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Abstract This article presents a mathematical model describing flow of two fluid phases in
a heterogeneous porous medium. The medium contains disconnected inclusions embedded
in the background material. The background material is characterized by higher value of the
non-wetting-phase entry pressure than the inclusions, which causes non-standard behavior
of the medium at the macroscopic scale. During the displacement of the non-wetting fluid by
the wetting one, some portions of the non-wetting fluid become trapped in the inclusions. On
the other hand, if the medium is initially saturated with the wetting phase, it starts to drain
only after the capillary pressure exceeds the entry pressure of the background material. These
effects cannot be represented by standard upscaling approaches based on the assumption of
local equilibrium of the capillary pressure. We propose a relevant modification of the upscaled
model obtained by asymptotic homogenization. The modification concerns the form of flow
equations and the calculation of the effective hydraulic functions. This approach is illustrated
with two numerical examples concerning oil–water and CO2–brine flow, respectively.

Keywords Two-phase flow modeling · Capillary trapping · Upscaling · Homogenization

1 Introduction

Modeling of two-phase flow in porous media is required in many environmental engineering
applications. Whenever two fluids are present in a porous medium, one of them shows greater
affinity to the solid skeleton and tends to adhere to its surface. It is called the wetting fluid,
while the other one—non-wetting. In natural porous media, the wetting fluid is usually water,
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while the non-wetting one can be, for example, air or oil. When the wetting fluid invades pore
space occupied by a non-wetting fluid, it moves in the form of film along the walls of the
pores. As the amount of the wetting fluid increases, the film becomes thicker. Consequently,
the non-wetting fluid is displaced at first from the pores of finest diameter and later from the
larger ones. Owing to the action of the adhesive forces on the wetting fluid and the presence
of the surface tension between the fluid phases the pressure in the wetting fluid is lower than
in the non-wetting one. The difference is known as the capillary pressure. The value of the
capillary pressure decreases as the wetting fluid saturation increases. The relation between
the capillary pressure and the wetting fluid content (or saturation) is known as the capillary
or retention function.

A characteristic feature of many porous materials is the presence of a distinct entry pres-
sure. It means that when the medium is fully saturated with the wetting fluid, the non-wetting
phase can invade the pore space only when the difference between the non-wetting and
wetting phase pressures exceeds a specific positive value. The actual value of the entry pres-
sure depends on the pore diameter and is higher in finetextured materials. Natural porous
media often contain lenses or inclusions of coarser texture than the surrounding material
(background). During capillary-dominated infiltration of the wetting fluid, the background
material becomes saturated faster than inclusions. If the capillary pressure in inclusions does
not exceed the entry pressure of the background, then the non-wetting fluid cannot leave the
inclusions and becomes immobilized (trapped). Consequently, it is impossible to fully satu-
rate the medium with the wetting fluid and the effective wetting phase conductivity is reduced
because of the presence of unsaturated regions. The non-wetting phase trapping caused by
material heterogeneity with respect to the entry pressure, which is the subject of this arti-
cle, should not be confused with other phase-trapping mechanisms. For example, wetting
phase can be trapped in fine-textured material surrounded by coarse-textured material, if the
capillary pressure in the latter one becomes so high, that the wetting phase permeability is
reduced to zero (Quintard and Whitaker 1988). Both mentioned processes result from the
heterogeneity of the medium at large (macroscopic) scale, much larger than the pore scale.
On the other hand, phase trapping can be also observed at the pore scale, where small portions
of fluid become immobilized due to complex geometry of the pores. Pore-scale trapping is
not the subject of this study.

The characteristic size of material heterogeneities in natural porous medium is usually
much smaller than the scale of practical interest; thus, explicit representation of the hetero-
geneous structure in the numerical solution is hardly possible. Instead, macroscopic models
are used, in which the medium is characterized by “average” (“effective”) properties. These
properties have to be estimated from the local-scale description of the medium by means of
an upscaling procedure. Upscaling received much attention in the literature, especially in the
context of petroleum engineering (e.g., Barker and Thibeau 1997; Ekrann and Aasen 2000;
Virnovsky et al. 2004) and subsurface hydrology (e.g., Eichel et al. 2005; Vereecken et al.
2007). An emerging field of application of upscaling techniques is the geological sequestra-
tion of CO2, considered to be one of the possible means to mitigate global climate changes
caused by human activity (e.g., Kopp et al. 2009a,b).

Two-phase flow in porous media can be driven by viscous, gravitational and capillary
forces (Stephen et al. 2001; Jonoud and Jackson 2008). Their relative importance influ-
ences the choice of appropriate upscaling method. In this article we focus on the case
of flow dominated by capillary forces at the length scale corresponding to the size of
the heterogeneities. This allows us to use macroscopic models based on the assumption
of local capillary equilibrium. A number of such models can be found in the literature
(e.g., Saez et al. 1989; Quintard and Whitaker 1988; Braun et al. 2005; Lewandowska and
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Laurent 2001). However, most of them assume that the pressures in both fluid phases are
continuous across the material interfaces, which makes them unsuitable for the description
of the trapping effects. Non-wetting phase trapping was investigated in the framework of
the homogenization theory by van Duijn et al. (2002, 2007) but their work was limited to
one-dimensional layered medium and horizontal incompressible flow.

