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Abstract
Analytical chemistry, like other scientific fields, has undergone a
number of changes to make it more consistent with the concept
of sustainable development. Among the various steps of
chemical analysis, without a doubt, sample preparation is the
bottleneck in regard to following a green protocol, especially in
terms of solvent consumption. Therefore, many attempts have
been made to improve the environmental friendliness of this
stage, mainly through the developing approaches for miniatur-
ized sample preparation as well as application of new green
solvents. This review offers a brief discussion of current trends
in analytical applications that have been less studied and
discussed: a new generation of green solvents, such as bio-
based solvents, supercritical fluids, and liquefied. We believe
that this mini review is a good starting place for readers inter-
ested in the future of green analytical chemistry.
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Green analytical chemistry: challenges in
sample preparation
The development of analytical chemistry is clearly
moving towards the increasing application of the prin-
ciples of green analytical chemistry (GAC). It is
imperative to reduce the use of reagents and excipients
in general and to eliminate the use of hazardous sol-

vents, in particular, or to at least replace them with safer
ones. On the other hand, the priorities for the devel-
opment of analytical procedures especially include the
validation characteristics of the methods, such as their
sensitivity, selectivity, accuracy, precision, and robust-
ness. Therefore, analytical chemists around the world
are looking to find a balance between the conflicting
demands of the present era. We would like to add that
these requirements are sometimes only seemingly con-
tradictory, and the introduction of new, more sustain-
able, and energy-efficient alternatives also leads to

improvement in the metrological characteristics of the
new procedures. Automation, acceleration, miniaturiza-
tion, and simplification, as well as the use of environ-
mentally friendly chemicals and innovative materials,
have fueled the development of numerous green
analytical procedures. The degree of “greenness”
attained by several of them is notable. The elimination
of sample preparation by conducting direct analysis is
the first principle of GAC. However, in most chemical
analyses, a sample preparation step is compulsory for the
cleanup and preconcentration of analytes [1]. Perhaps

the most commonly used sample pretreatment tech-
nique is liquid extraction. The primary disadvantage of
this approach is the extensive use of organic solvents
and the resulting laboratory waste.

At present, omitting solvents completely from analytical
procedures seems to be almost impossible; therefore,
many research groups have focused their efforts on
developing and examining new generations of green
solvents to be applied in the extraction process.
A new generation of green solvents applied
in the extraction process
Organic solvents commonly used in analytical chemistry
are obtained from crude oil, a nonrenewable source [2].
According to the GAC principles introduced by
Namie�snik [3] and Anastas and Warner [4], an ideal
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“green” solvent for analytical applications should have
low toxicity, low environmental impact, and low cost;
they should be biodegradable, reusable, and easily ob-
tained from renewable sources and should have high
extraction ability and selectivity [2]. The requirements
for green solvents are relatively demanding, but research
on environmentally friendly solvents is advancing
rapidly [5,6]. Over the last two decades, new environ-

mentally friendly solvents e called “green” solvents e
have been designed and introduced. Although green
solvents that have recently appeared include, for
Figure 1

Characteristic of green solvents used in extraction processes.
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example, switchable-hydrophilicity solvents [7] and
deep eutectic solvents [8e11], we do not address them
in this review because a great amount literature on them
is already available. We focused instead on less discussed
topics, namely bio-based solvents, supercritical fluids,
and liquefied gases (Figure 1).

Supercritical and subcritical fluids
Supercritical fluids are substances that have their pres-
sure and temperature above their critical points. In the
supercritical region, the surface of demarcation between
www.sciencedirect.com
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Table 1

Selected applications of supercritical/subcritical solvent extraction.

Solvent Extraction
technique

Target Matrix Extraction conditions Extraction yield
[%]

Ref.

Sample to
solvent ratio

Extraction time
[min]

Temp. [�C]

Subcritical water SWE Non-polar
flavonoids
(hesperidin,
narirutin)

Defatted orange
peel

1:24 (g/mL) Not mentioned 150 21.0 ± 0.2 [21]

Subcritical water SWE TPC, TFC Kiwifruit peels 1:50 (kg/L) 20 160 19.0 ± 0.1 [22]

Subcritical water SWE TPC chestnut shells 1:10 (mg/mL) 30 220 9.01 ± 0.22 [23]

Subcritical water SWE Polysaccharides Mushroom – 15 150 11.35 ± 0.44 [24]

Subcritical water SWE Polysaccharides Leaves 1:30 (g/mL) 16 1701 25.60 ± 0.22 [25]

