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Low-grade gliomas (LGGs) are primary brain tumours which evolve very slowly in time, but inevitably cause patient
death. In this paper, we consider a PDE version of the previously proposed ODE model that describes the changes in the
densities of functionally alive LGGs cells and cells that are irreversibly damaged by chemotherapy treatment. Besides the
basic mathematical properties of the model, we study the possibility of the existence of travelling wave solutions in the
framework of Fenichel’s invariant manifold theory. The estimates of the minimum speeds of the travelling wave solutions
are provided. The obtained analytical results are illustrated by numerical simulations.
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1. Introduction
Low-grade gliomas (LGGs) are brain tumours having
a poor prognosis and causing premature death for almost
all patients. The median survival of LGG patients is
between 5 and 10 years (Keles et al., 2011). The clinical
course of this disease is usually very difficult to predict,
thus posing challenges in its treatment (Pouratian and
Schiff, 2010). Some of these tumours remain stable
for years, while others undergo rapidly a malignant
transformation, i.e., a transition into their more malignant
counterparts known as high-grade gliomas, which induce
the appearance of major neurological deficits and,
eventually, death (Sakarunchai et al., 2013).

Based on the previous research in this matter, we
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model the evolution of the LGG volume and its response
to chemotherapy as a system of partial differential
equations and study the resulting model analytically.
Formerly (Bogdańska et al., 2017), we formulated and
investigated the mathematical properties of an ODE model
describing the LGG growth due to proliferation and its
response to the chemotherapeutic drug currently in use,
that is, temozolomide (TMZ). It was shown that the
model proposed fits very well longitudinal volumetric
data of patients diagnosed with LGGs. The paper also
suggested the relationship between the time of response
to chemotherapy and patient prognosis, which has relevant
clinical implications. In another work (Bogdańska et al.,
2017) we developed a simple model relating the onset of
malignant transformation with the increased local density
of tumour cells. We managed to describe a malignant
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transformation in a minimal way using a model of two
coupled Fisher–Kolmogorov-type equations in which the
total tumour density is a driving force of the phenotypic
change. We also showed that there is a chance for an
improvement in the current treatment protocols.

Note that in the clinical realm, it is not viable to
study multiple treatment scenarios due to ethical and
practical reasons, including the typical survival times of
LGGs patients. However, these obstacles are clearly
not present when attempting to optimise mathematical
models. We indicated that a treatment which delays the
onset of a malignant transformation the most might be
a more effective one. On the other hand, in the work
by Bodnar et al. (2019), we considered a generalization
of the model proposed by Bogdańska et al. (2017)
and focused on its mathematical properties proving, in-
ter alia, the global stability of the tumour-free steady
state and, in some cases, justifying the existence of
periodic solutions. Moreover, assuming constant in
time chemotherapy effectiveness, we provided analytical
estimates and calculated minimal drug doses guaranteeing
tumour eradication for particular LGG patients.

The focus of this paper is on the model with
continuous chemotherapy administered to tumours
evolving not only due to proliferation, but also due
to the diffusion process, as considered in previous
works on mathematical modelling of gliomas (see, e.g.,
Murray, 1989; Wang et al., 2009; Adenis et al., 2021).
Here we study thoroughly the mathematical properties of
this model. In particular, we investigate the possibility
of the existence of travelling waves. Travelling waves
were also studied in different context (see, e.g., Gugat
and Wintergerst, 2018; Kowal et al., 2021).

The paper is organised as follows. In Section 2 we
formulate the complete model and describe its parameters.
In Section 3 we prove the basic mathematical properties of
the model and recall some properties of the corresponding
simplified ODE model. The analytical and numerical
study of the PDE model is included in Section 4, with the
main result being the demonstration of the existence of
travelling wave solutions. In Section 5 we conclude and
discuss the results.

2. Model presentation
In this paper, we consider a modification of the model
proposed by Bogdańska et al. (2017). The main
components of the model are the concentration of the
drug in the tumour tissue (C(t, x)), the local density of
proliferating tumour cells (P (t, x)), the local density of
irreversibly damaged tumour cells (D(t, x)).

We assume that the growth of proliferating cells
follows the logistic law and that these cells are subject
to chemotherapy, which turns them into irreversibly
damaged tumour cells. When they try to undergo mitosis,

at the same rate as non-damaged cells, they eventually die
due to a mitotic catastrophe (see Bogdańska et al., 2017).
What is new here is that we include an additional term
describing the motility of tumour cells with a constant rate
δ, resulting in the following reaction-diffusion system:

∂P̃

∂t̃
= δΔP̃ + ρP̃

(
1− P̃ + D̃

K

)
− αCP̃ ,

∂D̃

∂t̃
= δΔD̃ − ρ

k
D̃

(
1− P̃ + D̃

K

)
+ αCP̃ ,

(1)

where (t̃, x̃) ∈ [0,+∞)× Ω and Δ =
∑n

j=1 ∂
2/∂x2

j .
In general, Ω ⊂ R

n is assumed to be an open subset
with a smooth boundary. System (1) is complemented
by non-negative C2 class (on Ω̄) initial conditions with
D̃(0, x) = 0 and homogeneous von Neumann boundary
conditions. We also assume a constant concentration C of
chemotherapy drug acting on the tumour.