The objective of this study is to propose a macroscopic model for two-phase flow in
heterogeneous medium which accounts for the trapping effects and can be applied for an
arbitrary geometry of inclusions and arbitrary flow direction. We start our presentation with
the standard model obtained by homogenization, which does not include trapping. Next, the
proposed modifications of the model are discussed. Numerical examples are presented to
show the influence of trapping on the effective hydraulic functions and on the macroscopic
behavior of the medium.

2 Mathematical Formulation of Two-Phase Flow

The flow of two slightly compressible immiscible fluids in a rigid porous medium is described
by two coupled partial differential equations of parabolic type, each of them of the following
form (e.g Saez et al. 1989):

θαcα

∂pα

∂t
+ ρα

∂θα

∂t
− ∇ ·

(
ρα

kα

μα

∇ (pα + ραgx3)

)
= 0 (1)

where the subscript α denotes the fluid phase (α = w or α = n for the wetting and non-wet-
ting phase, respectively), θ denote volumetric phase content, p—pressure, ρ—fluid density,
c—fluid compressibility coefficient, k—phase permeability tensor, μ—fluid dynamic vis-
cosity, g—gravitational acceleration, and x3—vertical spatial direction oriented positively
upward. The volumetric content of phase α can be expressed in terms of the medium porosity
φ and fluid saturation S:

θα = φSα (2)

Since only two fluids are present in the pore space one can write:

θw + θn = φ or Sw + Sn = 1 (3)

It is a common approach to introduce the concept of residual saturations for each of the
phases. They represent the point at which the considered phase loses its mobility, and they
are related to the phenomenon of pore-scale trapping of fluids in porous media. In this article,
we focus on the large-scale trapping, which can occur independently of the pore-scale pro-
cesses. In order to keep the presentation general, we take into account the residual saturations
related to pore scale trapping Srw and Srn and the corresponding residual phase contents θrw

and θrn , and we define the normalized wetting saturation Sew as

Sew = Sw − Srw

1 − Srw − Srn
(4)

Sew is usually called effective wetting saturation. In this article, we prefer to call it “normal-
ized”, because the term “effective” is used in conjunction with the upscaled parameters.

The difference between the non-wetting and wetting pressure is known as the capillary
pressure and can be defined as a function of the normalized wetting fluid saturation:

pn − pw = pc (Sew) (5)
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The permeability of the medium with respect to each phase can be written as

kα = kpkrα (6)

where kp is the intrinsic permeability tensor and krα is the relative permeability of the phase.
The relative permeability depends on the normalized wetting fluid saturation. In order to
describe the relations between pc, Sew, krw and krn the analytical models of van Genuch-
ten–Mualem (van Genuchten 1980; Mualem 1976) and Brooks–Corey–Burdine (Brooks and
Corey 1964; Burdine 1953) are widely used. The latter one accounts for the entry pressure
for the non-wetting phase and has the following form:

Sew =
{(

pc
pe

)−λ

if pc > pe

1 if pc ≤ pe

(7)

krw = S3+2/λ
ew (8)

krn = (1 − Sew)2
(

1 − S1+2/λ
ew

)
(9)

where pe is the entry pressure, and λ is a parameter depending on the texture of the medium.
It is well known that this relation is not unique because it shows hysteresis with respect to
imbibition–drainage cycles. In this article, we do not consider this effect explicitly. How-
ever, the proposed approach can be also used if the materials composing the heterogeneous
medium show hysteretic behavior, as will be explained later.

3 Upscaled Model for Two-Phase Flow with Entry Pressure Effects

Let us consider two-phase flow in a medium composed of a continuous fine-textured back-
ground material with coarse-textured inclusions (lenses). The inclusions are not connected
with each other (Fig. 1). Each of the two materials is characterized by its own set of cap-
illary and permeability functions. We are interested in the description of flow at the scale
much larger than the size of a single lens, which means that an upscaling method should
be used. The approach presented here is an extension of the upscaled model obtained by
asymptotic homogenization (Saez et al. 1989) to the case of flow with entry pressure effects.
The homogenization method has the advantage of mathematical rigorousness and allows us
to establish explicit connections between processes at various scales. The model is based on
the following assumptions:

Fig. 1 Structure of a periodic
heterogeneous medium
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– The medium has periodic structure as shown in Fig. 1, where � denotes the periodic cell,
and �B and �B the parts of the cell occupied by background material and inclusions,
respectively; the interface separating the two regions is denoted by 	.

– The medium has two characteristic lengths: the macroscopic length L and the microscopic
length l; their ratio is the scale parameter, which should be small, ε = l/L � 1.

