orange points-measurements.
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For the purpose of further research analyses, the measurement data is filtered and
cleaned of distortions and thus prepared for inclusion in a future mathematical model.

Figure 3 shows examples of measurement points from selected days used for data
analysis. The collected measurement data made it possible to select sets to train and verify
the model predicting the process of changes in characteristics of the fan and the system in
time and to assess the significance of the influence of various design parameters of the fan
and the system. The data collected allowed verification of the models built and clarification
of the variables required to assess the relevance of those models during long-term operation.

Figure 3. Cont.
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Figure 3. Measurement points from selected days used to develop a mathematical model, where:
(a) suction temperature (◦C), (b) discharge temperature (◦C), (c) suction pressure (Pa), (d) discharge
pressure (Pa), (e) flow (V), (f) current consumption (A), (g) rotation speed (Hz), (h) humidity (%),
(i) flow (m3/s), (j) efficiency (-).

Before the stage of creating the mathematical model, a correlation analysis was per-
formed between the individual measured parameters and the fan efficiency. Pearson’s
correlation for p < 0.05 was considered significant [25]. Pearson’s correlation coefficients
(r) and their values at the 95% confidence interval are presented in Table 1. “r” takes
values from −1 to 1, where 1 means total positive correlation, 0 means no correlation, and
−1 means total negative correlation (the larger the x, the smaller the y). These are corre-
lations that consider the relationships between a single parameter and efficiency without
taking into account the interdependencies between parameters, so this stage should be
considered a preliminary exploration of the relationships.

Table 1. Correlations (Pearson) between the measured parameters and the fan efficiency.

Parameter r CI95% p Correlation

Suction Temperature (◦C) 0.272 (0.23 0.31) 0.000 Very Weak
Discharge Temperature (◦C) 0.220 (0.18 0.26) 0.000 Very Weak

Suction Pressure (Pa) −0.362 (−0.40 −0.32) 0.000 Moderate
Current Consumption (A) −0.738 (−0.76 −0.72) 0.000 Very Strong

Rotational Speed (Hz) −0.583 (−0.61 −0.55) 0.000 Strong
Humidity (%) 0.077 (0.03 0.12) 0.001 Very Weak
Flow (m3/s) −0.349 (−0.39 −0.31) 0.000 Moderate

Correlation analysis indicated that all seven parameters were significantly correlated
with efficiency (p < 0.001). However, for humidity and gas temperatures in the suction
and discharge ducts, the correlations are very weak: r = 0.077, 0.272 and 0.220, respectively
(all below 0.30). Correlations are also noticeable in the graphs of parameter—efficiency
(Figure 4). Correlations between measured parameters and efficiency were also analysed
(Figure 5), and a very strong correlation was observed between the temperature of the mix-
ture in the suction duct and the temperature of the mixture in the discharge duct (r = 0.98).
In addition, flow velocity is highly correlated with current consumption (r = 0.86), fan
rotational speed (r = 0.90), and suction duct pressure (r = 0.88). Such high correlations sug-
gest that these four parameters can be replaced by one/two parameters in a mathematical
model without any apparent decrease in model accuracy.
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Figure 4. The dependence of the fan efficiency on the measured parameters, where: (a) suction
temperature (◦C), (b) discharge temperature (◦C), (c) suction pressure (Pa), (d) rotational speed (Hz),
(e) current consumption (A), (f) humidity (%), (g) flow(m3/s).
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Figure 5. Pearson’s mutual correlations between parameters and efficiency.

One of the models considered was a mathematical model based on linear regres-
sion [26], which can be defined with the formula:

y = a_1 x_1 + a_2 x_2 + · · · + a_n x_n + b (14)

where n is the number of input parameters, x is the input parameter, and y is the fan
efficiency. The linear regression model finds statistically significant parameters related to
efficiency. The model considers the influence of all parameters simultaneously, making it
better than the analysis of individual correlations presented in the previous section [27].

Based on the actual measurement data, the linear regression model was developed. It
is presented in Table 2.

Table 2. Correlations (Pearson) between the measured parameters and the fan efficiency.

Parameters Factor
a

Lower Limit a for
the Confidence

Interval CI (2.5%)

Upper Limit a for the
Confidence Interval

CI (9 7.5%)
p Relevance

b 0.5500 0.5466 0.5534 0.000 -
Suction Temperature (◦C) 0.0003 0.0000 0.0006 0.075 insignificant

Discharge Temperature (◦C) −0.0002 −0.0004 0.0001 0.271 insignificant
Suction pressure (Pa) 0.0002 0.0002 0.0002 0.000 p < 0.001

Current consumption (A) −0.0648 −0.0652 −0.0644 0.000 p < 0.001
Rotational speed (Hz) −0.0126 −0.0128 −0.0123 0.000 p < 0.001

Humidity (%) 0.0000 0.0000 0.0000 0.192 insignificant
Flow (m3/s) 0.5758 0.5684 0.5832 0.000 p < 0.001

Based on the mathematical model developed above, it was shown that the temperature
of the mixture measured in the suction duct and in the discharge duct, as well as the mixture
humidity, had no effect on the fan efficiency (not statistically significant, p > 0.05).