The parameters of model (1) have the following
interpretation: α denotes the rate of the proliferating
tumour cells damage induced by chemotherapy, ρ is the
net proliferation rate, k denotes the average number of
mitotic cycles that damaged cells enter before dying, and
K denotes carrying capacity, i.e., the maximal cellular
density.

We re-scale system (1) by taking

P =
P̃

K
, D =

D̃

K
, t = ρt̃, x =

√
ρ

δ
· x̃, (2)

obtaining the non-dimensional system

∂P

∂t
= ΔP + P (1− P −D)− βP,

∂D

∂t
= ΔD − 1

k
D(1 − P −D) + βP,

(3)

with β = αC/ρ, von Neumann boundary conditions

∂P

∂�n

∣∣∣∣
∂Ω

=
∂D

∂�n

∣∣∣∣
∂Ω

= 0, (4)

and initial conditions

P (0, x) ∈ [0, 1], D(0, x) = 0, (5)

where P (0, x) is a class C2 function on Ω̄.

3. Basic mathematical properties of the
model

Theorem 1. There exists a local unique classical solu-
tion to system (3)–(5). Moreover, if the initial function is
non-negative, solutions remain non-negative on the whole
interval of existence.
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P

D

P̄ 1− β 1

kP̄

1− β

1

Fig. 1. Phase portrait for system (6) for β < 1. The black
solid lines indicate null-clines for the variable P while
the dashed line stands for a null-cline for D. The dots
mark steady states.

Proof. The reaction term of system (3)–(5) and
initial conditions are C2 functions; thus, a solution to
system (3)–(5) exists locally and is unique due to general
properties of reaction-diffusion systems (see, e.g., Henry,
1981, Theorem 3.3.3). The non-negativity of the solutions
for non-negative initial data follows from the fact that
the reaction part of the right-hand side of system (3)–(5)
is non-negative if P = 0 or D = 0 (see Fife, 1979,
Theorem 1.4). �

Recall that system (3) without diffusion has the
following form:

dP

dt
= P (1 − P −D)− βP,

dD

dt
= − 1

k
D(1− P −D) + βP,

(6)

and it was mathematically studied in detail by Bogdańska
et al. (2017), where it was shown that it has at most three
steady states:

• A1 = (0, 0) which is either a stable node for β > 1
or a saddle for β < 1,

• A2 = (0, 1) which is a saddle,

• A3 = (P̄ , kP̄ ), P̄ = (1 − β)/(1 + k), which exists
for β < 1 and is either a stable node or a stable focus.

Moreover, it is easy to see that, for β < 1, system (6)
has a heteroclinic orbit connecting steady states (0, 1) and
(0, 0) given by {P = 0} × [0, 1]; cf. Fig. 1.

The stability of spatially homogeneous steady states
of system (3)–(5) is the same as the local stability of the
steady states of the system without diffusion.

Theorem 2. The steady state (0, 0) of system (3)–(5) is
locally stable for β > 1 and unstable for β < 1; steady

state (0, 1) is always unstable, while the positive steady
state (P̄ , kP̄ ) is locally stable whenever it exits.

Proof. The stability matrix of system (3) is given by

J(Ai) = JODE(Ai) +

[−κ2
i 0

0 −κ2
i

]
,

where JODE(Ai) is a stability matrix for the ODE
system (6) for the steady state Ai and κi are the
corresponding eigenvalues of the Laplace operator. The
Laplace operator with zero-flux boundary always has a
zero eigenvalue; thus, diffusion cannot stabilise unstable
steady states (0, 1) and (0, 0) for β < 1. On the other
hand, matrix J((0, 0)) is lower triangular (see Bogdańska
et al., 2017); thus, for β > 1 diffusion cannot destabilise
steady state (0, 0).

For the positive steady state (P̄ , kP̄ ) we have

J((P̄ , kP̄ )) =

[−P̄ − κ2 −P̄

P̄ + β P̄ − β
k − κ2

]
.

It is easy to see that tr J
(
(P̄ , kP̄ )

)
= −β

k − 2κ2 < 0 and

detJ
(
(P̄ , kP̄ )

)
= β(1−β)

k + κ2
(

β
k + κ2

)
> 0; thus, for

β < 1 steady state (P̄ , kP̄ ) stays locally stable. �

4. Existence of travelling waves
Travelling wave analysis is an important aspect of the
analysis of the tumour growth, since if travelling waves
exist, then we may estimate the aggressiveness of tumour
progression. We verify whether for system (3) with β < 1
there exist travelling waves which connect the two space
homogeneous steady state solutions (0, 0) and (P̄ , kP̄ ).
From now on, for simplicity, we assume that Ω ⊂ R.
Specifically, by a travelling wave we mean a wave which
propagates with a constant velocity ϑ without changing
the shape (Murray, 1989), i.e., we look for the solutions
P (t, x), D(t, x) of system (3) corresponding to the front

P (t, x) = U(w), D(t, x) = V (w), w = x+ ϑt,

and satisfying boundary conditions

P (t,−∞) = 0, D(t,−∞) = 0,

P (t,+∞) = P̄ , D(t,+∞) = kP̄ .