– The fluid flow within each of the two regions is described by Eq. 1:

– in �B :

θ B
w cw

∂pB
w

∂t
+ ρB

w

∂θ B
w

∂t
− ∇ ·

(
ρw

kB
w

μw

∇
(

pB
w + ρwgx3

))
= 0 (10)

θ B
n cn

∂pB
n

∂t
+ ρB

n
∂θ B

n

∂t
− ∇ ·

(
ρn

kB
n

μn
∇

(
pB

n + ρngx3

))
= 0 (11)

– in �I :

θ I
wcw

∂pI
w

∂t
+ ρ I

w

∂θ I
w

∂t
− ∇ ·

(
ρw

kI
w

μw

∇
(

pI
w + ρwgx3

))
= 0 (12)

θ I
n cn

∂pI
n

∂t
+ ρ I

n
∂θ I

n

∂t
− ∇ ·

(
ρn

kI
n

μn
∇

(
pI

n + ρngx3

))
= 0 (13)

– The characteristic time of the process corresponds to the time of flow at the macroscopic
scale.

– The permeabilities of the two materials are of the same order of magnitude.
– The capillary forces dominate over the viscous and gravitational forces at the scale of a

single periodic cell.

The last condition can be quantified by two dimensionless numbers. The Bond number
NB represents the ratio of gravitational to capillary forces, while the capillary number NC

represents the ratio of viscous to capillary forces (e.g., Eichel et al. 2005):

NB = �ρglB

p̂c
� 1 (14)

NC = μαv̂αlC

k̂ p̂c
� 1 (15)

where �ρ is density difference between the two fluids, lB and lC —characteristic local lengths,
chosen according to the flow direction, p̂c—characteristic value of the capillary pressure
(usually assumed equal to the entry pressure in Brooks–Corey model), k̂—characteristic
permeability value, and v̂α—characteristic velocity of the given phase. The characteristic
length for the Bond number lB can be assumed equal to the vertical dimension of a single
heterogeneity (inclusion), while the length in the capillary number lC can be taken as the
dimension of the heterogeneity in the direction of the flow. For a more detailed discussion
of the role of dimensionless numbers in upscaling see Stephen et al. (2001) and Jonoud and
Jackson (2008).

The form of the upscaled model depends on the continuity of the non-wetting fluid across
the material interface 	 between the background material and inclusions. One can distinguish
three cases, which are described in the following paragraphs.
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32 A. Szymkiewicz et al.

3.1 Case 1: pB
c > pB

e

If the capillary pressure in the background material is above the entry pressure, then both
phases are present and active in each of the two regions. Thus, we can assume that the pres-
sures in each of the phases (and consequently also the capillary pressure) are continuous
across the background–inclusion interface:

pB
w = pI

w on 	 (16)

pB
n = pI

n on 	 (17)

Moreover, we assume the continuity of the normal mass fluxes across the interface:

− ρw

kB
w

μw

∇
(

pB
w + ρB

w gx3

)
n = −ρw

kI
w

μw

∇
(

pI
w + ρ I

wgx3

)
n on 	 (18)

−ρn
kB

n

μn
∇

(
pB

n + ρB
n gx3

)
n = −ρn

kI
n

μn
∇

(
pI

n + ρ I
n gx3

)
n on 	 (19)

where n is the unit vector normal to the interface 	. The above interface conditions were
used by Saez et al. (1989) to derive homogenized model of the following form:

θ E
w cw

∂pE
w

∂t
+ ρE

w

∂θ E
w

∂t
− ∇ ·

(
ρw

k E
w

μw

∇
(

pE
w + ρE

w gx3

))
= 0 (20)

θ E
n cn

∂pE
n

∂t
+ ρE

n
∂θ E

n

∂t
− ∇ ·

(
ρn

k E
n

μn
∇

(
pE

n + ρE
n gx3

))
= 0 (21)

where the superscript E denotes the effective macroscopic variables. The major result of
the homogenization is that the pressures in each phase can be treated as uniform within a
unit cell. The phase densities also assume uniform values corresponding to the macroscopic
pressure heads, ρE

α = ρα

(
ρE

c

)
. Moreover, the capillary pressure is also uniform and can be

regarded as a macroscopic variable. However, the saturations and phase contents are different
in each of the two regions, because the background material and inclusions are characterized
by different pc − Sew curves. The effective (average) porosity and volumetric phase contents
are defined as weighted arithmetic means:

φE = wBφB + w I φ I (22)

θ E
w = wBθ B

w

(
pE

c

)
+ w I θ I

w

(
pE

c

)
(23)

θ E
n = wBθ B

n

(
pE

c

)
+ w I θ I

n

(
pE

c

)
(24)

where wB and w I are the volumetric fractions of the background material and inclusions,
respectively. The values of the macroscopic phase contents change in the range defined by
the macroscopic residual phase contents:

θ E
rw ≤ θ E

w ≤ φE − θ E
rn (25)

θ E
rn ≤ θ E

n ≤ φE − θ E
rw (26)

The macroscopic residual phase contents are weighted arithmetic averages of the residual
phase contents of the two materials:

θ E
rw = wBθ B

rw + w I θ I
rw (27)

θ E
rn = wBθ B

rn + w I θ I
rn (28)
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The macroscopic saturations of each phase can be expressed as:

SE
w = θ E

w /φE (29)

SE
n = θ E

n /φE (30)