Linear regression models predict the target quantity based on linear relationships
between the target quantity and one or more predictors. In some cases, statistical modelling
techniques provide suitable models very quickly. Even for problems where more flexible
machine learning techniques (such as neural networks) may give much better results, some
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statistical models can be used as basic predictive models to evaluate the performance of
more advanced techniques. In this case, modelling from the field of machine learning was
also applied to the analyses. Artificial neural networks have many applications:

• data analysis–allows, for example, the filtering of signals;
• feature extraction–enables the reduction of data size (compression);
• approximation–based on information about the points, the artificial neural network

learns the shape of the function (prediction);
• optimisation;
• control systems–based on the given patterns of responses to specific stimuli, the neural

network can automatically interpret the situation and respond to it.

In practice, one can find many applications of neural networks, and below are a few
selected from the bibliographic review,

− in predicting fans failures [21],
− in forecasting energy consumption [28],
− for the assessment of fuel consumption in an internal combustion engine [29],
− in the assessment of the dynamic condition of turbine stages [30],
− in the analysis of aircraft engines operation [31],
− to evaluate the operation of gas turbines [32].

A machine learning approach to training and testing the model was used to confirm
the relevant parameters determined above. This approach involves splitting the data into
training data, which is used to calculate the coefficients ‘a’ and ‘b’ in the model, and test
data, which allows the model to be tested for error between the predicted values and
the actual values in the test set. The basis of this approach is that the model is verified
for predictive accuracy for data that was not used to calculate (‘train’/‘teach’) the model.
Therefore, the model is trained on training data and verified on test data.

A single split of the training/test data in a ratio of, e.g., 80%/20%, does not guarantee a
reliable evaluation of the model; hence, 10-fold cross-validation was used in the conducted
analysis. It consists of a 10-fold data split (90/10% ratio). The accuracy of the model is
verified 10 times, each time using a different 10% of the parts as a test set (the rest being
training data). The mean prediction error (RMSE–root mean square error) was calculated
from 10 iterations.

Calculations were carried out for three sets of input parameters:

1. Seven parameters: suction temperature (◦C), discharge temperature (◦C), suction
pressure (Pa), current draw (A), rotational speed (Hz), humidity (%), flow (m3/s);

2. Four parameters: suction pressure (Pa), current consumption (A), speed (Hz), flow
(m3/s);

3. Three parameters: suction pressure (Pa), current consumption (A), rotational speed (Hz).

The significance of the parameters was determined by their effect on the accuracy of
the mathematical model. If a mathematical model based on a smaller number of input
parameters achieves similar accuracy, i.e., there is no statistically significant difference at
the 95% confidence level, this means that the omitted input parameters are insignificant for
the model. Differences between the models in terms of accuracy were compared using the
Mann–Whitney U Test, assuming a significance level of p < 0.05 [33].

Table 3 and Figure 6 show the model’s prediction error. There is no significant differ-
ence (p > 0.05) between the error value for the model with seven parameters and for that
with four parameters. Figure 7 shows, in detail, the predicted values depending on the
measured ones.
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Table 3. The error between the values predicted by the model and those measured for the three models.

Error (RMSE) Model
Number of Input Parameters

7 4 3

Mean (Standard Deviation)
Linear Regression 0.0023 a

(0.00101)
0.0023 a

(0.00097)
0.0094 b

(0.00417)

Artificial Neural Network 0.0651 c

(0.02684)
0.0360 d

(0.01287)
0.0279 d

(0.01116)

Statistically significant difference between a and b: p < 0.001, c and d: p < 0.01.

Figure 6. Error (RMSE) for three linear regression models with different numbers of input parameters.

A model including all measured parameters achieves the same accuracy as a model
based on the following four parameters: suction pressure (Pa), current draw (A), rotational
speed (Hz), and flow (m3/s). Failure to include flow velocity in the input parameters
results in a significant reduction in model accuracy.

A mathematical model based on an artificial neural network was also developed to
analyse the influence of the measured parameters on the fan efficiency, taking into account
non-linear relationships and mutual dependencies between the parameters.