In the following, we use the geometric singular
perturbation theory (to be specific, the Fenichel invariant
manifold theory (Fenichel, 1979; Jones, 1995)) to prove
that such waves exist for sufficiently large speed |ϑ|. First,
we show the existence of an invariant manifold for the
ODE system describing the desired front (Jones, 1995).
Next, we study the dynamics of a new perturbed system in
this invariant manifold. Finally, we employ the Fredholm
alternative to prove the existence of the front in this
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invariant manifold (Gourley and Bartuccelli, 2000). A
similar method has been used to prove the existence
of travelling wave solutions by Belmonte-Beitia (2016),
Gourley and Bartuccelli (2000) or Jones (1995), to cite
a few. Recall the fundamental definition and theorem of
Fenichel’s theory (see Jones, 1995).

4.1. Fenichel theorem. Consider the following
system:

u′ = f(u, v, ε), v′ = εg(u, v, ε), (7)

where the functions f and g are C∞. Letting ε → 0 we
can rewrite (7) as

u′ = f(u, v, 0), v′ = 0.

We assume that the critical manifold M0 contains the set
{f(u, v, 0) = 0}.

Definition 1. We say that M0 is a normally hyperbolic
manifold if the linearisation of system (7) at each point in
M0 restricted to M0 (i.e., for ε = 0) has exactly dimM0

eigenvalues on the imaginary axis.

Theorem 3. (Fenichel first theorem (Jones, 1995)) Let
M0 be a normally hyperbolic manifold. For any suffi-
ciently small ε > 0 there exists a manifold Mε which
is within distance ε of M0 and is diffeomorphic to M0.
Furthermore, Mε is locally invariant under the flow of
system (7) and of class Cp for any p < +∞.

4.2. Normally hyperbolic manifold. For P (t, x) =
U(w), and D(t, x) = V (w) with w = x+ϑt we obtain an
ODE system describing the dynamics of U(w) and V (w):

U ′′ − ϑU ′ + U(1− U − V − β) = 0,

V ′′ − ϑV ′ − 1

k
V (1− U − V ) + βU = 0,

(8)

subject to boundary conditions

U(−∞) = 0, V (−∞) = 0,

U(+∞) = P̄ , V (+∞) = kP̄ .
(9)

Note that partial differential equations in x and t in
system (3) become ODEs (8) in w. We consider a small
perturbation, that is, we assume that ϑ2 � 1, and write
ε := 1/ϑ2 � 1, ξ = w/ϑ = w

√
ε. Then system (8) for

U(ξ) and V (ξ) is

εUξξ − Uξ + U(1− U − V − β) = 0,

εVξξ − Vξ − 1

k
V (1 − U − V ) + βU = 0,

(10)

with conditions (9), where Uξ and Vξ denote the
derivatives of U and V with respect to variable ξ. Defining

M = Uξ, N = Vξ , we recast system (10) into the
so-called “slow system”:

Uξ = M, (11a)
εMξ = M − U(1− U − V − β), (11b)
Vξ = N, (11c)

εNξ = N +
1

k
V (1− U − V )− βU. (11d)

Let ζ = ξ/ε = ϑw. Then Uζ = εUξ, Mζ = εMξ and

Uζ = εM,

Mζ = M − U(1− U − V − β),

Vζ = εN,

Nζ = N +
1

k
V (1− U − V )− βU,

(12)

which is called the “dual fast system” associated with the
slow system (11) (cf. Gourley and Bartuccelli, 2000).

For ε = 0 from Eqs. (11b) and (11d) we have

M = U(1−U−V −β), N = − 1

k
V (1−U−V )+βU.

Thus, the evolution of U and V is described by a system
of two ODEs

Uξ = U(1− U − V − β),

Vξ = − 1

k
V (1− U − V ) + βU,

which has the same dynamic as system (6).
For ε = 0 we define the set

M0 =
{
(U,M, V,N) : M = U(1− U − V − β),

N = − 1

k
V (1− U − V ) + βU

}
, (13)

which is a two-dimensional submanifold on R
4.

Lemma 1. The set M0 given by (13) is a normally hyper-
bolic manifold.

Proof. The Jacobi matrix of the linearisation of system
(12) for ε = 0 has the following form:

J(U, V ) =

⎡
⎢⎢⎣

0 0 0 0
2U + V + β − 1 1 U 0

0 0 0 0
−V

k − β 0 1
k (1− U − 2V ) 1

⎤
⎥⎥⎦ .

(14)
Matrix (14) has two double eigenvalues: λ1 = 0 and λ2 =
1. As a consequence, M0 is normally hyperbolic. �

Subsequently, we study a perturbation Mε of
manifold M0, which is invariant for the flow of
system (12). Its existence for sufficiently small ε > 0
is guaranteed by the Fenichel first theorem (Jones, 1995).
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4.3. Main result. Let us formulate the main outcome
of our paper.

Theorem 4. If β < 1, there exists a sufficiently large
ϑ0 > 0 such that for every ϑ > ϑ0, system (3) admits a
travelling wave solution P (t, x) = U(x+ ϑt), D(t, x) =
V (x+ ϑt) satisfying boundary conditions (9).

Proof. Let us recall that ε = 1/ϑ2, thus we show
that a travelling wave exists for a sufficiently small ε.
In Lemma 1 we showed that the set M0 is a normally
hyperbolic manifold and, as a consequence of Theorem 3,
there the manifold Mε exists. Thus, it is enough to
investigate the dynamics of Mε.