Subcritical water SWE Polysaccharides Leaves 1:25 (g/mL) 16.71 129.83 20.67 ± 0.10 [26]

Subcritical water SWE EO compounds Leaves 0.025 g/mL 29 174 2.14 ± 0.03 [27]

Subcritical water SWE EO compounds Leaves 1:5 (w/w) 25 156 2.66 ± 0.08 [28]

Supercritical
CO2; ethanol

SFE, PLE SLs Microalga 1:10 (g/mL) 495 50, 125 22.1 ± 0.1 [29]

Supercritical
CO2; 10%
ethanol

SFE TPC Olive pomace 1:23 (g/mL) – 60 8.80 ± 0.08 [30]

Supercritical
CO2; 2%
ethanol

SFE Cannabinoids Cannabis seeds – 120 40 9.7 ± 0.7 [31]

EO, essential oil; PLE, pressurized lipid extraction; SFE, supercritical fluid extraction; SLs, Microalgal saponifiable lipids; SWE, subcritical water extraction; TFC, total flavonoid content; TPC,
total phenolic content.
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gas and liquid disappears, causing the unique physico-
chemical properties of a supercritical fluid to appear
between these two phases. Supercritical fluids have
higher density in comparison to the gas phase and lower
viscosity in comparison to the liquid phase. Their sol-
vating power is tunable by small changes in the pressure
and temperature [12]. These properties make them an
excellent alternative to traditional organic solvents in

liquid extraction.

Supercritical fluid extraction (SFE), in general, is char-
acterized by shorter extraction time, better efficiency
and selectivity and easy removal of the extracting sol-
vent [13]. Moreover, it meets the requirements of GAC,
since the extraction fluid in many instances is CO2

which is non-flammable, nontoxic, abundant, renewable,
easy to prepare and does not produce waste. SFE is
widely used to extract natural compounds from food
products as well as essential oils and drugs from natural

sources. However, one of its drawbacks is its nonpolar
nature; therefore, its use is limited mainly to the
extraction of nonpolar and moderately polar compounds.
To overcome this limitation, addition of a small volume
of a polar cosolvent, such as methanol or ethanol, is
necessary [8]. Unfortunately, this approach reduces the
green nature of the method. Greener modifiers that
enable both an increase in the polar character and the
maintaining of a low environmental footprint are water
[14] as well as vegetable and nut oils [15e18]; however,
reaching the critical point for extraction can be more

challenging.

Subcritical water extraction (SWE) is an effective
alternative, above all, to classic extraction methods due
to its environmentally friendly nature and faster process.
It also requires much simpler equipment, which signif-
icantly reduces costs [19]. However, the extraction
power of water is limited, and removing moisture from
the extracts may require additional steps, such as
evaporation, chemical dehydration, or precipitation
[20]. Superheated water has gained popularity for the
extraction of flavonoids and phenolic acids [21e23],

polysaccharides [24e26], and essential oils [27,28] from
fruits and vegetables (Table 1).

Liquefied gases
Another group of alternative extraction solvents that has
recently caught the attention of researchers is that of
liquefied gases, i.e., gases used in a liquid state at low
pressures. Commonly used liquefied gases include n-
butane, n-propane, dimethyl ether, trans-1,3,3,3-
tetrafluoroprop-1-ene, and 1,1,2-tetrafluoroethane
[32], which require only gentle pressure (<1 MPa) to
remain in a liquid state and can be evaporated easily at
low temperatures. Therefore, liquefied gas extraction

can be carried out at room temperature with minimal
energy consumption, and only a negligible residual
T S C
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Table 3

Bio-based solvents and their application in extraction.

Solvent Extraction technique Target Matrix Extraction conditions Extraction yield [%] Ref.

Sample to solvent
ratio

Extraction time [h] Temp. [�C]

D-limonene
hexane

Solid– liquid extraction Rice bran oil Rice bran 2:1 (wt/wt)
3:1 (wt/wt)
5:1 (wt/wt)
2:1 (wt/wt)
3:1 (wt/wt)
5:1 (wt/wt)

0.5
2
0.5
2
0.5
2
0.5
2
0.5
2
0.5
2

163
69

15.8 ± 0.2
18.9 ± 0.5
19.2 ± 0.2
21.1 ± 0.1
20.7 ± 0.1
24.5 ± 2.5
14.4 ± 1.1
17.0 ± 0.4
15.7 ± 0.1
18.4 ± 0.9
17.3 ± 0.5
18.4 ± 1.5

[50]

D-limonene
n- hexane

Soxhlet extraction Olive oil Aglandau olive Not mentioned 8 163
69

48.6 ± 2.2
40.3 ± 0.7

[51]
[51]

Solvent Extraction technique Target Matrix Extraction conditions Extraction yield [%] Ref.