The effective permeability of each phase depends on the permeabilities of the two materials,
on the phase saturations, and on the geometry of the unit cell (volumetric fractions of the
materials and their spatial arrangement). The effective permeability function is obtained by
repetitive solution of the so-called local boundary value problem defined over the periodic
cell. The algorithm is as follows:

– Choose a value of the macroscopic capillary pressure pE
c , assumed to be constant over

the periodic cell.
– For each phase, compute the corresponding saturations in each of the materials and the

upscaled saturations.
– Compute the wetting phase permeabilities in each material.
– For each of the spatial directions i = 1, 2, 3, solve the following equation:

− ∇ · kw

(
∇bi + ∇b̃i

)
= 0 (31)

where bi and b̃i represent the average values of the phase pressure and its local scale fluc-
tuation, respectively. The components of the gradient ∇bi are set to one in the direction i,
and zero for other directions (∇b1 = [1, 0, 0]T , etc), so that the only unknown in Eq. 31
is b̃i . The permeability depends on the position, i.e., kw = kB

p k B
rw(pc) for x ′ ∈ �B and

kw = kI
pk I

rw(pc) for x ∈ �I . Note that the problem is linear, since kw does not depend

on b̃i . Periodic boundary conditions are applied for b̃i along the boundaries. In order to
ensure uniqueness of the solution and zero average value for b̃i , a Dirichlet boundary
condition b̃i = 0 should be specified at a single arbitrarily chosen point of the boundary.
For details of computations, see, for example Szymkiewicz (2005):

– Based on the solution, compute the components of the effective permeability tensor:

k E
w,i j =

∫
�

kw,i j

(
δi j +

(
∇b̃i

)
j

)
d�

∫
�

(
δi j +

(
∇b̃i

)
j

)
d�

(32)

where
(
∇b̃i

)
j

denote the j-th component of the gradient of b̃i ;

– repeat the last three points for the non-wetting phase.

This procedure allows us to obtain the effective permeability tensors for each phase in func-
tion of the capillary pressure values in tabulated form. Note that it is possible to define the
effective intrinsic permeability tensor kE

p , which is given by the solution of Eq. 31 with
krw = 1 for both materials. However, it is impossible to express the upscaled permeability
as a product of kE

p and a scalar relative permeability function, since the upscaled relative
permeability is direction dependent, except for the case when both materials have the same
relative permeability functions.

This approach for permeability upscaling was proposed by Saez et al. (1989) and Amaziane
et al. (1991) as a result of asymptotic homogenization and by Quintard and Whitaker (1988)
as a result of volumetric averaging procedure. It fits well into the framework of steady-state
upscaling based on capillary equilibrium assumption (Braun et al. 2005; Eichel et al. 2005).
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The solution of local boundary value problem (31) for each spatial direction is actually
equivalent to the solution of steady single-phase flow with periodic boundary conditions.
Alternatively, renormalization or simple averaging formulas can be used to estimate the up-
scaled permeability from its local distribution within the unit cell �. However, the procedure
outlined above seems more accurate for complex geometries (Braun et al. 2005; Eichel et al.
2005).

3.2 Case 2: pB
c < pB

e —Infiltration

The model presented above can be extended to account for the effects of high entry pressure
in the background material. At first, let us consider the case when a medium initially satu-
rated with the non-wetting phase is subjected to infiltration of the wetting phase. As long
as both phases are present in the background and inclusions, the standard model presented
above can be used. However, when the macroscopic capillary pressure reaches the value of
pB

e , i.e., the entry pressure of the background material, the normalized non-wetting phase
saturation in the background becomes zero (the actual non-wetting saturation is equal to the
residual saturation, and the non-wetting permeability is equal to zero). The corresponding
non-wetting phase content in inclusions is equal to

θ I∗
n = θ I

rn +
(

1 − SI
ew

(
pB

e

)) (
φ I − θ I

rn − θ I
rw

)
(33)

and the upscaled saturation is equal to

θ E∗
n = wBθ B

rn + w I θ I∗
n (34)

If the model given by Eqs. 20–32 is applied, then further decrease of the capillary pressure
results in the corresponding decrease of θ I

n and θ E
n and the increase of the wetting phase

permeability, computed from the solution of the cell problem, Eq. 31.
Such approach does not take into account the fact that the non-wetting phase cannot leave

the inclusions, because it cannot overcome the entry pressure in the background material.
In order to include this effect, the interface conditions (16)–(19) and the upscaled equations
should be modified.