Because U, V are slow variables and M,N are fast
ones, the manifold Mε is given by

Mε = {(U,M, V,N) ∈ R
4 :

M = U(1− U − V − β) + gε(U, V ),

N = − 1

k
V (1− U − V ) + βU + hε(U, V ) } ,

(15)
for some functions gε(U, V ), hε(U, V ) ∈ Cp, p < +∞
such that

g0(U, V ) = h0(U, V ) = 0, (16)

and the equations describing evolution of U and V in Mε

are

Uξ =U(1− U − V − β) + gε(U, V ),

Vξ =− 1

k
V (1− U − V ) + βU + hε(U, V ).

(17)

We differentiate the equations in (15) describing M
and N ,

Mξ = (1− U − V − β) · Uξ − U (Uξ + Vξ)

+
∂gε(U, V )

∂U
Uξ +

∂gε(U, V )

∂V
Vξ

= Uξ(1− 2U − V − β)− UVξ

+
∂gε(U, V )

∂U
Uξ +

∂gε(U, V )

∂V
Vξ,

Nξ = − 1

k
Vξ(1− U − V ) +

1

k
V (Uξ + Vξ) + βUξ

+
∂hε(U, V )

∂U
Uξ +

∂hε(U, V )

∂V
Vξ.

Now, taking into account Eqns. (17) and the fact that Uξ =

M, Vξ = N (see Eqns. (11a) and (11c)), we have

Mξ = (U(1− U − V − β) + gε(U, V ))

× (1− 2U − V − β)

+ U

(
1

k
V (1− U − V )− βU − hε(U, V )

)

+
∂gε(U, V )

∂U
M +

∂gε(U, V )

∂V
N

= (1− U − V − β) ((1 − 2U − V − β)U

+gε(U, V )) + U
(1
k
V (1 − U − V )

− βU − gε(U, V )− hε(U, V )
)

+
∂gε(U, V )

∂U
M +

∂gε(U, V )

∂V
N,

Nξ = − 1

k
(1− U − V )

(
− 1

k
V (1 − U − V )

+ βU + hε(U, V )
)

+
1

k
V
(
U(1− U − V − β) + gε(U, V )

− 1

k
V (1− U − V ) + βU + hε(U, V )

)
+ β (U(1− U − V − β) + gε(U, V ))

+
∂hε(U, V )

∂U
Uξ +

∂hε(U, V )

∂V
Vξ

=
1

k
(1 − U − V )

(1
k
(1 − U − 2V ) + U(V − β)

− hε(U, V )
)
+ β (U(1− U − V − β) + gε(U, V ))

+
1

k
V (gε(U, V ) + hε(U, V ))

+
∂hε(U, V )

∂U
M +

∂hε(U, V )

∂V
N.

We substitute the obtained equations for Mξ and Nξ into
Eqns. (11b) and (11d) and deduce that gε and hε satisfy
the following partial differential equations:

gε(U, V )

= ε

[
(1− U − V − β)

(
(1− 2U − V − β)U

+ gε(U, V )
)
+ U

(1
k
V (1− U − V )

− βU − gε(U, V )− hε(U, V )
)

+
∂gε(U, V )

∂U
M +

∂gε(U, V )

∂V
N

]
,

hε(U, V )

= ε

[
1

k
(1 − U − V )

(1
k
(1 − U − 2V ) + U(V − β)

− hε(U, V )
)
+ β (U(1− U − V − β) + gε(U, V ))
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+
1

k
V
(
gε(U, V ) + hε(U, V )

)
+

∂hε(U, V )

∂U
M +

∂hε(U, V )

∂V
N

]
.

(18)

Next, we expand hε and gε in the Taylor series around
ε = 0, obtaining

gε(U, V ) = g0(U, V ) + ε
∂g0(U, V )

∂ε
+ . . .

+
εn−1

(n− 1)!

∂n−1g0(U, V )

∂εn−1
+ εnRg

n(ε),

hε(U, V ) = h0(U, V ) + ε
∂h0(U, V )

∂ε
+ . . .

+
εn−1

(n− 1)!

∂n−1h0(U, V )

∂εn−1
+ εnRh

n(ε),

where Rg
n, R

h
n are such that limε→0R

g
n(ε) = 0 and

limε→0 R
h
n(ε) = 0. Clearly, due to (16), we have

g0(U, V ) = h0(U, V ) = 0. Using Eqns. (18), we
calculate the partial derivatives of gε and hε with respect
to ε, arriving at

∂g0(U, V )

∂ε
= U

[
(1− U − V )

×
(
1− 2U − k − 1

k
V − 2β

)
+ β2

]
,

∂h0(U, V )

∂ε
=

1

k
(1 − U − V )

(1
k
(1 − U − 2V )

+ U(V − β)
)
+ βU(1 − U − V − β).

Hence, the Taylor series of gε and hε have the following
forms:

gε(U, V ) = U

[
(1− U − V )

(
1− 2U − k − 1

k
V − 2β

)

+ β2

]
ε +O

(
ε2
)
,

hε(U, V ) =

[
1

k
(1− U − V )

(1
k
(1− U − 2V )

+ U(V − β)
)
+ βU(1− U − V − β)

]
ε

+O
(
ε2
)
.

