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Communication complexity is a fundamental aspect of information science, concerned with the amount of
communication required to solve a problem distributed among multiple parties. The standard quantification
of one-way communication complexity relies on the minimal dimension of the communicated systems. In
this paper, we measure the communication complexity of a task by the minimal distinguishability required to
accomplish it, while leaving the dimension of the communicated systems unconstrained. Distinguishability is
defined as the maximum probability of correctly guessing the sender’s input from the message, quantifying
the message’s distinctiveness relative to the sender’s input. This measure becomes especially relevant when
maintaining the confidentiality of the sender’s input is essential. After establishing the generic framework,
we focus on three relevant families of communication complexity tasks—the random access codes, equality
problems defined by graphs, and the pair-distinguishability tasks. We derive general lower bounds on the minimal
classical distinguishability as a function of the success metric of these tasks. We demonstrate that quantum
communication outperforms classical communication presenting explicit protocols and utilizing semidefinite
programming methods. In particular, we demonstrate unbounded quantum advantage for random access codes
and Hadamard graph-based equality problems. Specifically, we show that the classical-to-quantum ratio of
minimal distinguishability required to achieve the same success metric escalates polynomially and exponentially
with the complexity of these tasks, reaching arbitrarily large values.
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I. INTRODUCTION

Communication complexity is a cornerstone of informa-
tion science, finding applications in diverse fields such as
distributed computation, query complexity, game theory, inte-
grated circuit design, cryptography, and streaming algorithms
[1–4]. In its most fundamental form, communication tasks
involve two entities—a sender and a receiver—aiming to com-
pute a function based on both of their inputs. The traditional
measure for one-way communication complexity pertains to
the minimal dimension of the systems the sender commu-
nicates to accomplish the task. Quantum theory provides an
unbounded advantage over classical communication protocols
in several communication complexity problems. In particular,
the ratio between the minimum dimensions of classical and
quantum messages required to accomplish a given task can
increase to arbitrarily large values [5–12].

In this study, instead of minimal dimension, we take
minimal distinguishability as the measure of communication
complexity. Distinguishability is the maximum average prob-
ability of distinguishing (guessing) the sender’s input from
the communicated message, quantifying the extent to which
information about the sender’s input data is revealed from
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the transmission. In particular, distinguishability is also called
guessing probability information and corresponds to a one-
shot version of accessible information based on min-entropies
[13,14]. Therefore, a higher required distinguishability cor-
responds to a higher amount of information revealed about
the sender’s input and a higher amount of necessary com-
munication. Conversely, a lower minimum distinguishability
indicates a lower amount of necessary communication.

Besides being a discrete measure, the dimension as a
measure of communication only provides a partial character-
ization. On the other hand, distinguishability is a continuous
measure of communication and is better suited for providing
a complete picture. Additionally, accomplishing a commu-
nication task while maintaining minimal distinguishability
becomes crucial when the confidentiality of the sender’s
input is a concern. Traditional communication complexity,
measured by the minimum dimension of the communicated
systems, overlooks the privacy of the sender’s input. On
the other hand, cryptography prioritizes communication pri-
vacy but does not inherently consider the complexity of
the communication process [15,16]. Hence, our approach
addresses both aspects within a unified framework. More-
over, as distinguishability corresponds to the information
content in the premeasurement ensemble, the framework
remains independent of the particulars of the type quan-
tum or classical communication protocols. Finally, unlike
minimum dimension, distinguishability is critically relevant
to the study of ontological models of operational theories
[17,18].
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To commence, we discuss the generic framework of
“communication complexity based on distinguishability”.
This framework is related to the framework for communi-
cation tasks with bounded distinguishability introduced in
Refs. [17,19], further developed in Refs. [13,20]. We outline
methodologies for determining the minimal distinguishabil-
ity required to achieve a given value of the success metric
associated with communication complexity problems for clas-
sical and quantum communication protocols. To quantify the
quantum advantage, we take the ratio between the minimum
required distinguishability for classical and quantum commu-
nication to achieve a specific value of the success metric of
the task.

Moving to our main results, we examine three classes of
communication complexity tasks with diverse applications.
The first class involves the random access codes (RAC), where
the sender possesses a string of dits of size n, and the receiver
seeks to guess a randomly chosen dit from that string [21–23].
The second category is an equality problem defined by graphs,
where the objective is to determine whether the sender’s and
receiver’s inputs are the same or not, given that the inputs
randomly occur according to a graph [12]. The third class
is the pair-distinguishability task, a generalized version of
the task introduced in [17]. We analytically establish gener-
ically applicable lower bounds on the distinguishability as a
function of the success metric and the specifications of the
task [i.e., (d, n) for RAC, the properties of the graph for the
equality problem, and n for the pair-distinguishability tasks],
for classical communication protocols. We then demonstrate
several instances of quantum advantage in these tasks, either
by presenting explicit quantum protocols or by employing
semidefinite programming methods, i.e., we show that quan-
tum protocols, in general, require less distinguishability than
classical communication protocols to achieve the same suc-
cess metric in these tasks. We also provide a comprehensive
study of quantum advantage for the RAC with d, n = 2, 3 and
for equality problems based on odd-cycle graphs.

Among our diverse findings, the demonstration of an un-
bounded quantum advantage in two families of tasks stands
out. Specifically, we show that the ratio between distinguisha-
bility in classical and quantum communication to attain the
same success metric increases with the level d of Alice’s
input for the RACs, and similarly, for Hadamard graphs [24],
this ratio grows exponentially with the size of the graph.
Furthermore, we present quantum protocols that offers an
advantage in terms of distinguishability but not with respect
to traditional dimensional quantification for the same task.
Finally, we summarize insights gained into communication
complexity measured by distinguishability and enlist future
research directions.

II. COMMUNICATION COMPLEXITY
BASED ON DISTINGUISHABILITY

First, let us establish the notation [K] to represent the set
{1, · · · , K} for any positive integer K . In a one-way com-
munication complexity task, Alice, the sender, is assigned an
input variable x sampled from the set [N]. The probability of
obtaining x is denoted by px, with px = 1/N for a uniform
distribution. In each round of the task, based on the value of

x, Alice transmits a message (either classical or quantum) to
Bob, the receiver. Bob is also given an input variable y ∈ [M],
and depending on y and the received message, he produces an
output z ∈ [D]. Multiple rounds of this task are performed to
collect frequency statistics represented by conditional prob-
abilities p(z|x, y). The objective is to maximize a success
metric of the form

S =
∑
x,y,z

c(x, y, z)p(z|x, y), (1)

where c(x, y, z) � 0, and the metric is normalized by ensuring∑
x,y,z c(x, y, z) = 1 so that the maximum value of S is 1.
The communication is subject to a constraint on the dis-

tinguishability of inputs x. The distinguishability is defined
as the maximum average guessing probability of determining
input x from the message (classical or quantum) using the
optimal measurements

D = max
M

{∑
x

px p(z = x|x, M )

}
, (2)

where the maximization is over all possible measurements M
in the theory. Allowing D to be 1 would enable Alice to simply
transmit the input x, say via classical N-dimensional systems,
making the task trivial. The task becomes nontrivial when D
is less than 1. It is important to note that the success metric of
communication complexity task is typically associated with
guessing some function of x and y, i.e.,

S =
∑
x,y

c(x, y)p(z = f (x, y)|x, y). (3)

We note here that the success metric (3) is a particular instance
of the general success metric given in (1), wherein the output
z should be a specific function of inputs x and y. In this paper,
we focus on family of tasks that have a success metric of the
form (3). We will now find how such a communication task
translates into classical and quantum communication proto-
cols, and what is meant by the term quantum advantage in
this context.