Let us begin with the simplified case of incompressible flow (cw = cn = 0). The interface
conditions can be specified as follows:

pB
w = pI

w on 	 (35)

pI
c = pB

e on 	 (36)

and:

− kB
w

μw

∇
(

pB
w + pB

wgx3

)
n = − kI

w

μw

∇
(

pI
w + ρ I

wgx3

)
n on 	 (37)

− kI
n

μn
∇

(
pI

n + ρ I
n gx3

)
n = 0 on 	 (38)

Note that the non-wetting phase pressure is undefined in the background material. With these
boundary conditions, the upscaled equation for the wetting phase becomes

− ∇ ·
(

ρw

kE∗
w

μw

∇
(

pE
w + ρgx3

))
= 0 (39)
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where kE∗
w is the effective wetting phase permeability obtained from the solution of the local

boundary value problem (31) with the relative permeability being equal to 1 in the back-
ground material and k I

rw

(
pB

e

)
in the inclusions. Equation 39 actually describes steady flow,

because the wetting saturation cannot increase any further and the fluids are incompressible.
Since the background becomes impermeable with respect to the non-wetting phase, one has
to set kE

n = 0. Note that this result cannot be obtained from the solution of the cell problem,
because the problem becomes ill-posed if the permeability in any part of the cell is equal to
zero. The non-wetting fluid is incompressible, and so the saturation in the inclusions cannot
change. Thus, the equation for the non-wetting phase becomes simply:

θ E
n = θ E∗

n = const (40)

where the value of θ
E∗
n given by Eq. 34 can be interpreted as the macroscopic-scale residual

non-wetting phase content due to entry effect. It depends on the shape of the capillary func-
tions of the two materials and can be significantly larger than the residual non-wetting phase
content resulting from the pore-scale trapping θ E

rn , given b y Eq. 28.
If the non-wetting fluid is compressible, then the situation becomes more complicated,

because even if the non-wetting fluid cannot escape from the inclusions to the background,
its saturation in inclusions can change due to the compressibility. In this case, the following
set of equations should be used:

θ E
w cw

∂pE
w

∂t + ρE
w

∂θ E
w

∂t − ∇ ·
(
ρw

kE∗
w

μw
∇ (

pE
w + ρgx3

)) = 0 (41)

θ I
n cn

(
∂pE

w

∂t + ∂pI
c

∂t

)
− ρ I

n
∂θ I

n
∂t = 0 (42)

Equation 42 states that the mass of non-wetting phase entrapped in inclusions remains con-
stant. Note that the local capillary function is used instead of an upscaled one. The change
in saturation is driven by the change in the macroscopic wetting phase pressure. A positive
change in pE

w causes an increase of the non-wetting phase pressure in inclusions and, conse-
quently, an increase in the density of the non-wetting fluid. In order to keep the mass constant,
the increase of the density should be balanced by a decrease of the volume occupied by the
fluid, which means in turn that the capillary pressure decreases. On the other hand, if pE

w

decreases, then the capillary pressure in inclusions is expected to increase. It can even reach
values higher than the entry pressure in the background, which enables the non-wetting fluid
to move from inclusions to the background. In this case, one should switch again to the model
with two continuous phases, given by Eqs. 20–32.

3.3 Case 3: pB
c < pB

e —Drainage

Another case arises when the medium is initially fully saturated with the wetting phase
(Sew = 1) and starts to be invaded by the non-wetting phase. Until the critical capillary
pressure pB

e is reached, the only amount of non-wetting phase in the system results from the
residual saturations, which can possibly be larger than zero in one or both of the materials.
The upscaled equations have the following form:

θ E
w cw

∂pE
w

∂t + ρE
w

∂θ E
w

∂t − ∇ ·
(
ρw

kE
w

μw
∇ (

pE
w + ρgx3

)) = 0 (43)

θ E
n = θ E

rn = const (44)
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36 A. Szymkiewicz et al.

Fig. 2 Capillary functions of the
background and inclusions and
the effective capillary functions
for infiltration and drainage

0

pI
e

pB
e

0 θB
rw φB-θB

rn φB

inclusions
background

averaged
effective - infiltration
effective - drainage

0 θI
rw φI-θI

rn φI

0 θE
rw φE-θE*

rn φE-θE
rn φE

where the effective permeability of the wetting phase is equal to the effective intrinsic per-
meability of the medium. Note that in the above equations, we neglected the compressibility
effect on the non-wetting phase at its residual saturation.

Initially, there is no capillary equilibrium between inclusions and background, because
the capillary pressure in each material is equal to its entry pressure. Once the entry pressure
for the matrix is exceeded, the non-wetting phase from the injection zone starts invading
the system. As soon as there is a connected path of the non-wetting phase between the injec-
tion zone and inclusions, the capillary pressure in inclusions increases, until it equilibrates
with the surrounding background material, with the corresponding non-wetting phase satu-
ration in inclusions much larger than the one in the background. Thus, from the macroscopic
point of view, we have a discontinuity in the effective capillary curve (Fig. 2). The saturation
is constant and equal to one for pE

c < pB
e . If the capillary pressure increases by a very small

value above the entry pressure of the background, then the average saturation within a unit
cell sharply drops to the value corresponding to the capillary equilibrium conditions, because
the inclusions desaturate quickly. Such a behavior is confirmed by physical experiments on
heterogeneous media (Vasin et al. 2008); however, it is only possible, if there is initially no
connected non-wetting phase in the system.

