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We discuss the propagation of transverse surface waves that are so-called whispering- 

gallery waves along a surface of an elastic cylinder with coating. The coating is modelled 

in the framework of linearized Gurtin–Murdoch surface elasticity. Other interpretations of 

the surface shear modulus are given and relations to so-called stiff interface and stiff skin 

model are discussed. The dispersion relations are obtained and analyzed. 
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Introduction 

The thin rod-like elements are widely used in NEMS and MEMS, see, e.g. , Bhushan (2017) . Nowadays, it is well-known

that due to high surface-to-volume ratio in comparison with a size of considered nanosized rod-like elements, one needs

in a certain enhancement of the classic elasticity. To this end, we mention the surface elasticity applications, see, e.g. ,

Duan, Wang, and Karihaloo (2008) , Wang et al. (2011) , Javili, McBride, and Steinmann (2013) and Eremeyev (2016) , where

for example, the so-called size effect was described. The mostly used model of the surface elasticity proposed by Gurtin

and Murdoch (1975, 1978) has origin in earlier landscape works by Laplace (1805, 1806) and Young (1805) for fluids and

Gibbs for solids ( Longley & Van Name, 1928 ), see also review by Orowan (1970) . From the mathematical point of view, the

presence of surface stresses change solutions of the corresponding boundary-value problems, see, e.g. , the analysis of stress

singularity near crack tips by Kim, Ru, and Schiavone (2013) and Gorbushin, Eremeyev, and Mishuris (2020) , or even bring

new phenomena as anti-plane waves ( Eremeyev, Rosi, & Naili, 2016 ). 

Here, we discuss the so-called transverse surface waves propagating along the boundary of a cylindrical solid body whose

the cross-section is circular. This type of surface waves is an example of the whispering-gallery waves known from works

by Lord Rayleigh, see Strutt (1945) and Rayleigh (1910) . In the framework of the linear elasticity, such waves for an elastic

circular cross-section cylinder were discussed by Victorov (1974) and later were confirmed experimentally on cylindrical

specimens made of CdS (Cadmium sulfide) by Vas’kova et al. (1974) . In order to capture the material behaviour at the

nanoscale, we use the linearized Gurtin–Murdoch surface elasticity. So, the present paper focuses on the analysis of these
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surface waves taking into account surface stresses. As for cylindrical nanorods the axisymmetric and torsional waves were

analyzed in some works, see, e.g. , Chen, Wu, Zhang, and Zhang (2014) , Xu and Fan (2016) and Huang (2018) , the presented

results add new view to the picture of surface waves in elastic circular cross-section cylinders with surface stresses. 

The paper is organized as follows. In Section 1 , we recall in brief the basics of the linearized Gurtin–Gurtin model. In

Section 2 , we consider antiplane deformations and reduce the problem under consideration to the wave equation with

nonclassic boundary conditions. We also discuss in Section 3 the similarities of these conditions with ones for which we

have in the case of so-called rigidly stiff interface discussed by Mishuris, Movchan, and Movchan (2006b, 2010) , and some

other approaches to coating modelling. The dispersion relations are analyzed in Section 4 . 

1. The linearized Gurtin–Murdoch model 

Let us consider an isotropic elastic solid body which occupies a volume V with smooth enough boundary S = ∂V . In

the framework of the Gurtin–Murdoch model, we introduce a surface strain energy and surface stress tensor ( Gurtin &

Murdoch, 1975 ). The latter is a generalization of a scalar surface tension in fluids. Considering small deformations, we get

the surface stress tensor τ by the formulae 

τ = γ P + 2(μs − γ ) ε + (λs + γ ) P ( tr ε ) + γ∇ s u , ε = 

1 

2 

(
P · (∇ s u ) + (∇ s u ) T · P 

)
, (1) 

where u = u (x , t) is a displacement vector, x is the position vector, t is time, ε is the surface strain tensor, γ is a scalar

coefficient interpreted as a residual surface tension, λs and μs are the surface Lamé moduli , ∇ s is the surface nabla operator

related to the three-dimensional one through the formula ∇ s = P · ∇, P ≡ I − n � n , n is the unit vector of outer normal

to S and I is the 3D unit tensor. Here T and tr denotes the transpose and trace of a second-order tensor, � stands for the

dyadic product. Hereinafter, we use the direct tensor calculus as described by Simmonds (1994) and Eremeyev, Cloud, and

Lebedev (2018) . 