A. Classical communication

While communicating classically, Alice sends a d-labelled
message m ∈ [d] depending on the input x. Any encoding
strategy is described by probability distributions of sending
m given input x, {pe(m|x)}, where

∑
m pe(m|x) = 1 for all x.

Similarly, the generic decoding strategy for providing Bob’s
output is defined by the probability distributions over output z
given m, y denoted as {pd (z|y, m)}, where

∑
z pd (z|y, m) = 1

for all m, y. It is important to note that there is no restriction
on the dimension d , implying m can take an arbitrarily large
number of distinct values. Using this fact, it can be shown,
as detailed in [17] (Observation 4), that sharing classical ran-
domness is not beneficial for this task. For an generic classical
encoding and decoding, the resulting conditional probability
is expressed as follows:

p(z|x, y) =
∑

m

∑
x,y

pe(m|x)pd (z|y, m). (4)
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Let us now obtain the expression of distinguishability given
an encoding. By substituting the probabilities (4) into (2) and
leveraging the property that the maximum value of any convex
combination of a set of numbers is the maximum number from
that set, we obtain

DC = max
{pd (z|m)}

∑
m

∑
x

px pe(m|x)pd (z = x|m)

= max
{pd (z|m)}

∑
m

(∑
x

px pe(m|x)pd (z = x|m)

)

=
∑

m

max
x

{px pe(m|x)}. (5)

For the uniform distribution px = 1/N , the above simplifies to

DC = 1

N

∑
m

max
x

{pe(m|x)}. (6)

It turns out that the expression of the optimal value of the
success metric (1) in classical communication, denoted by SC,

can be expressed only in terms of encoding {pe(m|x)}. By
substituting (4) into (1) and using the fact that the maximum
value of any convex combination of a set of numbers is the
maximum number from that set, we find

SC = max
{pe(m|x)},{pd (z|y,m)}

∑
x,y,z

∑
m

c(x, y, z)pe(m|x)pd (z|y, m)

= max
{pe(m|x)},{pd (z|y,m)}

∑
y,z

∑
m

(∑
x

c(x, y, z)pe(m|x)

)
pd (z|y, m)

= max
{pe(m|x)}

∑
y,m

max

{(∑
x

c(x, y, z = 1)pe(m|x)

)
, · · · ,

(∑
x

c(x, y, z = D)pe(m|x)

)}
. (7)

For the particular case of binary outcome, z ∈ [2], the above expression simplifies to

SC = max
{pe(m|x)}

⎡
⎣1 −

∑
m,y

min

{∑
x

c(x, y, z = 1)pe(m|x),
∑

x

c(x, y, z = 2)pe(m|x)

}⎤
⎦. (8)

B. Quantum communication

In quantum communication, Alice transmits a quantum
state ρx acting on Cd , and Bob’s output is the result of a quan-
tum measurement described by sets of positive semidefinite
operators {Mz|y}z,y, with z ∈ [D], y ∈ [M], and

∑
z Mz|y = 1.

It is worth noting that the dimension of quantum systems,
denoted as d , can take arbitrary values. This setup results in
the following statistics:

p(z|x, y) = tr(ρxMz|y). (9)

For any such quantum strategy we denote the resultant success
metric (1) in a generic communication complexity task as

SQ =
∑
x,y,z

c(x, y, z) tr(ρxMz|y). (10)

The distinguishability of the sender’s quantum states {ρx}
is given by

DQ = max
{Mx}

∑
x

pxtr(ρxMx )

s.t. Mx � 0, ∀x ∈ [n]∑
x

Mx = 1, (11)

which forms a straightforward semidefinite program. Let us
now make the following observation, which will come in
handy later.

Observation 1. The distinguishability of N quantum states
that belong to Cd sampled form uniform distribution

px = 1/N ,

DQ � d

N
. (12)

Proof. For uniform distribution, the distinguishability of a
given set of quantum states is given by

DQ = max
{Mx}

1

N

∑
x

tr(ρxMx ) � 1

N

∑
x

tr(Mx ) = d

N
. (13)

Here, we use the fact that the tr(ρx ) = 1, Mx � 0,∑
x Mx = 1. �
In Appendix, we present easy-to-implement semidefinite

programming (SDP) techniques to retrieve the maximum
quantum value of the success metric given an upper bound on
distinguishability based on the methods originally formulated
in [13,25].

C. Quantifying quantum advantage

In this paper, our objective is to measure the quantum
advantage in communication complexity with respect to the
distinguishability of x. Quantum advantage is established
when, to achieve a given value of a success metric S , the
minimum value of classical distinguishability DC surpasses
the value of quantum distinguishability DQ. To quantify this,
we draw an analogy from the standard notion of communica-
tion complexity and consider the ratio of the distinguishability
in classical and quantum communication, DS

C /DS
Q , given that

the success metric attains at least a certain value S in both
classical and quantum communication. If this ratio exceeds
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1, it indicates a quantum advantage. In particular, we aim to
derive a relationship of the following form:

F (SC ) � DC (14)

where F (SC ) is some function on SC and specifications of the
task. This enables us to establish a lower bound on DC given a
value of S . Subsequently, we present quantum communication
protocols achieving the same value S such that DQ is less than
the obtained lower bound on DC . The advantage is considered
unbounded if the ratio DS

C /DS
Q can become arbitrarily large.

Additionally, the quantum advantage can be quantified in
the reverse direction by determining the ratio between the
success metric, SD

Q /SD
C , under the condition that the dis-

tinguishability cannot be greater than the value D in both
quantum and classical communication.