As for the linear regression-based model, calculations were performed for three sets of
input parameters:

1. Seven parameters: suction temperature (◦C), discharge temperature (◦C), suction
pressure (Pa), current draw (A), rotational speed (Hz), humidity (%), flow (m3/s);

2. Four parameters: suction pressure (Pa), current draw (A), rotational speed (Hz), flow
(m3/s);

3. Three parameters: suction pressure (Pa), current draw (A), rotational speed (Hz).

Ten neurons were used in the hidden layer of the neural network. Figure 8 shows the
network architectures. Table 3, as well as Figures 9 and 10, show the prediction error.
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Figure 7. Predicted values as a function of actual values for 3 linear regression models with a
decreasing number of input parameters; (a) 7 inputs parameters, (b) 4 inputs parameters, (c) 3 in-
puts parameters.

Figure 8. Architecture of the neural network: (a) 7 input parameters; (b) 4 input parameters; (c) 3 in-
put parameters.
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Figure 9. Prediction Error (RMSE) for 3 artificial neural network models with different numbers of
input parameters.

Figure 10. Predicted values as a function of actual values for 3 artificial neural network models
with a decreasing number of input parameters: (a) 7 inputs parameters, (b) 4 inputs parameters,
(c) 3 inputs parameters.
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Artificial neural network models had a prediction error that was an order of magnitude
higher in 10-fold cross-validation. This is probably due to overfitting, as confirmed by the
significantly smaller error (p < 0.01) for a smaller number of input parameters.

Based on the results presented, artificial neural network models were less accurate
than linear regression, and conclusions regarding the significance of input parameters were
based on linear regression models.

Based on the performed analyses and the obtained mathematical models reflecting
the relationships between the parameters measured in actual conditions and fan efficiency,
four statistically significant parameters related to efficiency were found:

• suction duct pressure,
• current draw,
• rotational speed,
• flow speed of the medium.

The measured parameters, i.e., the temperature of the medium in the suction and
discharge ducts and relative humidity, are not significantly correlated with the fan efficiency
while operating at the existing facility. The aforementioned significance was based on a
confidence interval of 95%.

The resulting model will be developed and expanded using measurement data ob-
tained over a more extended period of operation. This will make it possible to determine a
detailed course of action for further design and construction changes to the fans and the
systems. Thus, the model will be used in the design process as the most beneficial tool for
generating and verifying retrofit concepts for the systems and the fans themselves. The
main objectives of the proposed system for collecting and analysing data and predicting
future operating states are as follows:

• determining the current operating conditions and parameters,
• determining the current and future status of process production,
• collecting and analysing operational data and developing load cycles,
• evaluating alternative system designs and areas for improvement,
• determining the most technically and economically advantageous options, considering

all the subsystems,
• implementing the best system design variant,
• evaluating energy consumption in relation to operating conditions,
• continuous monitoring and ongoing optimisation of the system,
• continuing to operate and maintain the system for maximum efficiency.

3. Conclusions

The article reports activities performed as part of a research and development project
co-financed by the European Union from the European Regional Development Fund and
its results. It presents detailed steps of the construction of a system to collect and process
measurement data from fans installed in actual operating conditions and the results of
analysis of this data. In particular, the following tasks were carried out:

• Measurement infrastructure was developed and implemented; this included defining
the necessary measurement equipment set;

• Measuring equipment was mounted on selected ventilation systems with relevant fans;
• Systems have been implemented that allow continuous measurement of ventilation

system parameters and remote transmission of data to a server where it is regularly
analysed and selected for use in the process of modelling and diagnostics;

• A satisfactory level of correlation between the selected parameters measured in real
conditions and the characteristics of the fan and the ventilation system was experimen-
tally verified. This was determined by finding four statistically significant parameters
at a confidence level of 95%;

• Two mathematical models were built and verified using linear regression and artificial
neural networks.
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Finally, the wider social and business context of the R&D project described in this
article is worth highlighting. As was mentioned in the introduction, it can be regarded
as a manifestation of the entrepreneurial orientation of the company that implements
it. Additionally, it is linked to the adaptation of company’s activities to megatrends that
transform the conditions in which it operates. Emphasising the importance of the broader
context when presenting technical solutions is important and desirable [34,35]. Among the
current megatrends is the growing emphasis of societies and policymakers on introducing
solutions aimed at reducing humanity’s negative environmental impact [36]. This is done
in several ways, including creating technical solutions offering the highest possible energy
efficiency. Yet another major megatrend is the increasing reliance on artificial intelligence
and automation. It makes it possible to collect, identify, and analyse data on the operation
of equipment, which allows it to improve, adjusts its operating parameters to specific
operating conditions, determines its current state, and predicts possible failures [37]. Both
megatrends are reflected in the assumptions of the project described here, as well as its
progress and intended outcome, which is to create an industrial fan with a unique design.
The activities and results described in this article can be seen as a significant first step
towards achieving this goal.
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