Let us note that τ is the linearized first Piola–Kirchhoff surface stress tensor and the linearization was performed in

the vicinity of an initial uniformly stressed state. Various formulations of the constitutive equation for τ were discussed by

Huang and Wang (2006) , Duan et al. (2008) and Ru (2010) . In particular, for solids, γ is usually smaller than λs and μs and

can be neglected ( Duan et al., 2008 ). In the literature, one can find simplified versions of (1) such as 

τ = γ P + 2 μs ε + λs P ( tr ε ) , or τ = 2 μs ε + λs P ( tr ε ) . (2) 

Eq. (2) 2 was derived by Gurtin and Murdoch (1975) as linearization in vicinity of natural reference placement. 

In addition to the surface stresses, we introduce the surface kinetic energy density ( Gurtin & Murdoch, 1978 ) 

K = 

1 

2 

m ̇

 u · ˙ u , (3) 

where m is the surface mass density, the overdot stands for derivative with respect to t , whereas the centered dot denotes

the scalar product. 

In the bulk, we have Hooke’s law for an istropic material 

σ = 2 μe + λ I tr e , e = 

1 

2 

(∇u + (∇u ) T 
)
, 

where σ and e are the stress and infinitesimal strain tensor, respectively, and λ and μ are the Lamé elastic moduli. 

The corresponding boundary-value problem consists of the equation of motion 

∇ · σ + ρf = ρü , ∀ x ∈ V, (4) 

and the so-called generalized Laplace–Young equation ( Duan et al., 2008 ), which plays a role of dynamic boundary condition

n · σ = −∇ s · τ − m ̈u + g , ∀ x ∈ S, (5) 

where f and g are mass force and traction vectors. Obviously, the latter equation differs from the classic traction condition

in linear elasticity. Eq. (5) contains second derivatives of u with respect to tangent spatial coordinates and the inertia term. 

Let us note that the term γ P with constant γ results in normal pressure on S which can be treated as an external load-

ing. Indeed, using the formula ∇ s · P = 2 Hn , where H = −1 / 2 tr ∇ s n is the mean curvature, this term transforms in (5) into

−2 γ Hn , that is to capillary pressure according to the classic the Young–Laplace equation ( Adamson & Gast, 1997 ). So, one

can simply add it to g . As, in the following, we consider anti-plane deformations, for simplicity, we neglect it. 

2. Anti-plane problem formulation 

In order to describe transverse shear waves, let us consider an infinite elastic cylinder V of radius a with the boundary

S = ∂V, see Fig. 1 . Mass forces and surface traction are neglected, f = 0 and g = 0 . The term γ P results in a constant hy-

drostatic pressure −γ /a n which corresponds to uniform constant displacement field. Omitting it, we restrict ourselves by

displacements in the form 

u = u (r, ϕ, t) e z . (6) 
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Fig. 1. An elastic cylinder with propagating transverse surface wave. 

 

 

 

 

 

 

 

 

 

 

Note that this field differs from the torsional waves where the vector of displacements has the form 

u t = u ϕ (r, z, t) e ϕ , (7)

and from axisymmetric waves with u in the form 

u a = u r (r, z, t) e r + u z (r, z, t) e z . (8)

Hereinafter, r , ϕ and z are the cylindrical coordinates with corresponding unit base vectors ( e r , e ϕ , e z ), see, e.g. ,

Eremeyev et al. (2018) . In this case, we have 

P = e ϕ � e ϕ + e z � e z , n = e r , 

∇ = e r 
∂ 

∂r 
+ e ϕ 

1 

r 

∂ 

∂ϕ 

+ e z 
∂ 

∂z 
, 

∇ s = e ϕ 
1 

a 

∂ 

∂ϕ 

+ e z 
∂ 

∂z 
, 

∇u = (∇u ) � e z = 

(
∂u 

∂r 
e r + 

1 

r 

∂u 

∂ϕ 

e ϕ 

)
� e z , 

∇ s u = (∇ s u ) � e z = 

1 

a 

∂u 

∂ϕ 

e ϕ � e z , 

σ = σrz (e r � e z + e z � e r ) + σϕz (e ϕ � e z + e z � e ϕ ) 

= μ
∂u 

∂r 
(e r � e z + e z � e r ) + μ

1 

r 

∂u 

∂ϕ 

(e ϕ � e z + e z � e ϕ ) , 

τ = τϕz e ϕ � e z + τzϕ e z � e ϕ 

= μs 
1 

a 

∂u 

∂ϕ 

e ϕ � e z + (μs − γ ) 
1 

a 

∂u 

∂ϕ 

e z � e ϕ . 