III. RANDOM ACCESS CODES

In this task, Alice is provided with a string of n dits,
denoted as x = x1x2 · · · xn, uniformly randomly selected from
the set encompassing all possible strings. Each xy in the string
belongs to the set [d] for all y ∈ [n]. During communication,
Alice conveys information about the acquired string using
either classical or quantum systems. Bob’s task is to deduce
the yth dit, with y being randomly chosen from the set [n]. The

success metric is determined by the average success probabil-
ity, defined through

S (n, d ) = 1

ndn

∑
x,y

p(z = xy|x, y). (15)

Here, the task is uniquely defined by the values of n and d .
Utilizing (6), we can express the distinguishability for any
specific encoding as follows:

DC = 1

dn

∑
m

max
x

{pe(m|x)}. (16)

We now demonstrate a generically applicable lower bound
on the minimum distinguishability required to achieve a given
value of the success metric for (n, d) RACs,

Theorem 1. For any n and d , the following holds in classi-
cal communication

nSC (n, d ) + 1 − n � DC . (17)

Proof. First, we express this average success metric (15) in
terms of the general form of success metric (1) as

c(x, y, z) = 1

ndn
×

{
1, if z = xy

0, otherwise. (18)

Substituting this expression of c(x, y, z) into (7), we get

SC (n, d ) = max
pe(m|x)

⎡
⎢⎢⎢⎢⎢⎣

1

ndn

∑
m

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
y=1

max

⎧⎨
⎩ ∑

x|xy=1

pe(m|x), · · · ,
∑

x|xy=d

pe(m|x)

⎫⎬
⎭︸ ︷︷ ︸

χ (m)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎦. (19)

The underlined expression in (19) is denoted by χ (m). Here, the notation x|xy = d in the summation subscript indicates that
the summation is taken over all xi, except xy, which is set to d . The next step is to show that the following relation holds for
every m:

χ (m) � (n − 1)
∑

x

pe(m|x) + max
x

pe(m|x). (20)

Let us fix a particular value of m. Given m, for every y, we denote the value of xy by d∗
y for which∑

x|xy=d∗
y

pe(m|x) �
∑
x|xy

pe(m|x), ∀xy. (21)

In other words, for every y,

max

⎧⎨
⎩ ∑

x|xy=1

pe(m|x), · · · ,
∑

x|xy=d

pe(m|x)

⎫⎬
⎭ =

∑
x|xy=d∗

y

pe(m|x), (22)

where d∗
y is from the set {1, · · · , d}. As a consequence

χ (m) =
∑

x|x1=d∗
1

pe(m|x1 = d∗
1 , x2, · · · , xn) +

∑
x|x2=d∗

2

pe(m|x1, x2 = d∗
2 , · · · , xn) + · · · +

∑
x|xn=d∗

n

pe(m|x1, · · · , xn−1, xn = d∗
n ).

(23)

Each of the n terms on the right-hand side of the
above equation includes the probabilities pe(m|x1 = d∗

1 , x2 =
d∗

2 , · · · , xn = d∗
n ), as the summation encompasses all xi,

except for one xy, which is already fixed to d∗
y . Thus, in the

right-hand side of the above equation, the term pe(m|x1 =
d∗

1 , x2 = d∗
2 , · · · , xn = d∗

n ) appears n times and any other term
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FIG. 1. Distinguishability in classical and quantum communication vs the average success probability is presented for three different RACs.
The lower bound on DC from Eq. (17) is labeled as “Classical”. By varying values of the success probability S(n, d ), the upper bound on the
minimum DQ is determined by implementing the see-saw semidefinite programming method presented in Appendix. Referred to as QUB, this
bound is obtained for dn-dimensional quantum systems and is certainly achievable in quantum theory. The other two lower bounds are derived
through the semidefinite hierarchy presented in Appendix, up to the second and third levels, denoted as Q2 and Q3. These lower bounds on
minimum DQ are valid for arbitrary dimensional quantum states. The quantum advantage is present whenever QUB falls below the classical
lower bound. Notice that for some values of S(n, d ), the classical values are less than QUB in the plots, as Eq. (17) only provides a lower bound
on DC , which is not tight.
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can appear at most (n − 1) times. This implies

χ (m) � pe(m|x1 = d∗
1 , x2 = d∗

2 , · · · , xn = d∗
n )

+(n − 1)
∑

x

pe(m|x). (24)

Moreover, using the obvious fact

pe(m|x1 = d∗
1 , x2 = d∗

2 , · · · , xn = d∗
n ) � max

x
pe(m|x) (25)

in (24), we obtain Eq. (20) for the particular value of m. This
argument and, thus, Eq. (20) holds for any m. Subsequently,
summing over m on both sides of (20) yields∑

m

χ (m) �
∑

m

∑
x

(n − 1)pe(m|x) +
∑

m

max
x

pe(m|x),

(26)
which simplifies to∑

m

χ (m) � (n − 1)dn + dnDC (27)

because of (16). Finally, by replacing the above upper bound
on

∑
m χ (m) into (19), we get

SC (n, d ) � (n − 1)dn + dnDC

ndn
, (28)

which is equivalent to (17). �
Figure 1 displays a thorough investigation of quantum

advantages for RACs with parameters (n = 2, d = 3), (n =
3, d = 2), and (n = 2, d = 3). Following this, we show that
the quantum advantage in RAC can be unbounded.

Theorem 2. There exist quantum strategies for random ac-
cess codes with n = 2 such that

DS
C

DS
Q

�
√

d, where S (2, d ) = 1

2

(
1 + 1√

d

)
. (29)

Proof. There exists a known quantum strategy involving
d-dimensional quantum states and measurements for the case
of n = 2 and arbitrary d . This strategy achieves SQ(2, d ) =
1/2(1 + 1/

√
d ) by employing measurements performed by

Bob in two mutually unbiased bases in Cd [26]. According
to (12), this quantum strategy must adhere to the constraint
DQ � 1/d . Conversely, if we set n = 2 and SC = 1/2(1 +
1/

√
d ) in (17), we deduce that 1/

√
d � DC . Consequently,

(29) holds. �

IV. EQUALITY PROBLEM DEFINED BY GRAPHS

The communication task is defined by an arbitrary graph
G having N vertices. Alice and Bob receive input from the
vertex set of G, i.e., x, y ∈ [N], sampled from the uniform
distribution. Let Gx denote the set of vertices in G that are
adjacent to x, with Nx representing the number of vertices
adjacent to x. In the task, there is a promise that x = y or
x ∈ Gy. Bob’s aim is to differentiate between these two cases,
giving the correct output z = 1 if x = y and z = 2 if x ∈ Gy.
Hence, the success metric

S (G) = 1∑
x Nx + N

N∑
y=1

⎛
⎝p(1|x = y, y) +

∑
x∈Gy

p(2|x, y)

⎞
⎠.

(30)

The quantum advantage for this task in terms of the dimension
of the communicated systems has been studied in [11,12].
Concerning the distinguishability of the sender’s input, we
have the following result.

Theorem 3. For any graph G, the following holds in clas-
sical communication,

1

Nα(G)

((∑
x

Nx + N

)
(SC (G) − 1) + N

)
� DC, (31)

where α(G) is the independence number of the graph G.
Proof. First, we express the average success metric (30) in

terms of its general form (1) by defining

c(x, y, z) = 1(∑
x Nx + N

) ×
⎧⎨
⎩

1, if z = 1, x = y
1, if z = 2, x ∈ Gy

0, otherwise.
(32)

Substituting these values of c(x, y, z) into (8), we obtain

SC (G) = 1 − min
pe(m|x)

1∑
x Nx + N

×
∑

m

[
N∑

y=1

min

{
pe(m|x = y),

∑
x∈Gy

pe(m|x)

}
︸ ︷︷ ︸

χ (m)

]
.