Substituting the Taylor series, and omitting terms of
the order of ε2, into system (17) we obtain

Uξ = U(1− U − V − β) + U

[
(1− U − V )(

1− 2U − k − 1

k
V − 2β

)
+ β2

]
ε,

(19)

Vξ = − 1

k
V (1− U − V ) + βU

+

[
1

k
(1− U − V )

(
1

k
(1 − U − 2V )

+ U(V − β)

)
+ βU(1− U − V − β)

]
ε,

(20)

which approximate the dynamics on the manifold Mε for
a sufficiently small ε.

Now, let us denote by (U0, V0) the solution of
system (19)–(20) for ε = 0, that is,

d

dξ
U0 = U0(1− U0 − V0 − β),

d

dξ
V0 = − 1

k
V0(1 − U0 − V0) + βU0,

(21)

which is equivalent to system (6). Hence, a heteroclinic
orbit connecting the steady states (0, 0) and (P̄ , kP̄ )
exists. For ε > 0 system (19)–(20) has two steady states

P2 =

(
0,

ε

k + 2ε

)
P3 =

(
P̄ + εū, kP̄ + εv̄

)
.

Note that ε/(k + 2ε) → 0 as ε → 0. Thus, it is enough
to show that for a sufficiently small ε > 0 there exists a
heteroclinic orbit connecting, the steady states P2 and P3

of system (19)–(20). This orbit corresponds to a travelling
wave solution of system (3). To find such a connection, we
write

U = U0 + εU1, V = V0 + εV1. (22)

In what follows, we determine the dynamics of
U1 and V1. Substituting new variables (22) into
system (19)–(20), we get

Uξ = U0(1− U0 − V0 − β) + εU1(1− 2U0 − V0 − β)

+ εU0

[
(1 − U0 − V0)

(
1− 2U0 − k − 1

k
V0 − 2β

)

− εU0V1 + β2

]
+O(ε2),

Vξ = − 1

k
V0(1− U0 − V0) + βU0

− ε
1

k
(V1(1− U0 − 2V0)− U1V0) + εβU1

+ ε

[
1

k
(1− U0 − V0)

(1
k
(1− U0 − 2V0)

+ U0(V0 − β)
)
+ βU0(1− U0 − V0 − β)

]
+O(ε2).

Clearly, Uξ = d
dξU0 + ε d

dξU1 and Vξ = d
dξV0 + ε d

dξV1.
Moreover, as (U0, V0) satisfy system (21), omitting terms
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of the order of ε2, we have

d

dξ
U1 = U1(1− 2U0 − V0 − β)− V1U0

+ U0

[
(1− U0 − V0)

×
(
1− 2U0 − k − 1

k
V0 − 2β

)
+ β2

]
,

d

dξ
V1 = U1

(
1

k
V0 + β

)

− 1

k
V1(1− U0 − 2V0)

+ βU0(1− U0 − V0 − β) +
1

k
(1 − U0 − V0)

×
(
1

k
(1 − U0 − 2V0) + U0(V0 − β)

)
.

We rewrite the system of equations governingU1 and
V1 in the following way:

d

dξ

[
U1

V1

]
−
[
1− 2U0 − V0 − β −U0

1
kV0 + β − 1

k (1− U0 − 2V0)

]

×
[
U1

V1

]
=

[
f1(U0, V0)
f2(U0, V0)

]
, (23)

where

f1(U0, V0) = U0

[
(1− U0 − V0)

×
(
1− 2U0 − k − 1

k
V0 − 2β

)
+ β2

]
,

f2(U0, V0) = βU0(1− U0 − V0 − β)

+
1

k
(1− U0 − V0)

(1
k
(1− U0 − 2V0)

+ U0(V0 − β)
)
.

Using (22), we transform steady states P2 and P3

obtaining

P2 = (0, 0) + ε ·
(
0,

1

k + 2ε

)
,

P3 = (P̄ , kP̄ ) + ε · (ū, v̄) .
Our aim is to prove that system (23) has a solution
satisfying the conditions

lim
ξ→−∞

U1(ξ) = 0, lim
ξ→−∞

V1(ξ) =
1

k + 2ε
,

lim
ξ→+∞

U1(ξ) = ū, lim
ξ→+∞

V1(ξ) = v̄.

Note that the functions

F (ξ) = ū · 1

1 + e−ξ
,

G(ξ) =
1

k + 2ε
+

(
v̄ − 1

k + 2ε

)
· 1

1 + e−ξ

satisfy limξ→−∞ F (ξ) = 0, limξ→+∞ F (ξ) = ū and
limξ→−∞ G(ξ) = 1

k+2ε , limξ→+∞ G(ξ) = v̄. Thus, we
make the change of variables U1 = WU + F, V1 =
WV +G, and now (23) reads

d

dξ

[
WU

WV

]
−
[
1− 2U0 − V0 − β −U0

1
kV0 + β − 1

k (1− U0 − 2V0)

]

×
[
WU

WV

]
=

[
h1(U0, V0, ξ)
h2(U0, V0, ξ)

]
, (24)

where

h1(U0, V0, ξ) = f1(U0, V0) + F (ξ)(1 − 2U0 − V0 − β)

− U0G(ξ)− ū
e−ξ

(1 + e−ξ)2
,

h2(U0, V0, ξ) = f2(U0, V0) + F (ξ)
(1
k
V0 + β

)
− 1

k
(1− U0 − 2V0)G(ξ) +

1

k + 2ε

+

(
v̄ − 1

k + 2ε

)
e−ξ

(1 + e−ξ)2
.