From the above considerations, we arrive at the results that in the range of capillary
pressures below pB

e the medium shows hysteretic behavior, i.e., the upscaled capillary and
permeability curves are different for infiltration in drainage. This hysteresis in the upscaled
model results from the composite structure of the medium and is present even if each of the
materials is characterized by a unique capillary curve. Such a situation is presented in Fig. 2.
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Two-phase flow in heterogeneous porous media 37

Each of the two materials is characterized by different values of porosity and the residual
phase contents. The upscaled capillary functions for the infiltration and drainage are distin-
guished by crosses and circles, respectively. For the purposes of comparison, we also plotted
the capillary curve obtained with the standard averaging procedure, Eq. 23. One can see that
the three curves are identical for pE

c > pB
c . Below this value, the modified effective function

can take one of two constant values, depending on the type of flow (infiltration or drainage),
while the standard function is still equal to the weighted average of the phase contents for
the two materials.

The approach presented here can be also used when each of the material exhibits hys-
teresis in its local scale capillary curve. In this case, the method of computing the effective
parameters remains the same, but different local scale functions should be used as input,
depending on the process which needs to be simulated.

The implications for the numerical modeling depend on the formulation used in the numer-
ical code to solve the effective equations. Basically, two approaches are possible, i.e., either
the principal variables are the pressures of the two fluids and the phase content and per-
meabilities are calculated as functions of the pressure difference (capillary pressure) or the
principal variables are one of pressure and one of saturation, and the capillary pressure and
permeabilities are calculated as the functions of the saturation. In the first case, one should
remember that when the capillary pressure is below the critical value pE

c < pB
c , Eqs. 23–24

are no longer valid because the non-wetting phase content is constant and is given by Eq. 40 or
44, depending on the process taken into consideration. In the latter case, one should remem-
ber that during infiltration, the value of the wetting phase content cannot exceed the critical
value θ

E∗
w = φE − θ

E∗
n . During the drainage, one has to deal with a discontinuous capillary

function. For the purposes of consistent numerical solution, it can be approximated by a
continuous capillary curve, with linear variation of θ E

w between pc and pc + δp , where δp is
a small number (similar technique for the unsaturated flow equation was used by Vasin et al.
(2008).

The considerations presented above hold for the particular structure of the medium, with
disconnected coarse inclusions embedded in a continuous background material. Note that
if the geometry is inverse, i.e., fine inclusions are embedded in a coarse background, the
standard model given by Eqs. 20–21 can be used, since the capillary pressure is always con-
tinuous within the medium. There is some qualitative similarity between the behavior of such
medium with regard to the wetting phase and the behavior of the medium with coarse inclu-
sions with respect to the non-wetting phase. For example during imbibition in the medium
with fine inclusions the wetting phase tends to occupy inclusions first, while during drainage
in the medium with coarse inclusions the non-wetting phase tends to occupy inclusions first.
However, the effective capillary function for a medium with fine-textured inclusions does
not show hysteresis.

4 Numerical examples

The fine scale (F) solution is obtained on a grid with explicit representation of the heter-
ogeneous structure of the medium. It is considered as the reference, within the range of
the numerical error. The upscaled (U) solution is obtained for an equivalent homogeneous
domain, characterized by the effective capillary and permeability functions introduced above.
It is expected to be close to the fine scale solutions, as long as the assumptions underlying
the upscaling method hold.
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38 A. Szymkiewicz et al.

Both models were implemented in the DuMuX numerical framework (Flemisch et al.
2007), as modifications of its standard two-phase flow model, which is based on a fully
coupled vertex-centered finite volume formulation with pw and Sn as the primary variables
(Helmig 1997). In the upscaled model, the values of the capillary pressure and phase perme-
abilities in function of the effective non-wetting saturation were interpolated linearly from
a lookup table computed at the preprocessing stage. The solution of local boundary value
problem, which defines the effective permeabilities, was performed with a separate numerical
code, based on the cell centered finite volume discretization (see Szymkiewicz 2005).

4.1 Example 1: Horizontal Flow in Oil–Water System

The first example deals with horizontal displacement of oil by water. The flow is isother-
mal and incompressible. The densities and viscosities of the fluids are listed in Table 1.
We consider a two-dimensional (2D) geometry with square-shaped inclusions, as shown in
Fig. 3a. The volumetric fractions of the background material and inclusions are wB = 0.51
and w I = 0.49, respectively. Each of the two materials is characterized by Brooks–Corey–
Burdine functions, Eqs. 7–9. The parameters are listed in Table 2. Initially, we assume a con-
stant water pressure pw = 101325 Pa and a constant capillary pressure pc = 3000 Pa within
the domain, which corresponds to the volumetric water content θw = 0.027 in the coarse
inclusions, and θw = 0.144 in the fine background. At time, t ≥ 0, at the left boundary,
the water pressure is raised to pw = 103325, and full water saturation is imposed. At the
opposite boundary, the initial values of pw and pc are retained. This example represents an

Table 1 Fluid properties
Fluid Density kg m−3 Viscosity Pa s

Oil 8.90 × 102 8.00 × 10−3

Water 1.00 × 103 1.31 × 10−3

CO2 (5.07 ÷ 5.15) × 102 (3.79 ÷ 3.86) × 10−5

Brine 1.05 × 103 5.87 × 10−4

Fig. 3 Structures of porous media used in numerical examples
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Table 2 Porous media properties