(33)

The underlined term in (33) is denoted by χ (m). The distin-
guishability of input variable x in this task is given by

DC = 1

N

∑
m

max
x

{pe(m|x)}. (34)

For this proof, our primary goal is to show

χ (m) + α(G) max
x

pe(m|x) �
∑

x

pe(m|x), ∀m. (35)

Let us fix a value of m. For any given encoding {pe(m|x)},
consider the set T ⊆ [N] such that

min

{
pe(m|y),

∑
x∈Gy

pe(m|x)

}
=

∑
x∈Gy

pe(m|x), ∀y ∈ T . (36)

Subsequently, we can write

χ (m) =
∑
y/∈T

pe(m|y) +
∑
y∈T

⎛
⎝∑

x∈Gy

pe(m|x)

⎞
⎠. (37)

Further, we divide the set T into two partitions: First, TI

containing the vertices that do not share any common edge,
and second, T \ TI . Note that the subset TI must be an inde-
pendent set of the induced subgraph made of all the vertices
belonging to T . For every y ∈ T \ TI , there exists another y′ ∈
T \ TI such that y ∈ Gy′ . This observation allows us to express
(37) as

χ (m) =
∑
y/∈T

pe(m|y) +
∑

y∈T \TI

pe(m|y) +
∑
y∈TI

⎛
⎝∑

x∈Gy

pe(m|x)

⎞
⎠

�
∑
y/∈T

pe(m|y) +
∑

y∈T \TI

pe(m|y). (38)
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FIG. 2. Nonisomorphic connected graphs with three and four
vertices.

Adding
∑

y∈TI
pe(m|y) on both sides of the above equation,

we get

χ (m) +
∑
y∈TI

pe(m|y) �
N∑

y=1

pe(m|y). (39)

For any given set T , the cardinality of the subset TI is, at most,
α(G), the independence number of G. This implies

α(G) max
y

pe(m|y) �
∑

y∈[TI ]

pe(m|y). (40)

By substituting the above upper bound in (39), we recover
(35). Subsequently, summing over m on both sides of (35)
results∑

m

χ (m) + α(G)
∑

m

max
x

pe(m|x) �
∑

m

∑
x

pe(m|x), (41)

which, because of (34), reduces to∑
m

χ (m) � N (1 − α(G)DC ). (42)

Finally, by replacing the above upper bound on
∑

m χ (m) into
(33) we get

SC (G) � 1 − N (1 − α(G)DC )∑
x Nx + N

, (43)

which, after some rearrangements, becomes (31). �
An important inquiry is to identify the simplest graph

where quantum methods exhibit an advantage over classical
ones. Based on the classical constraint given by (31), we
observe that any graph with vertices up to four will have no
quantum advantage. In order to show there is no quantum
advantage, it is sufficient to consider nonisomorphic graphs.
Among connected graphs, there are six nonisomorphic graphs
with four vertices and two nonisomorphic graphs with three
vertices (Fig. 2).

For each of these eight graphs, we use SDP hierarchy
presented in Appendix, to obtain an upper bound on the value
of (DC − DQ) for all possible values of S (G). This optimiza-
tion yields the value of zero, which reveals that there is no
advantage for any of these graphs, irrespective of the values of
S (G). We will now show that the communication task defined
by a graph with five vertices does exhibit quantum advantages.

Before delving into this, let us consider a form of quantum
strategy for the equality problem given a graph G. The strategy

FIG. 3. Bloch vectors of qubit states given by (47) for N = 5, 7.

is defined by a set of N quantum states {|ψx〉}N
x=1 ∈ Cd , with

ρx = |ψx〉〈ψx|, M1|y = |ψy〉〈ψy|, M2|y = 1 − |ψy〉〈ψy|,
(44)

where ρx is the quantum state sent by Alice for input x, and the
binary outcome measurements performed by Bob on the re-
ceived quantum state for input y are expressed as {M1|y, M2|y}.
For this strategy, a straightforward calculation leads to

SQ(G) = 1 − 1∑
x Nx + N

∑
y

∑
x∈Gy

|〈ψx|ψy〉|2. (45)

Simultaneously, it holds that DQ � d/N .
Theorem 4. Let us consider N-cyclic graph (denoted by

�N ) such that N � 5 and odd. There exist quantum strategies
with two-dimensional systems such that

DS
C (�N )

DS
Q (�N )

= N

N − 1

(
1 − 2 sin2

(
π

2N

))
> 1, (46)

for S = 1 − 2
3 sin2( π

2N ).
Proof. Let us consider a quantum strategy given by (44)

where the states {|ψx〉}x ∈ C2 are given by

|ψx〉 = cos

(
(x − 1)β

2

)
|0〉 + sin

(
(x − 1)β

2

)
|1〉, (47)

and β = ( (N−1)π
N ). These states form a regular N-gon in the

X -Z plane of the Bloch sphere such that the angle between
the Bloch vectors of |ψx〉 and |ψx±1〉 is β. The Bloch vectors
of these states for N = 5 and N = 7 are shown in Fig. 3.

For this quantum strategy, |〈ψx|ψy〉| = sin( π
2N ) for any pair

of x, y, that are connected by an edge. By substituting the
expression in (45) and Nx = 2,∀x, we obtain

SQ(�N ) = 1 − 2

3
sin2

(
π

2N

)
. (48)

Replacing this value of SQ in (31) with α(�N ) = (N − 1)/2
and other specifications of N-cyclic graph, we get

DS
C (�N ) � 2

N − 1

(
1 − 2 sin2 π

2N

)
. (49)

From the fact that DS
Q (�N ) � 2/N and the above relation

(49), we obtain (46). Figure 4 depicts how the ratio (46)
changes with N . �

Consider the set of vectors in Cd of the form

|ψx〉 = (1/
√

d )[(−1)x1 , (−1)x2 , . . . , (−1)xd ]T
, (50)
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FIG. 4. The ratio between classical and quantum distinguisha-
bility of input states as a function of N for the communication tasks
defined by regular N-cyclic graph, where S = 1 − (2/3) sin2(π/2N )
with N � 5 and odd. The ratio reduces to 1 as N → ∞.

where every xi ∈ {0, 1}. This set comprises 2d distinct vectors,
and two vectors are orthogonal when the values of xi differ in
exactly d/2 places. The orthogonality relations among these
vectors can be represented through a graph, commonly known
as the Hadamard graph (Hd ), where the vertices symbolize
the vectors, and two vertices are connected by an edge if
the respective vectors are orthogonal. Consequently, one can
consider the communication task based on Hd , previously in-
troduced as the distributed Deutsch-Jozsa task [6]. Hereafter,
we demonstrate that the ratio DS

C /DS
Q experiences exponential

growth with d .
Theorem 5. For the Hadamard graph Hd where d is divisi-

ble by 4,

DS
C

DS
Q

� (1.005)d

d
, where S = 1. (51)