As a consequence, we verify the existence of the
solution of system (24) with homogeneous boundary
conditions limξ→±∞ WU (ξ) = limξ→±∞ WV (ξ) =
0. To this end, we use the Fredholm alternative as
formulated by Bressloff (2013). Suppose that L is a
linear differential operator acting on a subspace of L2(R2)
of square-integrable functions. Given the standard inner
product 〈·, ·〉 on L2(R2):

〈f, g〉 =
∫ +∞

−∞
(f(ξ), g(ξ)) dξ,

where (·, ·) is the Euclidean inner product on R
2, the

adjoint linear operator L
∗ is defined as 〈f,Lg〉 =

〈L∗f, g〉. The Fredholm alternative theorem states that
the inhomogeneous equation Lf = h has a solution if
and only if the condition 〈ν, h〉 = 0 is fulfilled for all ν
satisfying the homogeneous equation L

∗ν = 0.
In our case, the linear operator L is defined by the

left-hand side of system (24). We claim that system (24)
has a solution if and only if

∫ +∞

−∞

(
s1(ξ)h1(U0, V0, ξ) + s2(ξ)h2(U0, V0, ξ)

)
dξ

= 0 (25)

holds for all solutions (s1, s2) of the adjoint problem

d

dξ

[
s1
s2

]
=

[ −1 + 2U0 + V0 + β
U0

− 1
kV0 − β

1
k (1− U0 − 2V0)

] [
s1
s2

] (26)
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subject to boundary conditions limξ→±∞ si(ξ) = 0 for
i ∈ {1, 2}. Recall that (U0, V0) corresponds to the
heteroclinic solution of system (21). Letting ξ → −∞,
we have that (U0, V0) → (0, 0); then the matrix in system
(26) is a constant one with eigenvalues λ1 = β − 1,
λ2 = 1

k . The eigenvalue λ1 is negative due to our
assumption that β < 1, while λ2 is positive. Thus, as
ξ → −∞, any solution of system (26), different from the
zero solution, is a sum of two exponentially increasing and
decreasing functions. Therefore, the only solution of the
adjoint problem (26) in space L2(R2) is (s1, s2) ≡ (0, 0).
Thus, condition (25) holds. �

4.4. Existence of the trivial travelling wave. The
analytical results confirm the existence of the travelling
wave solutions. However, they do not exclude the
possibility that the wave is trivial, meaning that only one
variable changes. In order to verify this, we set P = 0
obtaining

∂D

∂t
= ΔD − 1

k
D(1 −D).

Recall w = x+ ϑt, D(t, x) = V (w). Thus, we arrive at

V ′′ = ϑV +
1

k
V (1− V ), (27)

which is equivalent to the system

V ′ = U, U ′ = ϑU +
1

k
V (1− V ).

After the change of the variables z = 1 − V and s = −t,
we get

z′ = U, U ′ = −ϑU − 1

k
z(1− z). (28)

Clearly, (28) is the same system as the one obtained for
the classic Fisher–Kolmogorov indicating that for ϑ2 ≥
4/k system (3) has a trivial travelling wave solution
such that lims→−∞ z(s) = 1, lims→+∞ z(s) = 0,
thus limt→−∞ z(t) = 0 and limt→+∞ z(t) = 1. This
indicates that

lim
t→−∞V (t) = 1, lim

t→+∞V (t) = 0.

Hence, the travelling wave has the velocity opposite to that
for the Fisher–Kolmogorov equation, as we considered
x + ϑt. Thus, the wave travels from 0 to 1 (i.e.,
the steady state 0 is filling the space), while for the
Fisher–Kolmogorov equation, it travels from 1 to 0 (i.e.,
the steady state 1 is filling the space).

4.5. Estimation of the speed of the travelling wave.
In Section 4.3 we proved the existence of a travelling
wave solution between steady states (0, 0) and (P̄ , kP̄ ),
while in Section 4.4 we showed the existence of the trivial

travelling wave connecting steady states (0, 1) and (0, 0)
(i.e., for which P ≡ 0) and we calculated its minimal
speed. Now we provide an estimate of the speed of any
travelling wave solution (if such a solution exists) for the
re-scaled model (3).

Theorem 5. If the travelling wave solution of Eqn. (3)
connects any steady state with

(i) the steady state (0, 0) and the first coefficient of the
travelling wave is not identically equal to 0, then the
velocity ϑ of this wave must fulfil |ϑ| > 2

√
1− β,

(ii) the steady state (0, 1) and the second coefficient of
the travelling wave is not identically equal to 1, then
velocity ϑ of this wave must fulfil |ϑ| > 2/

√
k.