Sample (mass);
solvent (volume)

Extraction time [min] Temp. [�C]

D-limonene
a-pinene
r-cymene
n-hexane

Soxhlet extraction Microalgae oil Microalgae
chlorella vulgaris

10 g;
300 mL

8 176
155
176
69

38,4
27.1
45.2
26.2

[53]
[53]

2-methyltetrahydrofuran
Hexane

Solid– liquid extraction Aromas Hop cones 17 g;
175 mL

2
2

80
69

16.6 ± 0.5
12.7 ± 0.7

[66]

2-methyltetrahydrofuran
Hexane

Soxhlet extraction Aromas Hop cones 30 g;
200 mL

6
6

80
69

20.2 ± 0.3
17.9 ± 0.2

[66]

Solvent Extraction technique Target Matrix Extraction conditions Extraction yield [%] Ref.

Compound
concentration;
sample to solvent
ratio

Extraction time [min] Temp. [�C]

2-methyltetrahydrofuran Liquid– liquid extraction p-hydroxybenzoic acid (HA), Water samples 100 mg/l; 30 25 100 [48]

Cyclopentyl methyl ether p-hydroxybenzoic acid (HA), 1:1 (v:v) 97.48 ± 0.14

Ethyl acetate p-hydroxybenzoic acid (HA) 100 mg/l; 96.94 ± 0.14

2-methyltetrahydrofuran Vanillic acid Water samples 1:1 (v:v) 30 25 100 [48]

Tren
d
s
in

g
reen

so
lven

ts
Janicka

et
al.

5

w
w
w
.sciencedirect.com

C
u
rren

t
O
p
in
io
n
in

G
reen

an
d
S
u
stain

ab
le

C
h
em

istry
2022,

37:100670

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

www.sciencedirect.com/science/journal/24522236
http://mostwiedzy.pl


T
ab

le
3.

(c
o
n
ti
n
u
ed

)

C
yc
lo
p
e
n
ty
lm

e
th
yl

e
th
e
r

V
a
n
ill
ic

a
ci
d

9
6
.7
3
±
0
.6
7

E
th
yl

a
ce

ta
te

V
a
n
ill
ic

a
ci
d

9
7
.7
1
±
0
.6
6

2
-
m
e
th
yl
te
tr
a
h
yd

ro
fu
ra
n

L
iq
u
id
–
liq
u
id

e
xt
ra
ct
io
n

V
a
n
ill
in

W
a
te
r
sa

m
p
le
s

1
0
0
m
g
/l;

1
:1

(v
:v
)

6
0

2
5

9
7
.9

±
0
.1
4

[4
6]

cy
cl
o
p
e
n
ty
lm

e
th
yl

e
th
e
r

9
0
.5

±
0
.2
5

D
-li
m
o
n
e
n
e

5
9
.5

±
1
.8
3

e
th
yl

a
ce

ta
te

9
6
.8

±
0
.0
5

2
-m

e
th
yl
te
tr
a
h
yd

ro
fu
ra
n

L
iq
u
id
–
liq
u
id

e
xt
ra
ct
io
n

V
a
n
ill
ic

a
ci
d

W
a
te
r
sa

m
p
le
s

1
0
0
m
g
/l;

1
:1

(v
:v
)

6
0

2
5

9
4
.0

±
0
.1
2

[4
6]

C
yc
lo
p
e
n
ty
lm

e
th
yl

e
th
e
r

7
1
.3

±
0
.1
0

D
-li
m
o
n
e
n
e

8
.9

±
0
.0
9

e
th
yl

a
ce

ta
te

9
1
.5

±
0
.1
2

6 6th Green and Sustainable Chemistry Conference

Current Opinion in Green and Sustainable Chemistry 2022, 37:100670

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

amount of solvent will remain in the extracts [33].
Compressed or liquefied gases have the ability to
dissolve natural substances at relatively lower tempera-
ture in comparison to conventional organic solvents
[34]. Despite these advantages, its use is still limited,
however, liquefied gas poses a serious hazard due to the
extremely flammable vapors. Among all the gases used,
only tetrafluoroethane is nonflammable, but it is classi-

fied as a potent greenhouse gas. Moreover, it requires a
special design for extraction [35], which has already
been commercialized. This extracting device has no
pump; it has a compressor that reduces energy con-
sumption and the cost of maintenance.