Proof. Clearly, the quantum strategy of the form (44) such
that |ψx〉 given by (50), perfectly accomplishes the task,
leading to S (Hd ) = 1. Additionally, in this strategy, as per
(1), DQ � d/2d . On the classical side, according to (31),
we know that SC (Hd ) = 1 only if DC = 1/α(Hd ). The result
established by Frankl-Rödl [24] implies that α(Hd ) � 1.99d ,
specifically when d is divisible by 4 (refer to Theorem 1.11 in
[24]). As a consequence, we have (51). �

It is worth observing that the expression on the right-hand
side of (51) is not an increasing function for smaller values of
d , but it exponentially increases for d � 1124. In particular,
d � 1124 < 211, implies that we require less than 11-qubits,
which have been physically realized on quantum comput-
ers [27–30]. In quantum communication, genuine 10-qubit
quantum states have been experimentally realized and semi-
device independently certified [31]. To cite a realisation of
the unbounded advantage, we calculate the ratio of advantage
for 15-qubit system and find out (DS

C /DS
Q ) ≈ 1066. Such an

quantum advantage is near-term realizable.
Moving forward, we will outline sufficient criteria for a

graph to exhibit quantum advantage in the task defined by that
graph.

Theorem 6. For any graph G, say β(G) is the minimum
dimension d such that there exists N number of quantum
states {|ψx〉}N

x=1 ∈ Cd satisfying the orthogonality relations

according to G, that is, 〈ψx|ψy〉 = 0 for every pair of vertices
x, y, that are connected in G. Then,

DS
C

DS
Q

� N

α(G)β(G)
, for S = 1. (52)

Proof. If there exist states {|ψx〉}x ∈ Cd that fulfill the
orthogonality conditions according to G, then the quan-
tum strategy given by (44) achieves S (G) = 1, with DQ �
d/N . Conversely, according to (31), for SC (G) = 1, it fol-
lows that DC � 1/α(G). Combining these two observations
yields (52). �

The aforementioned result suggests that a graph offers
quantum advantages for achieving the respective tasks per-
fectly (S = 1) if

N

α(G)β(G)
> 1. (53)

Interestingly, a graph exhibits state-independent contextual-
ity if and only if its fractional chromatic number, denoted
as χ f (G), is greater than β(G), that is, χ f (G) > β(G)
[32]. Additionally, for any graph, χ f (G) � N/α(G). Con-
sequently, any graph satisfies the condition (53) meets the
state-independent contextuality criterion. It is important to
note that the converse is not universally true. However, for
vertex-transitive graphs, the reverse implication does hold, as
these graphs adhere to the equality χ f (G) = N/α(G). No-
tably, the smallest graph meeting the condition (53) was
identified as the Yu-Oh graph, comprising 13 vertices [33].

V. PAIR DISTINGUISHABILITY TASK

We consider a generalized version of the task introduced
in [17]. Alice receives input x ∈ [N] with px = 1/N and Bob
receives a pair of inputs y ≡ (x, x′) randomly such that x, x′ ∈
{1, · · · , N} and x < x′. The task is to guess x. In other words,
given Bob’s input (x, x′), the task is to distinguish between
these two inputs. Subsequently, the average success metric,

S (N ) = 1

N (N − 1)

∑
x,x′
x<x′

[p(x|x, (x, x′)) + p(x′|x′, (x, x′))].

(54)

Theorem 7. The following holds for classical
communication:

(N − 1)(SC (N ) − 1) + 1 � DC . (55)

Proof. For this task, the form of success metric (8) reduces
to

SC (N ) = 1 − min
{pe(m|x)}

1

N (N − 1)

×
∑

m

∑
x,x′
x<x′

min{pe(m|x), pe(m|x′)}, (56)

after substituting the following expression

c(x, (x, x′), z) = 1

N (N − 1)
×

{
1, if z = x, x ∈ {x, x′}
0, otherwise.

(57)
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We use the fact that any set of non-negative numbers {ai} with
i = 1, · · · , N , satisfies the relation∑

i< j

min{ai, a j} �
∑

i

ai − max{a1, · · · , aN }. (58)

Replacing ax by pe(m|x) into the above relation, we get∑
x<x′

min{pe(m|x), pe(m|x′)}

�
∑

x

pe(m|x) − max
x

{pe(m|x)}. (59)

Next, we take summation over m on both sides and replace the
expression of distinguishability (6) to obtain∑

m

∑
x<x′

min{pe(m|x), pe(m|x′)} � N (1 − DC ). (60)

The left-hand side of the above inequality appears on the right-
hand side of (56). Hence, by substituting the lower bound from
(60) into (56), we deduce (55). �

Let us discuss a quantum strategy for this task that provide
advantages. One interesting feature of this task is the fact that
SQ is fixed by the set of quantum state {ρx} communicated by
Alice. Specifically, because of the Helstrom norm [34],

SQ = 1

2
+ 1

2N (N − 1)

∑
x,x′
x<x′

‖ρx − ρx′ ‖. (61)

Consider the qubit states |ψx〉 = cos ( xπ
N )|0〉 + sin ( xπ

N )|1〉,
where x ∈ [N]. We evaluate S from (61) for these states and
further obtain the corresponding DC from (55), which are
given as follows:

N S DC DQ

3 0.933 �0.866 2
3

4 0.9 �0.7 1
2

5 0.8847 �0.5388 2
5

6 0.8732 �0.366 1
3

We produce a more detailed investigation as Fig. 5 presents
the quantum advantages over classical communication in this
particular task for N = 3 and N = 4 with qubit states.

VI. COMPARISON WITH THE COMMUNICATION
COMPLEXITY MEASURED BY MINIMUM DIMENSION

In this section, we compare our measure of communication
complexity, minimum distinguishability, to the more com-
monly used measure of communication complexity, minimum
dimension. Let us denote by dC the dimension of the mes-
sage in classical communication and dQ for the dimension
of quantum message in quantum communication. Let SdC

denote the maximum classical value of the success metric (1)
when dC dimensional classical messages are used in commu-
nication. Let us first make the following general observation,

FIG. 5. Distinguishability in classical and quantum communi-
cation vs average success probability of the pair-distinguishability
task is presented here for N = 3 and N = 4 with qubit states. For
different values of SQ, taken in small intervals, the values of DQ
are obtained along with the quantum states by implementing the
see-saw method of semidefinite optimization presented in Appendix.
From (55), we find the lower bound on DC to get the same average
success probability. We observe that if we increase the dimension of
the states, the values of DQ remain the same.

upper-bounding SdC with the maximum value of the success
metric SC with constrained distinguishability,

Observation 2. For any communication task, the maxi-
mum value of the success metric with dC dimensional classical
communication SdC is upper bounded by the maximum value
of the success metric under distinguishability constraint, SC ,
where D � dC/N , i.e., for D � dC/N ,

SdC � SC (62)

Proof. The observation follows directly from the fact that
any dC dimensional classical strategy the distinguishability,
D � dC/N . However, there might exist higher dimensional
(> dC ) classical strategies that satisfy this distinguishability
constraint. �

Hence, if we have a dQ = dC-dimensional quantum strat-
egy with DQ = dC

N , which provides an advantage in terms of
distinguishability, i.e., SQ > SC , where SC is the maximum
classical value of the success metric under distinguishability
constraint D � dQ/N , then (62) implies it also provides an ad-
vantage in terms of dimension, i.e., SQ > SdC . Consequently,
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to find a strategy for which we have an advantage in terms of
distinguishability but not in terms of dimension, we have to
consider quantum strategies with DQ < dC

N , which leads us to
our next observation:

Observation 3. There exists quantum strategies that offer
advantage in a communication complexity task in terms of
distinguishability but not in terms of dimension.