Proof. Recall that the substitutions P (x, t) = U(x+ ϑt)
and D(x, t) = V (x+ ϑt) in (3) lead to (8) yielding

U ′ = M,

M ′ = ϑM − U(1− U − V ) + βU,

V ′ = N,

N ′ = ϑN +
1

k
V (1 − U − V )− βU.

(29)

System (29) has at most three steady states (Ū , M̄ , V̄ , N̄):
(0, 0, 0, 0), (0, 0, 1, 0) and, additionally, (Û , 0, kÛ , 0),
where Û = (1 − β)/(k + 1) provided β < 1.
The Jacobian matrix of (29) evaluated at steady state
(Ū , M̄ , V̄ , N̄) has the following form:

⎡
⎢⎢⎣

−λ 1
−(1− 2Ū − V̄ ) + β ϑ− λ

0 0
−β − 1

k V̄ 0

0 0
Ū 0
−λ 1

1
k (1− Ū − 2V̄ ) ϑ− λ

⎤
⎥⎥⎦ .

Case (i) Consider the travelling wave solution from or to
(0, 0, 0, 0). The characteristic polynomial for this steady
state is

W (λ) =
(
λ(λ− ϑ) + 1− β

)(
λ(λ − ϑ)− 1

k

)
. (30)

Thus, the trivial steady state is always unstable.
Additionally, whenever ϑ2 < 4(1 − β) , polynomial
(30) has complex eigenvalues connected with subsystem
U . Thus, the travelling wave can exist as long as |ϑ| ≥
2
√
1− β or U = 0, with the latter condition indicating

the existence of the trivial travelling wave. Therefore, the
minimum wave speed is |ϑmin| = 2

√
1− β.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Travelling waves for low-grade glioma growth and response to a chemotherapy model 577
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Fig. 2. Solutions of system (3) with the initial condition P (0, x) = 0 for all x, D(0, x) = 1 for x > 30, and D(0, x) = 0 for all
x ≤ 30, x ∈ [0, 620], t ∈ [0, 400]. Parameters: β = 0.05, k = 2. Panel (a): propagation of variable D in (x, t) space, panel
(b): selected profiles for variable D. The wave moves right with a numerically calculated speed 1.43. An analytical estimate
of the minimum speed is |ϑ| ≥ 2/

√
k ≈ 1.41.

Case(ii) Consider the travelling wave solution from or to
(0, 0, 1, 0). For the steady state (0, 0, 1, 0) we get

W (λ) =
(
λ(λ− ϑ)− β

)(
λ(λ − ϑ) +

1

k

)
,

implying that the considered steady state is always
unstable. Moreover, for |ϑ| < 2/

√
k the characteristic

equation has complex eigenvalues connected with
subsystem V . Thus, whenever the travelling wave for V is
not equal to 1, then its speed has to be greater than 2/

√
k.
�

4.6. Numerical simulations. In this section, we
numerically illustrate, with the use of the Matlab software,
the existence of travelling wave solutions of system (3).
First, we present the trivial travelling wave between (0, 0)
and (0, 1). Second, we show results of simulations that
indicate the existence of the travelling wave solution
between (0, 0) and a positive steady state. Finally, our
simulations suggest that there is only a trivial travelling
wave between (0, 0) and (0, 1). In the work of Joiner
and van der Kogel (2019) parameter k was estimated to
be between 1 and 3; hence we choose k = 2 for all
simulations, while the value of β varies.

Clearly, the travelling wave is a solution defined on
the whole real line, which cannot be, of course, simulated.
We perform our simulations for t ∈ [0, 400] and x ∈
[0, xmax]. We impose that for t = 0 the initial function is
equal to the value of one of the steady states (say Ai) for
x ∈ [0, 30) and it is equal to the value of another steady
state (say Aj , j = i) for x ≥ 30. We choose xmax in such
a manner that the value of the solution is close to the value
of Aj steady state for t = 400 and x near to xmax.

In Fig. 2 we present numerical solutions of
system (3) with the initial condition P (0, x) = 0 for

all x ∈ [0, 620], D(0, x) = 0 for x ∈ [0, 30], and
D(0, x) = 1 for all x ∈ (30, 620]. We chose β = 0.05.
We see a propagating wave front for the variable D, while
the variable P is equal to zero. We see that D = 0 fills
the space. Moreover, for the chosen set of parameters, a
numerically calculated speed of the travelling wave equals
1.43 which is close to the analytical estimate 2/

√
k ≈

1.41.
In Fig. 3 we present solutions of system (3) with

the initial condition P (0, x) = P̄ and D(0, x) = kP̄
for all x ≤ 30 (i.e., the solution is equal to a spatially
homogeneous positive steady state for x ≤ 30), while
P (0, x) = D(0, x) = 0 for x ∈ (30, 700]. This time
we choose β = 0.3. In Fig. 3 we see that now it is the
positive steady state that fills the space. The numerically
calculated speed of the travelling wave is equal to 1.68
which is close to the analytically estimated minimal speed
2
√
1− β ≈ 1.67. Note that oscillations arise around

the positive steady state. If we run the simulation for
the initial condition P (0, x) = 0.05 for x ≤ 30 and
P (0, x) = 0 for x ∈ (30, 800], and D(0, x) = 0 for
all x ∈ [0, 800] and for β = 0.05, we observe that the
solution of the equation on the left-hand side border (that
is close to x = 0) converges to the positive steady state,
while the solution on the right-hand border (i.e. for x close
to xmax = 800) remains close to the zero steady state,
see Fig. 4. Hence, the space is homogeneously filled with
the value of the solution at the positive steady state. In
addition, for smaller β oscillations’ dumping is slower
(cf. Figs. 3 and 4), and therefore, the profile of the wave
seems to be changing when we simulate the solution on
the finite interval.