Using these formulae and substituting (6) into (4) , we get the wave equation in the polar coordinates 

μ

[
∂ 2 u 

∂r 2 
+ 

1 

r 

∂u 

∂r 
+ 

1 

r 2 
∂ 2 u 

∂ϕ 

2 

]
= ρü . (9)

The boundary condition (5) takes the form 

σrz = 

1 

a 

∂τϕz 

∂ϕ 

− m ̈u , r = a, (10)

or in displacements, 

μ
∂u 

∂r 
= μs 

1 

a 2 
∂ 2 u 

∂ϕ 

2 
− m ̈u , r = a. (11)

Note that Eq. (11) has the same form as in the case of half-space and it is responsible for appearance of anti-plane surface

waves ( Eremeyev et al., 2016 ). Moreover, the boundary conditions at r = a for shear stresses σ rz have the same form also

for the constitutive relations (2) . 

3. Remarks on the constitutive relations 

In the framework of the Gurtin–Murdoch model, the surface stresses were introduced using the so-called direct approach.

In fact, the membrane-type constitutive Eq. (1) was postulated. In literature, one can find extensive discussion on the nature
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Fig. 2. Transition from a layer of finite thickness to a surface: a) stiff interface between two materials; b) near-surface layers of three-layered plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of surface stresses and surface energy, see, e.g. Adamson and Gast (1997) , Rusanov (2005) and Murdoch (2005) and refer-

ences therein. In particular, it is quite important to have properly determined material parameters of the models, that are

ρs , γ , λs and μs . To this end, we mention atomistic calculations of the surface elasticity moduli and their straightforward ex-

perimental determination, see, e.g. , Miller and Shenoy (20 0 0) , Shenoy (20 05) and Cuenot, Frétigny, Demoustier-Champagne,

and Nysten (2004) , Jing et al. (2006) , Xu et al. (2017) , respectively. 

On the other side, let us also note that the Gurtin–Murdoch models describes the behaviour of a thin near-surface or

near-interface layer. With thinness assumptions, it seems to be rather natural to consider also asymptotic techniques applied

to such thin layers. We mention here stiff interface model discussed by Benveniste and Miloh (20 01, 20 07) , see also Mishuris,

Öchsner, and Kuhn (2006a) and Mishuris et al. (2006b, 2010) , where the static and dynamic problems of crack growth

along the stiff interface between two materials was analyzed. In particular, Eq. (11) coincides up to notations with the

transmission condition on the stiff interface, see Mishuris et al. (2006b , Eq. (2.15)). This similarity gives us another possibility

of interpretation of the surface Lamé moduli . For example, using Mishuris et al. (2006b , Eq. (2.15)) we can conclude that 

μs ≈ μi h, (12) 

where μi is the shear modulus of material of the interfacial layer and h is the thickness of the interface, see Fig. 2 a). Results

by Mishuris et al. (2006a) give also the approximate formula for λs . In other words, with this model, we can replace the

problem with a thin layer of finite thickness by the problem with new non-classic boundary conditions. 

Let us also note that the same relation for the surface shear modulus was obtained by Altenbach, Eremeev, and Moro-

zov (2010) and Altenbach, Eremeyev, and Morozov (2012) considering bending and stretching of three-layered plates and

shells. Here μs is also given by (12) , where μi and h are now shear modulus and thickness of near-surface layers, see

Fig. 2 b). Using results on asymptotics for sandwich plates and shells, we can conclude that the presence of surface stresses

corresponds to so-called hard-skin plates and shells ( Berdichevsky, 2010a; 2010b ). 

Comparing anti-plane surface waves in an elastic half-space with surface stresses and in a square lattice with surface

row of material particles different from ones in the bulk, Eremeyev and Sharma (2019) also proposed similar scaling law

related lattice parameters with μs . 