Proof. For the RACs considered in Fig. 1, the best success
probabilities using two-dimensional classical messages are
3/4, 3/4, and 2/3, respectively, for the three plots. On the
other hand, we find quantum advantages (Fig. 1) even when
the success probabilities S are less than these values. There-
fore, our study of RACs reveals instances where quantum
advantage in dimension is absent, but the quantum advantage
in distinguishability exists. For example, for n = 2, d = 2,
Alice encodes her inputs into four states such that

ρx1x2 = p
∣∣ψx1x2

〉〈
ψx1x2

∣∣ + (1 − p)
1

2
, (63)

where, |ψ00〉 = cos π
8 |0〉 + sin π

8 |1〉, |ψ01〉 = cos 3π
8 |0〉 +

sin 3π
8 |1〉, |ψ10〉 = cos 7π

8 |0〉 + sin 7π
8 |1〉, and |ψ11〉 =

cos 5π
8 |0〉 + sin 5π

8 |1〉. To redeem the first bit, Bob measures
in {|0〉, |1〉} basis and for the second bit, he measures in
{|+〉, |−〉} basis. In this strategy with p = 4/7, SQ = 0.7 such
that DQ = 0.3859. On the other hand, from (28), we have
SC � 0.693 with DC = 0.3859. But, we know SdC=2 = 0.75.
So, there is advantage in quantum communication in terms
of minimum distinguishability but not in terms of minimum
dimension. �

The pair-distinguishability tasks in terms of dimension
have been previously discussed [35]. In this case, for d = 2,

SdC = 1

2
− 1

N (N − 1)

(⌊
N

2

⌋(
N −

(⌊
N

2

⌋
+ 1

)))
, (64)

where �x� denotes the integer part of x, and SQ = N
4(N−1) .

From these two relations, it is easy to see that only odd
N gives the quantum advantage at d = 2. for our quantum
strategy, we found advantages for N = 3, 4, 5, 6 in terms of
distinguishability. For N = 4, 6, the quantum strategy under
the distinguishability constraint yields quantum advantage,
but no advantage is obtained under the dimension constraint.

Let us now consider the equality problem defined by reg-
ular polygons with odd number of vertices, the maximum
success metric for d-levelled classical communication turns
out to be SdC = 1 − 2

3N [36]. Because of (4), we can see for a

regular polygon with odd N � 5, SQ

SdC

= 1− 2
3 sin2( π

2N )

1− 2
3N

� 1 with

dimension 2. Thus, the quantum advantage manifests in both
dimension and distinguishability. One can be curious about
finding a quantum strategy that gives an advantage with re-
spect to a dimension but not with respect to distinguishability.
For example, let us consider the equality problem for the reg-
ular pentagon. In this case, SdC=2 = 13/15 and SC � 14/15
with DC = 2/5. As one can observe a gap between these two
success metrics, there must be a valid quantum strategy such
that the success metric lies between the values of 13

15 and 14
15 .

But for that matter, the bound of SC must be proved to be
tight. For the time being, we leave this problem for future
exploration.

Interestingly, there are instances where quantum advan-
tages measured by both dimension and distinguishability
follow similar trends as the complexity of the problems in-
creases. For RAC with n = 2, classical success metric follows
the relation SdC � 1

2 (1 + dC
d2 ) [37]. To achieve the success

metric of the quantum strategy at (2), dC must obey the con-
straint dC � d

√
d . So, we can deduce the advantage parameter

dC
dQ

�
√

d , when S = 1
2 (1 + 1√

d
), which is like our previous

version of the game defined by distinguishability. Similarly,
for the equality problem defined by the Hadamard graph, it is
shown that dC

dQ
� (1.005)d

d to achieve S = 1 [6,12].

VII. CONCLUSIONS

Communication complexity plays a crucial role in informa-
tion science, and quantum theory offers a notable advantage
over classical methods. Traditionally, one-way communica-
tion complexity is quantified by the minimal dimension of
systems that the sender uses to achieve a given task. However,
in this investigation, we take a fresh approach by evaluating
communication complexity based on the distinguishability
of the sender’s input, without imposing constraints on the
dimension of the communicated systems. This perspective
gains significance when preserving the confidentiality of the
sender’s input is paramount. Moreover, the dimension in-
dependence nature of this measure implies that quantum
advantage signifies something unattainable in classical com-
munication and does not rely on specific details of the physical
system.

We concentrate on two significant categories of communi-
cation complexity tasks: the general version of random access
codes and equality problems defined by graphs. Lower bounds
on the distinguishability of the sender’s input are derived as
a function of the success metric for these tasks in classi-
cal communication. Remarkably, we demonstrate exponential
and polynomial increases in the ratio between classical and
quantum distinguishability, showcasing the unbounded quan-
tum advantage in preserving the sender’s input and paving the
way for new quantum supremacy in distributed computation.
In Sec. VI, we give a quantitative analysis of the superiority of
the communication complexity measured by distinguishabil-
ity against dimension. There can be an interesting venture to
find the class of communication tasks and strategies where the
minimum dimension scenario has an edge over the minimum
distinguishability scenario.

Other future works could explore advantageous quantum
protocols for random access codes with higher n and for
equality problems based on different graphs. From our study,
it can be observed that the range of the success metric values
where quantum advantage occurs depends on the specifics of
the communication task. Exploring this range for various tasks
would be an intriguing direction for future work. Further-
more, to get tight bounds on classical communication for all
values of the success metric additional distinguishability-like
constraints such as anti-distinguishability can be considered
[38]. Additionally, proposing privacy-preserving computa-
tional schemes based on these results and exploring other
communication complexity tasks with practical applications
are avenues for further research.
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APPENDIX: SEMIDEFINITE
PROGRAMMING METHODS

Our aim is to retrieve the maximum quantum value of
a generic success metric (1) of a one-way communication
task (10),

SQ =
∑
x,y,z

c(x, y, z)tr(ρxMz|y), (A1)

given an upper bound on the distinguishability of the sender’s
states, say DQ � p, which translates to the following opti-
mization problem:

Smax
Q = max

{ρx}N
x=1,{Mz|y}

∑
x,y,z

c(x, y, z)tr(ρxMz|y)

s.t. DQ � p

ρx � 0, Tr{ρx} = 1, ∀x ∈ [N],

Mz|y � 0,∀z ∈ [D], y ∈ [M],∑
z

Mz|y = 1, ∀y ∈ [M], (A2)

Observe that the optimal solution of (A2), Smax
Q given DQ � p,

also yields an upper-bound on the minimal distinguishabil-
ity, namely DQ � p, required to achieve the success metric
SQ = Smax

Q . As the computing the distinguishability DQ forms
a separate SDP, the optimization problem (A2) does not yield
to standard SDP solutions primarily because of the constraint
DQ � p. However, Ref. [13] presented an ingenious technique
to enable SDP methods based on the observation of SDP dual
of the distinguishability optimization problem (11), which we
describe now.