We note a strikingly similar solutions’ behaviour if
the initial condition on the left-hand side border is close,
but not equal, to (0, 1); these results are not presented due
to their similarity to the ones in Fig. 4. These simulations
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Fig. 3. Solutions of system (3) with the initial condition P (0, x) = P̄ and D(0, x) = kP̄ for all x ≤ 30, while P (0, x) = D(0, x) = 0
for x > 30, x ∈ [0, 700], t ∈ [0, 400]. Parameters: β = 0.3, k = 2. Panel (a): propagation of variable P in (x, t) space, panel
(b): propagation of variable D in (x, t) space, panel (c): selected profiles for variable P , panel (d): selected profiles for variable
D (selected times as in panel (c)). The wave moves right with a numerically calculated speed 1.68. An analytical estimate for
of the minimum speed is |ϑ| ≥ 2

√
1− β ≈ 1.67.

suggest that a non-trivial travelling wave between (0, 0)
and (0, 1) does not exist, at least for k between 1 and 3
and β ∈ (0, 1) for which we run the simulations.

5. Conclusions

In this paper, we focus on proving the mathematical
properties of the mathematical model (1) that could reflect
some aspects of brain tumour growth and response to
chemotherapy. What is different here from our previous
works on modelling chemotherapy in LGGs (Bogdańska
et al., 2017; Bodnar et al., 2019) is that, first, we
include diffusion of tumour cells, and second, we
allow for constant chemotherapy. We demonstrate basic
mathematical properties of system (1) such as the local
existence of the solutions, and their non-negativity for the
non-negative initial data. We also studied the stability of
spatially homogeneous steady states.

Based on the Fenichel invariant manifold theory
we show that the tumour spreads like a travelling

wave, meaning that the solutions of the corresponding
mathematical model move at a constant speed without
changing their shape.

We also calculate analytically the minimum speed of
the travelling wave which is very close to the numerically
calculated speed. This would definitely help us to
estimate the model parameters, as the speed of the
tumour progression can be estimated directly from the
experimental data, although it is not an easy task. The
travelling wave connecting (0, 0) with a positive steady
state exists for β < 1, which means that the treatment is
insufficient to eradicate the tumour completely. In order to
estimate the lower bound for the tumour expansion speed,
we assume β = 0 and thus the minimal speed would be
2
√
ρδ, which is the same as the one obtained by Swanson

et al. (2008). For the parameters used by Pérez-García
et al. (2014), the minimal speed of the travelling wave
is approximately 4.35 mm per year indicating a tumour
diameter growth of 8.7 mm per year. This agrees with
the speed of LGGs’ progression reported by Pallud et al.
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Fig. 4. Solutions of system (3) with the initial condition P (0, x) = 0.05 for x ≤ 30 and 0 otherwise, while D(0, x) = 0 for all x,
x ∈ [0, 800], t ∈ [0, 400]. Parameters: β = 0.05, k = 2. Panel (a): propagation of variable P in (x, t) space, panel (b):
propagation of variable D in (x, t) space, panel (c): selected profiles for variable P , panel (d): selected profiles for variable
D (selected times as in panel (c)). The wave moves right with a numerically calculated speed 1.97.

(2013; 2012) and Adenis et al. (2021). In real life, the
travelling wave connecting (0, 1) with (0, 0) can happen
only within a limited part of the tumour, where almost all
tumour cells are damaged (by the treatment). However,
derived results suggest that the speed of the tumour’s
diameter decrease during chemotherapy should be similar
to the speed of tumour progression, which also happens in
the case of LGG (cf. Bogdańska et al., 2017).

Clearly, a lower bound to the speed of this travelling
wave could help us to estimate model parameters in
a tumour regression phase and predict a relapse time
drawing us closer to the ultimate goal of a large portion
of mathematical oncology research which is to forecast
tumour growth individually for each patient. The
relevance of estimating the speed of tumour growth has
been also raised in other studies, including the one
attempting to estimate the length of the silent phase of
LGGs growth (see Pallud et al., 2013).

Furthermore, we believe that this paper brings
inspiration for future research works in the area of
mathematical analysis. One particular example might

be to verify how other types of diffusion (e.g., porous
medium or fractional diffusion) fit to the description
of tumour growth. This would be challenging not
only from the applicational but also from the analytical
point of view. Note also, that in the presented
study, following Pérez-García et al. (2014), the same
diffusion rates of damaged and non-damaged cells are
considered. That comes from the assumption that a
chemotherapy-induced damage is manifested only during
mitosis. This might be a slight oversimplification and the
different diffusion rates for the two cell populations might
be considered in the future. In the work of Bodnar and
Vela Pérez (2019) a modification of the model studied
here, without diffusion but with an explicit death term,
was considered. Verifying how such a modification affects
the existence and the speed of the travelling wave might
become yet another potential direction of future works.
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