4. Dispersion relations 

We are looking for a steady state solution of (9) in the form 

u = U(r) exp (ikϕ − iωt) , (13) 

where ω is a angular frequency, k is an positive number, and i = 

√ −1 . As a result, using (13) from (9) , we get the Bessel

equation ( Abramowitz & Stegun, 1972 ) 

U 

′′ + 

1 

r 
U 

′ + 

(
ρ

μ
ω 

2 − k 2 

r 2 

)
U = 0 , (14) 

where the prime denotes the derivative with respect to r . In what follows, we consider the dimensionless form of (14) in-

troducing the dimensionless variable r̄ = r/a, so r̄ ∈ [0 , 1] . Keeping in mind that r̄ is dimensionless, we omit the bar over r .
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Fig. 3. Dispersion curves for different values of characteristic length 
̄ . Here η ≡ c s /c T = 0 . 75 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solution of (14) bounded at r = 0 has the form 

U(r) = U k J k (�r) , (15)

where U k is a constant, J k is the Bessel functions of the first kind, � = aω/c T , and c T = 

√ 

μ/ρ is the shear wave speed. 

For (13) , the boundary condition (11) transforms into the following equation 

μ

a 
U 

′ (1) = 

[
−k 2 μs + mω 

2 
]
U(1) . (16)

Using (15) from (16) , we get 

μ

a 
�J ′ k (�) = 

[ 
−k 2 

μs 

a 2 
+ mω 

2 
] 

J k (�) . (17)

Finally, we have the dimensionless form of (17) 

�J ′ k (�) = 


 

a 

[
�2 − c 2 s 

c 2 
T 

k 2 
]

J k (�) , (18)

where 
 = m/ρ and c s = 

√ 

μs /m are the dynamic characteristic length and the shear wave speed in the framework of the

Gurtin–Murdoch model, respectively. 

Eq. (18) is the dispersion relation that relates � and k . Without surface stress that is when 
 = 0 , Eq. (18) takes the

simple form J ′ 
k 
(�) = 0 for � 
 = 0 and was analyzed, e.g. , by Rayleigh (1910) and Victorov (1974) . For each k , Eq. (18) has

a series of roots that is �1 (k ) = �1 (k ; 
̄ , η) , �2 (k ) = �2 (k ; 
̄ , η) , �3 (k ) = �3 (k ; 
̄ , η) , . . . , where 
̄ = 
/a, η = c s /c T . In the

framework of the Gurtin–Murdoch model, we have an additional length-scale parameter 
 s = μs /μ, which is independent

on 
 . So, η relates to the ratio of 
 and 
 s , η2 = 
 s /
 . At k = 0 and 
 = 0 , these roots coincide with roots of J 1 ( z ). Three

families of dispersion curves are given in Fig. 3 . Here, we assume that η = 3 / 4 , whereas 
̄ = 0 ; 0.01; 0.1. It is seen that

the coating that is when 
 
 = 0 shifts the dispersion curves for any k . Unlike the problem for a half-plane ( Eremeyev et al.,

2016 ), for a cylinder, the waves exist also when c s > c T , that is when η > 1. In Fig. 4 , we present the dispersion curves for


̄ = 0 (solid blue curves); for 
̄ = 0 . 1 and η = 0 . 25 (dash-dot green curves); and for 
̄ = 0 . 1 and η = 2 (dashed red curves).

Obviously, the coating influences on � for any values of k except of �1 where such influence is negligible when k � 1. The

first dispersion curve given by � = �1 (k ; 
̄ , η) begins at the point (0,0). Next curves � = �m 

(k ; 
̄ , η) , m = 2 , 3 , . . . , begin at

(0 , �m 

(0 ; 
̄ , η)) , where �m 

(0 ; 
̄ , η) < �m 

(0 ; 0 , η) if 
̄ 
 = 0 . 
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5. Conclusions 

In order to discuss the surface waves in nanostructured materials, we have discussed the propagation of a transverse

surface shear wave along a cylindrical boundary considering an elastic surface coating. This type of waves known as so-called

whispering-gallery waves guided by the effect of curvature. In order to capture the material behaviour at the nanoscale,

we have used the linearized Gurtin–Murdoch surface elasticity model. The considered waves are similar to the anti-plane

surface waves in a half-space with surface energy ( Eremeyev et al., 2016 ). Unlike to the half-space problem where such

waves exist when c s < c T , here they exist for wider range of parameters of the coating. We have derived the dispersion

relation and have presented corresponding dispersion curves for a set of material parameters. As we have mentioned about

some similarities between the generalized Young–Laplace equation and the transmission conditions through a stiff interface, 

the presented results can be also reformulated for surface shear waves propagating along such stiff interfaces. 
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