Let us define an auxiliary operator 	 with the property,

	 � ρx, ∀x ∈ [N]. (A3)

This variable allows us to upper bound the distinguishability
(11) in the following way:

DQ = max
{Mx}

1

N

∑
x

tr(ρxMx )

� max
{Mx}

1

N
tr

(
	

∑
x

Mx

)
= 1

N
tr(	), (A4)

where we have used (A3) for the inequality, and
∑

x Mx = 1
for the second. Equation (A4) allows us to impose the con-
straint DQ � p in the optimization problem (A2) as a tracial
constraint, 1

N tr(	) � p, such that the optimization problem

(A2) now becomes

Smax
QLB

= max
{ρx}N

x=1,	,{Mz|y}

∑
x,y,z

c(x, y, z)tr(ρxMz|y)

s.t. ρx � 0, Tr{ρx} = 1, ∀x ∈ [N],

	 � ρx, ∀x ∈ [N],

1

N
tr(	) � p,

Mz|y � 0, ∀z ∈ [D], y ∈ [M],∑
z

Mz|y = 1, ∀y ∈ [M]. (A5)

Now, for fixed measurements {Mz|y} the optimization prob-
lem (A5) becomes a straightforward SDP for the states {ρx}
and the auxiliary operator 	. Similarly, for fixed {ρx} and
	 the optimization problem is a SDP for the measurements.
Thus, for a given Hilbert space dimension, we can alternate
these two SDPs, keeping the optimal solution of one as fixed
parameters for the other, á la see-saw, to retrieve dimension
dependent lower bounds on the maximum success metric,
Smax

QLB
� Smax

Q . We also retrieve an upper bound on the minimal
distinguishability, DQ � p, required to achieve the success
metric SQ = Smax

QLB
.

However, the optimization for absolute quantum maximal
value of the success metric with restricted distinguishabil-
ity is substantially more arduous to solve, primarily because
the dimension of the quantum systems could in principle be
arbitrarily large. To facilitate series of tightening dimension
independent upper bounds on the absolute maximal value of
the success metric, given DQ � p, we, now, present a hierar-
chy of SDP relaxations of the optimization problem (A5).

In particular, such an hierarchy was initially formulated in
[13]. Here, we present a modified formulation, which is less
complex and easier to implement. The central concept under-
pinning our SDP relaxations is that of hinged moment matrices
[25]. For any positive semidefinite operator τ � 0, and any
sequence of linear operators O = {Oi}N

i=1, the moment matrix
�O

τ is defined as (�O
τ )i, j ≡ (�O

τ )Oi,Oj = Tr(τO†
i O j ). Because

τ is positive semidefinite, a moment matrix hinged on τ must
be positive semidefinite as well, �O

τ � 0. Now following the
prescription in [25], for any given list of operators O, we
consider N moment matrices {τO

ρx
}N

x=1 each hinged on the
corresponding N density operators {ρx}N

x=1 representing the
sender’s N preparations, such that τO

ρx
� 0 for all x ∈ [N].

We consider an additional moment matrix τO
	 hinged on the

auxiliary variable 	, such that the definition (A3) implies the
following constraint:

�O
	 � �O

ρx
, ∀x ∈ [N]. (A6)

Notice, up to this point, we have not invoked any specifics
of operator list O except of it being composed of linear
operators. Consequently, the aforementioned constraints are
independent of the operator list. Let us now consider an op-
erator list, O1 ≡ {1, {{Mz|y}D−1

z=1 }M
y=1}. Immediately, the first

entry of each moment matrix must be unity (�x )1,1 = 1,
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and some entries directly correspond to probabilities,
p(z|x, y) = tr(ρxMy

z ) = (�O1
ρx

)1,Mz|y (for all z ∈ [D − 1]

and p(z = D|x, y) = 1 − ∑D−1
z=1 (�O1

ρx
)1,Mz|y for all y ∈ [M],

x ∈ [N]).
As the measurements and the dimension of the quantum

systems remain unconstrained in communication complexity

tasks, we can use the Naimark’s dilation theorem, and
without loss of generality, take the measurements to be
sharp or protective, such that we have additional constraints
(�O1

τ )Mz′ |y,Mz|y = M†
z|yMz′|y = δz,z′Mz|y = (�O1

τ )1,Mz|y (for all
z, z′ ∈ [D − 1], y ∈ [M], τ ∈ {{ρx}N

x=1,	}). Consequently,
we arrive at the following optimization problem:

Smax
Q1

= max
{�O1

ρx }N
x=1,�

O1
	

∑
x,y,z

c(x, y, z)p(z|x, y)

s.t. �
O1
	 � �O1

ρx
, ∀ x ∈ [N],

1

N
�
O1
	 � p,

p(z|x, y) = (
�O1

ρx

)
1,Mz|y

, ∀ z ∈ [D − 1], y ∈ [M], x ∈ [N],

p(z = D|x, y) = 1 −
D−1∑
z=1

(
�O1

ρx

)
1,Mz|y

, ∀ y ∈ [M], x ∈ [N],

�O1
ρx

� 0, ∀ x ∈ [N],(
�O1

ρx

)
I,I

= 1, ∀ x ∈ [N],(
�O1

τ

)
Mz′ |y,Mz|y

= (
�O1

τ

)
1,Mz|y

, ∀ y ∈ [M], z, z′ ∈ [D − 1], τ ∈ {{ρx}N
x=1,	

}
. (A7)

As all constraints in (A7) are satisfied by quantum pro-
tocols, the optimization problem (A7) forms a dimension-
independent relaxation of (A5). Consequently, we retrieve an
upper bound on the absolute maximum quantum value of
the success metric, Smax

Q1
� Smax

Q � Smax
QLB

. Now, Q1 with the
operator list O1 is the first level relaxation in a hierarchy
of SDP relaxations of the optimization problem (A2). We
now define QL, where L ∈ N, as the Lth level of the re-
laxation, associated with the operator list OL containing all
monomials of operators contained in O1 of length at-most L.
As O1 ⊆ OL, for L � 1, the hierarchy retrieves a series of
tightening upper-bounds Smax

QL
on the maximum success met-

ric given DQ � p, such that, Smax
Q1

� Smax
QL

� Smax
QL+1

� Smax
Q �

Smax
QLB

. Whenever an upper bound from the hierarchy coincides
(up to numerical precision) with the lower bound from the
see-saw method, we retrieve the maximum quantum value of
the success metric, Smax

QL
= Smax

Q = Smax
QLB

, given DQ � p, for
any L � 1. This hierarchy also retrieves a series of tightening

lower bounds DQL on the minimal distinguishability required
to achieve the success metric SQ = Smax

QL
, such that DQ1 �

DQL � DQL+1 � DQ � DQUB . Whenever, DQUB = DQL (up to
machine precision), we retrieve the absolute minimal quantum
distinguishability required to achieve a given value of the
success metric SQ = Smax

QL
. We use these methods to obtain

Fig. 1, which displays a thorough investigation of quan-
tum advantage for RACs with parameters (n = 2, d = 3),
(n = 3, d = 2).