Parameter Unit Example 1 Inclusions Example 2 Inclusions
Background Background

φ – 0.36 0.40 0.36 0.40

Srn – 0.00 0.00 0.00 0.00

Srw – 0.00 0.00 0.00 0.00

pe Pa 1400 500 14286 7143

λ – 1.2 1.5 1.2 1.5

k p m2 1 × 10−10 1 × 10−9 1 × 10−13 4 × 10−13

idealized case with capillary-dominated flow and initial capillary equilibrium. The value of
capillary number NC defined by Eq. 15 can be estimated in the following way. The charac-
teristic permeability and capillary pressure correspond to the parameters of the background

material, the velocity is estimated as v̂w = k̂
μw

�pw

L , where �pw is the difference between
the boundary pressures, and L = 10 m is the length of the domain, while the local length is
lC = 0.35 m. Thus, one obtains NC = 0.05, i.e., much smaller than 1.

The effective permeability function was obtained by repetitive solution of the local bound-
ary value problem Eq. 31 for different values of the capillary pressure on a uniform numerical
grid of 100 by 100 cells. The local and upscaled capillary and permeability functions are
shown in Fig. 4. In this case, we consider only one branch of the upscaled capillary curve,
corresponding to the imbibition.

The fine scale solution for this example was obtained on a uniform grid of 201 by 11
nodes, which corresponds to the spatial spacing of �x = 0.05 m. The upscaled solution was
obtained on a grid of 201 by 2 nodes, i.e., the grid size in the direction parallel to the flow
was the same as for the fine scale solution. In general, one could expect that the upscaled
solutions are performed on much coarser grids than the fine scale solution. In this case, we
preferred to use the same grid size in the direction of the flow to reduce possible influence
of the numerical discretization error on the results.

The results of the simulations are presented in Figs. 5, 6, and 7. The spatial distribution
of the oil saturation is presented in Fig. 5. One can see that due to the difference in the
capillary functions, the oil saturation is relatively high in the inclusions, compared to the
background material. The upscaled solution shows averaged oil saturation, and it matches
the fine scale results well. Further confirmation can be obtained from Figs. 6 and 7, which
show the distribution of the oil saturation and capillary pressure along the horizontal axis of
the domain for an intermediate time and the final time. The fine scale saturation profile is
highly oscillatory. The upscaled saturation values are located exactly in the middle between
the fine scale values for inclusions and background, which is consistent with the fact that the
volumetric fractions of the two materials are nearly the same. In the plots of the capillary
pressure, it can be seen that the fine scale pc profile is smooth, which means that the capillary
equilibrium conditions are perfectly satisfied in this case.

4.2 Example 2: Vertical flow in CO2–brine system

The second example shows the possible application of the presented model to the problem
of CO2 sequestration. We consider a simplified setting, with quasi one-dimensional (1D)
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Fig. 4 Capillary and
permeability functions used in
Example 1
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Fig. 5 Example 1: Non-wetting phase saturation distribution obtained with the fine scale model (upper graphs)
and the upscaled model (lower graphs) for two selected time levels

representation of the reservoir as shown in Fig. 3. The coarse textured lenses occupy 12.5%
of the volume of the medium. Moreover, we assume that each of the porous materials is
characterized by a unique set of capillary and permeability curves, i.e., we neglect hysteresis
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Fig. 6 Example 1: Non-wetting phase saturation and capillary pressure along the symmetry axis of the domain
obtained with the fine scale model (F) and the upscaled model (U) for t = 6.55 × 105 s
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Fig. 7 Example 1: Non-wetting phase saturation and capillary pressure along the symmetry axis of the domain
obtained with the fine scale model (F) and the upscaled model (U) for t = 2.50 · 106 s
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42 A. Szymkiewicz et al.

Fig. 8 Capillary and
permeability functions used in
Example 2. Empty symbols
denote effective permeability in
horizontal direction, solid
symbols—in vertical direction
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at the local scale (however, hysteresis will appear in the upscaled functions). The fluid and
material properties are listed in Tables 1 and 2, respectively. In this case the wetting phase is
brine, while the non-wetting phase is CO2. The density and viscosity of CO2 are computed
as a function of the pressure according to the formulas of Span and Wagner (1996) (the tem-
perature is assumed constant T = 343◦K). The range of entry pressures and saturations for
the two porous materials is similar to the one used by Saadatpoor et al. (2009a,b). Initially the
reservoir is fully saturated with brine, except for the bottom part 0 ≤ x3 ≤ 3.5 m, where high
saturation of CO2 is assumed (Sn = 0.9) as a result of a relatively fast injection. The pressure
in the wetting phase (brine) is assumed constant, pw = 1.5×107 Pa. We neglected the initial
pressure variation in the vertical direction coming from hydrostatic distribution since they
are relatively small compared to the imposed pressure (about 2.0 × 105 Pa). Our simulation
concerns redistribution of the injected CO2, i.e., its upward flow due to buoyancy. The bound-
aries of the domain are impermeable, and there are no sources or sinks active for t ≥ 0. The
ratio of gravity to capillary forces can be estimated using Eq. 14, with �ρ = 500 kg/m3, and
p̂c = 14000 Pa. Since trapping is a localized process associated with single heterogeneities,
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Fig. 9 Example 2: Non-wetting
phase saturation distribution
obtained with the fine scale
model and the upscaled model for
two selected time levels

the characteristic length corresponds to the vertical dimension of a single lens, lB = 30 cm.
Thus, the value of NB is 0.105, indicating local dominance of the capillary forces over the
gravity forces.