Thus far, this technique has been used successfully to
extract a wide range of compounds, from hydrocarbons
to lipids (Table 2). For example, compressed n-propane
was applied as an extraction solvent for lipids from the
Perilla plant [36] and for fatty acids and antioxidants

from sesame seeds [37]; n-butane was used to extract
fatty acids from dried carrots and sunflower seeds [33],
and dimethyl ether for the isolation of lipids from a
single-celled alga [38,39] and hydrocarbons from a
green microalga [40]; 1,1,1,2-tetrafluoroethane was
used to extract essential oil from Ceylon cinnamon tree
[41]; and liquefied petroleum gas (a mixture of isomers
of propane and butane) was employed to extract ter-
penes from agro-industrial and forest waste [42]. All of
the subsequent studies demonstrated similar charac-
teristics, indicating that extraction by liquefied gases

provides satisfactory extraction yields in relation to
classical organic solvents. Moreover, due to easy sepa-
ration after extraction, the stripping step was easily
omitted. A good example showing a comparison of the
classical lipid extraction methodology with extraction
by compressed n-propane can be found in the work of
Silva et al. [36].

Bio-based solvents
Bio-based solvents are defined as solvents that are of
renewable origin obtained by chemical or biochemical
transformations of a wide range of biomass sources,
such as (i) agricultural crops rich in carbohydrates
(corn, wheat and sugar beets), (ii) forest products (e.g.
wood), (iii) aquatic biomass (e.g. algae), and (iv) waste
materials [8,46]. They can be obtained through car-
bohydrate fermentation, extraction of vegetable oils
and steam distillation of wood. The products of these
processes include a wide range of compounds, such as
alcohols, esters, glycerols, terpenes, furfurals, and

furans, some of which have the potential to be applied
in green extraction processes due to their low misci-
bility with water, relatively high boiling point, and
enhanced stability in comparison with the other sol-
vents, as well as their low toxicity, biodegradability
under normal environmental conditions, and solvent
recyclability [47,48]. However, the number of
www.sciencedirect.com
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Table 4

Comparison of selected green solvents used in extraction processes.

Supercritical fluids
Subcritical fluids

Liquefied gases Bio-based solvents

Examples Carbon dioxide,
water

n-butane, n-propane, dimethyl ether
Trans-1,3,3,3-tetrafluoroprop-1-ene,
1,1,2-tetrafluoroethane

Limonene, a-pinene, b-pinene
p-cymene, glycerol

Toxicity Low Significantly higher than the others Low
Flammability Low High Relatively low
Advantages - Environmentally

friendly nature
- Does not produce
waste

- Diffuse easily
through solid
materials

- Short extraction
time

- Efficient
- Economic
- Abundant
- Renewable
- Easy to prepare
- Tunable solvating
power

- Easy removal from
extracting solvent

- Easy removal from extracting solvent
- Efficient
- Short extraction time
- Minimal energy consumption required to
use as an extractant

- Renewable origin (biomass)
- Low miscibility in water
- High stability
- Biodegradability
- Recyclability

Disadvantages - Possibility of
requiring
additional steps to
remove moisture
from extracts

- Limited extraction
power

- Nonpolar nature of
CO2.

- Serious hazard due to extremely
flammable vapors

- Complicated sourcing processes

Polarity Carbon dioxide – low
polarity
Water – polar

Low polarity Low polarity

Applications - Extraction of
natural
compounds from
food products

- Extraction of
essential oils and
drugs from natural
sources

- Extraction of fatty acids and antioxidants
from food products

- Extraction of essential oil from plants
- Extraction of terpenes from agro-
industrial and forest waste

- Extraction of natural compounds from
food products

- Extraction of lipids inter alia from
microalgae, fly larvae, seeds

- Extraction of aromas from hop pellets

Trends in green solvents Janicka et al. 7
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analytical procedures that utilize bio-solvents is still
relatively low.