Alternatively, following a similar methodology, we can
directly formulate a see-saw SDP method for obtaining
dimension-dependent lower bounds, as a well as hierarchy
of SDP relaxations to retrieve dimension independent lower
bounds on the distinguishability of quantum communication
given a lower bound on the success metric of a commu-
nication. Clearly, the optimal solutions of this optimization
problem will coincide with optimal solutions of the optimiza-
tion problem (A2).
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[14] N. Ciganović, N. J. Beaudry, and R. Renner, Smooth max-
information as one-shot generalization for mutual information,
IEEE Trans. Inf. Theory 60, 1573 (2014).

[15] A. K. Ekert, Quantum cryptography based on Bell’s theorem,
Phys. Rev. Lett. 67, 661 (1991).

[16] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[17] A. Chaturvedi and D. Saha, Quantum prescriptions are more on-
tologically distinct than they are operationally distinguishable,
Quantum 4, 345 (2020).

[18] M. Khoshbin, L. Catani, and M. Leifer, Alternative robust ways
of witnessing nonclassicality in the simplest scenario, Phys.
Rev. A 109, 032212 (2024).

[19] A. Tavakoli, E. Zambrini Cruzeiro, J. Bohr Brask, N. Gisin, and
N. Brunner, Informationally restricted quantum correlations,
Quantum 4, 332 (2020).

[20] J. Pauwels, S. Pironio, and A. Tavakoli, Information capacity of
quantum communication under natural physical assumptions,
arXiv:2405.07231.

[21] A. Casaccino, E. F. Galvão, and S. Severini, Extrema of discrete
Wigner functions and applications, Phys. Rev. A 78, 022310
(2008).

[22] M. Czechlewski, D. Saha, A. Tavakoli, and M. Pawłowski,
Device-independent witness of arbitrary-dimensional quantum
systems employing binary-outcome measurements, Phys. Rev.
A 98, 062305 (2018).

[23] A. Chaturvedi, M. Pawlowski, and K. Horodecki, Random ac-
cess codes and nonlocal resources, Phys. Rev. A 96, 022125
(2017).

[24] P. Frankl and V. Rodl, Forbidden intersections, Trans. Amer.
Math. Soc. 300, 259 (1987).

[25] A. Chaturvedi, M. Farkas, and V. J Wright, Characterising and
bounding the set of quantum behaviours in contextuality sce-
narios, Quantum 5, 484 (2021).

[26] E. A. Aguilar, J. J. Borkała, P. Mironowicz, and M. Pawłowski,
Connections between mutually unbiased bases and quan-
tum random access codes, Phys. Rev. Lett. 121, 050501
(2018).

[27] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam,
N. Grzesiak, J.-S. Chen, N. C. Pisenti, M. Chmielewski, C.
Collins et al., Benchmarking an 11-qubit quantum computer,
Nat. Commun. 10, 5464 (2019).

[28] M. S. Rudolph, N. B. Toussaint, A. Katabarwa, S. Johri,
B. Peropadre, and A. Perdomo-Ortiz, Generation of high-
resolution handwritten digits with an ion-trap quantum com-
puter, Phys. Rev. X 12, 031010 (2022).

[29] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel,
P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt,
and B. Lanyon, Observation of entangled states of a
fully controlled 20-qubit system, Phys. Rev. X 8, 021012
(2018).

[30] Y. Wang, Y. Li, Z-q. Yin, and B. Zeng, 16-qubit IBM universal
quantum computer can be fully entangled, npj Quantum Inf. 4,
46 (2018).

[31] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B.
Toner, and G. J. Pryde, Preparation contextuality powers
parity-oblivious multiplexing, Phys. Rev. Lett. 102, 010401
(2009).

[32] R. Ramanathan and P. Horodecki, Necessary and sufficient con-
dition for state-independent contextual measurement scenarios,
Phys. Rev. Lett. 112, 040404 (2014).

[33] A. Cabello, M. Kleinmann, and C. Budroni, Necessary and suf-
ficient condition for quantum state-independent contextuality,
Phys. Rev. Lett. 114, 250402 (2015).

[34] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic Press, New York, 1976).

[35] N. Brunner, M. Navascués, and T. Vértesi, Dimension witnesses
and quantum state discrimination, Phys. Rev. Lett. 110, 150501
(2013).

[36] D. Saha, P. Horodecki, and M. Pawłowski, State independent
contextuality advances one-way communication, New J. Phys.
21, 093057 (2019).

[37] D. Saha, D. Das, A. K. Das, B. Bhattacharya, and A. S.
Majumdar, Measurement incompatibility and quantum ad-
vantage in communication, Phys. Rev. A 107, 062210
(2023).

[38] A. Chaturvedi, M. Pawłowski, and D. Saha, Quantum descrip-
tion of reality is empirically incomplete, arXiv:2110.13124.

043269-13

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1016/S0304-3975(02)00377-8
https://doi.org/10.1073/pnas.1507647113
https://doi.org/10.1103/PhysRevA.100.022108
https://doi.org/10.1103/PhysRevLett.130.080802
https://doi.org/10.22331/q-2022-01-05-620
https://doi.org/10.1109/TIT.2013.2295314
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.22331/q-2020-10-21-345
https://doi.org/10.1103/PhysRevA.109.032212
https://doi.org/10.22331/q-2020-09-24-332
https://arxiv.org/abs/2405.07231
https://doi.org/10.1103/PhysRevA.78.022310
https://doi.org/10.1103/PhysRevA.98.062305
https://doi.org/10.1103/PhysRevA.96.022125
https://doi.org/10.1090/S0002-9947-1987-0871675-6
https://doi.org/10.22331/q-2021-06-29-484
https://doi.org/10.1103/PhysRevLett.121.050501
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1103/PhysRevX.12.031010
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1038/s41534-018-0095-x
https://doi.org/10.1103/PhysRevLett.102.010401
https://doi.org/10.1103/PhysRevLett.112.040404
https://doi.org/10.1103/PhysRevLett.114.250402
https://doi.org/10.1103/PhysRevLett.110.150501
https://doi.org/10.1088/1367-2630/ab4149
https://doi.org/10.1103/PhysRevA.107.062210
https://arxiv.org/abs/2110.13124
http://mostwiedzy.pl