Note that in this case, we have both imbibition and drainage, because as C O2 moves
upward, the medium is first drained (invaded by non-wetting fluid) and then imbibed again
with brine. Thus, one has to account for the hysteresis in the effective capillary function and
the effective permeability function, as shown in Fig. 8. Note that the effective permeabilities
are different in horizontal and vertical directions, which results from the anisotropic geometry
of the medium. The calculation of the effective permeability was carried out on a numerical
grid of 120 by 120 cells.

The fine scale solution was obtained on a uniform grid of 201 by 21 nodes (�x = 0.1 m),
while for the upscaled solution, we used a grid of 201 by 6 nodes. The fine scale solution
converged very poorly and needed 220000 s of wall-clock time to reach the final simula-
tion time of 108 s. In contrast, the upscaled solution required only about 500 s on the same
machine (4 Pentium Xeon 3.00 GHz processors, 4 GB RAM).

The results obtained with both models are compared in Figs. 9, 10, and 11. Figure 9
shows the distribution of CO2 saturation at times t = 5.03 × 106 s and t = 1.00 × 108 s
(the final time). It can be seen that the two solutions are in qualitative agreement. The fine
scale simulation shows CO2 trapped in the coarse-textured lenses, while the rest of it occupies
the upper part of the reservoir. The trapping effect is represented in the upscaled solution by
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Fig. 10 Example 2: Non-wetting phase saturation and capillary pressure along the symmetry axis of the
domain obtained with the fine scale model (F), and the upscaled model (U) for t = 2.00 · 107 s
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Fig. 11 Example 2: Average non-wetting phase saturation obtained with the fine scale model (F), and the
upscaled model (U)

the values of Sn larger than zero in the lower part of the domain. The two solutions also agree
with respect to the time of the arrival of CO2 flume at the upper boundary of the reservoir,
which is about 2.0 × 107 s. This can be seen in Fig. 10, where the values of Sn and pc along
the vertical central axis of the domain are plotted. Similar to Example 1, we can see large
oscillations of the saturation. The capillary pressure also shows some oscillations, but they
are relatively small.

In order to allow for a quantitative comparison, we also show the values of average sat-
urations obtained with both models, Fig. 11. The averages were taken over each of the
10 periodic cells which constitute the solution domain. It can be seen that there is some
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discrepancy between the fine scale and upscaled results for the intermediate time t = 1.35 ×
107, while for the earlier and later times, the agreement is very good. Actually, for this exam-
ple—in contrast to the previous one—we could expect a less than perfect agreement, due to
worse separation of scales and the presence of advection terms related to the gravity. The
fluid configuration in the background material does not reach full equilibrium, as can be seen
in Fig. 10. Nevertheless, the upscaled model seems to produce good results also in this more
difficult case.

5 Summary and Conclusions

An upscaling approach for two-phase flow in porous media accounting for large scale trap-
ping of the non-wetting phase is proposed. The model is valid for capillary-dominated flow.
The upscaled capillary and permeability functions are different for imbibition and drainage,
showing hysteresis. This effect comes solely from the presence of material heterogeneities
within the considered medium, and is not related to the hysteresis observed in homogeneous
medium, which comes from the pore-scale processes.

While capillary flow is often associated with small-scale processes, it has been shown that
the model can be used for large-scale applications related to CO2 storage in deep geologi-
cal formations. The numerical simulations described this study indicated the importance of
CO2 trapping in coarse textured inclusions and confirmed the necessity to include capillary
effects in the applied simulators (Saadatpoor et al. 2009a,b). Application of the model for
real problems is limited by the assumptions of capillary equilibrium. It means that the model
can describe flow in geological formations with small lenses having vertical dimension of
the order of a few centimeters or decimeters, for which the capillary forces dominate over
gravity. If viscous and/or gravity forces play important role, then different upscaling meth-
ods should be used (e.g., Ekrann and Aasen 2000; Virnovsky et al. 2004). Information on
the connectivity of the coarse-textured heterogeneities is also important, since trapping can
occur only in disconnected inclusions. On the other hand, the presented model can be further
developed to give a more realistic description of the processes related to the C O2 storage.
This can be achieved by switching to the two-phase two-component description of gas flow
and including hysteresis in the small scale capillary functions for inclusions and background.

The model described above can be also used for flow in the vadose zone, where the size of
heterogeneities is often small, while capillary forces in the air–water system are significant.
This process is commonly described with the Richards’ equation, which does not account
explicitly for the air phase, and thus may be unsuitable for soils characterized by large cap-
illary heterogeneities, for example, if air trapping in coarse-textured inclusions is expected.
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