One of the most frequently used greener alternative
solvents is D-limonene, extracted from the peels of
citrus fruits mainly via steam-distillation or centrifugal
separation [49]. The first report on the use of this
terpene for extraction was published by Mamidipally
and Liu in 2004. In this case, the extraction of oil from
rice bran samples was carried out in a comparison with
the same extraction using hexane. The performance of
the extraction and quality of the crude oil extracted
were found to be comparable [50]. Similar or even
better results were also obtained in the extraction of fats
www.sciencedirect.com C
and oils from olive seeds [51], lipids from salmon tissue
[52], oil from microalgae [53], and fatty acids from grape

seeds [54]. Moreover, D-limonene has been successfully
employed in place of other hazardous petroleum sol-
vents, such as toluene [46] and chlorinated organic
solvents [55].

A review of the literature showed that not only D-
limonene but also other terpenes, such as a-pinene, b-
pinene, and p-cymene, have also been used as a valu-
able renewable alternative in natural products extrac-
tion from a variety of feedstocks [56e59]. Another bio-
based solvent used for analytical purposes is 2-
methyltetrahydrofuran (2-MeTHF), obtained by
urrent Opinion in Green and Sustainable Chemistry 2022, 37:100670
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hydrogenation or hydration of furfural derived from
corn cobs or sugar cane. The compound 2-MeTHF was
found to be a suitable alternative for hazardous solvents
such as tetrahydrofuran, toluene, dichloromethane,
hexane, diethyl ether, and ethyl acetate [48,60]. Due to
its low solubility in water, the main area of its appli-
cation was the extraction of lipids inter alia from
microalgae [61,62], fly larvae [63], and some seeds

[64,65]. More recently, it was used in a solideliquid
extraction to obtain aromas from hop pellets, and its
use resulted in higher extraction yields and showed
faster kinetics than hexane [66]. Further, an investi-
gation aimed at discerning the best bio-solvent among
cyclopentyl methyl ether (CPME), 2-MeTHF, and D-
limonene in the liquideliquid extraction of nine
phenolic acids compounds from an aqueous matrix
showed 2-MeTHF to have the best potential for
extraction, providing very high recoveries in some cases
(equal to or slightly lower than 100%) [48]. Similar

results were found in a paper focused on a comparison
of the extraction performances of hydrophobic solvents
(2-MeTHF, CPME, D-limonene and three hydrophobic
deep eutectic solvents) and ethyl acetate to isolate
vanillin and vanillic acid from aqueous samples [47]. In
that case, the highest recoveries were obtained using 2-
MeTHF (91.96e95.37%). Apart from the above-
mentioned solvents, soybean oil methyl esters [67,68],
CPME [61,69], polyethylene glycol, and diethyl car-
bonate [70,71] have also proved to be efficient and
sustainable for obtaining compounds of interest from

different matrices. Table 3 summarizes bio-based
Figure 2

GAPI assessment of the green profile of the evaluated procedures for the dete
(Procedure 1, Procedure 2), liquefied gases [32,33] (Procedure 3, Procedure

Current Opinion in Green and Sustainable Chemistry 2022, 37:100670
solvents and applications that have thus far been
applied for the extraction of different analytes.
Conclusions
GAC has compelled analysts to find and introduce new
extraction techniques based on miniaturized methods to
reduce or even eliminate the use of harmful organic
solvents in order to significantly decrease the adverse
environmental effect of chemical analyses. At the same
time, the finding and applying of a new generation of
green solvents which can be used in extraction process
has attracted extensive attention. Besides being envi-
ronmentally friendly, such solvents should possess other

properties, such as custom tunability, ease of prepara-
tion, low volatility, high selectivity, low cost, and
biocompatibility (Table 4). The application of bio-based
solvents is promising since they are of renewable origin
and can be obtained from many different waste parts of
plants.

Although it seems that due to the wide range of analyte
polarity no universal solvent exists that can be used in a
universal extraction process, if we manage to replace
conventional solvents (hexane, toluene, and chloroform)

with a suitable green solvent, we can achieve a signifi-
cant reduction of analysis costs as well as a reduction of
the negative impact on people and the environment.

Water, as the most important and readily available sol-
vent, should be more considered in this regard. Water is
highly polar and does not seem to be a proper extracting
rmination of fatty acids in food samples using supercritical fluids [72,73]
4) and bio-based solvents [50,51] (Procedure 5, Procedure 6).

www.sciencedirect.com
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solvent for organic analytes; however, this is true only
under ambient conditions. Changing its temperature at
putting it under higher pressures can heavily affect its
dielectric constant and therefore its solvation power,
such that it will be able to solubilize nonpolar molecules
as well. This is perfectly shown by comparison of the
green character of analytical procedures based on bio-
based solvents, supercritical fluids, and liquefied gases

using the GAPI tool (Figure 2).
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