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In this study, we introduce a technique for unsupervised design and design automation of resonator-
based microstrip sensors for dielectric material characterization. Our approach utilizes fundamental 
building blocks such as circular and square resonators, stubs, and slots, which can be adjusted in size 
and combined into intricate geometries using appropriate Boolean transformations. The sensor’s 
topology, including its constituent components and their dimensions, is governed by artificial 
intelligence (AI) techniques, specifically evolutionary algorithms, in conjunction with gradient-
based optimizers. This enables not only the explicit enhancement of the circuit’s sensitivity but also 
ensures the attainment of the desired operating frequency. The design process is entirely driven by 
specifications and does not necessitate any interaction from the designer. We extensively validate 
our design framework by designing a range of high-performance sensors. Selected devices are 
experimentally validated, calibrated using inverse modeling techniques, and utilized for characterizing 
dielectric samples across a wide spectrum of permittivity and thickness. Moreover, comprehensive 
benchmarking demonstrates the superiority of AI-generated sensors over state-of-the-art designs 
reported in the literature.
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Microwave sensors are highly valuable instruments in numerous industries due to their adaptability and 
efficacy1. They have made significant advancements in numerous sectors, such as aerospace2, agriculture3, 
defense4, and food processing5. Microwave sensors employ either resonant or non-resonant techniques based 
on the specific application. Non-resonant microwave sensors detect environmental changes by analyzing the 
reflection, absorption, or scattering of microwave signals6. These sensors are often used for applications requiring 
rapid response times, non-contact operation, and robustness. In contrast, resonant microwave sensors detect 
environmental changes by utilizing the resonant frequency of a cavity or structure7. These sensors are widely 
employed in applications that need accurate measurements or detection of specific materials, such as biomedical 
sensing to detect changes in tissue properties8 or electronic applications for exact material characterization9. The 
resonant approach is gaining popularity because it employs novel metamaterial (MTM) resonators to achieve 
high sensitivity over a broad frequency range10. MTM structures, such as complementary split ring resonators 
(CSRRs)11 and split ring resonators (SRRs)12, are frequently used in resonant microwave sensors due to their 
multi-functionality, compactness, cost-effectiveness, versatility, and ability to integrate with other microwave 
technologies.

Recently, SRRs and CSRRs-based microwave sensors have been used in various applications such as 
concentration measurement13, high-resolution imaging14, permittivity evaluation15, remote sensing16, surface 
crack detection17, and soil moisture monitoring18. Most of these sensors are susceptible to common ohmic and 
dielectric losses. This results in a low-quality factor, which restricts the sensitivity of these passive microwave 
sensors. An approach proposed to address this issue involves augmenting the resonator with amplifying circuits 
to compensate for power loss using a recovery mechanism19. This approach has the potential to enhance 
sensitivity and performance by reducing the impact of power loss in the resonator, but it also leads to higher 
power consumption, complexity, and cost. Machine-learning techniques for data processing of resonant 
microwave sensors have been devised to minimize power consumption and costs while improving performance. 
In20, the fuzzy neural network (FNN) method has been applied during the post-processing phase of sensing 
to greatly improve the resolutions of active planar ring resonators. The study in21 focuses on increasing the 
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accuracy of glucose monitoring in the interstitial fluid using a super-resolution generative adversarial network 
(SRGAN). In22, machine learning algorithms, specifically classifiers and regressors, have been used to achieve 
the goal of developing a temperature compensation technique for microwave sensors to address the sensors’ 
vulnerability to ambient temperature changes. In23, a machine learning-aided (MLA) technique utilizing artificial 
neural networks (ANNs) is introduced, offering a method for directly determining the complex permittivity of 
both dispersive and non-dispersive materials using cost-effective measurements. Meanwhile, in24, an artificial 
intelligence (AI)-assisted approach is applied to enhance the selectivity of microwave sensors for sensing liquid 
mixtures. While these methods provide significant advantages in sensor data processing and precision, they do 
not specifically address the improvement of resonator sensitivity. Resonator sensitivity is typically influenced 
by factors such as the resonant frequency of microwave sensors, the electromagnetic properties of the material 
under test (MUT), and the interaction between the MUT and the resonator’s electromagnetic (EM) fields25. 
Interactive techniques, like parameter sweeping26, have been employed to develop high-sensitivity resonators 
in practical applications, achieving a maximum sensitivity of 8%27. However, this approach is computationally 
inefficient as it necessitates a full EM wave simulation for every combination of geometrical parameters, leading 
to time-consuming computations. Additionally, active involvement of the designer is required, often resulting 
in unsatisfactory outcomes.

As elucidated earlier, the properties of microwave sensors including the operating frequency and sensitivity 
are determined by their architecture. The latter is normally adjusted by trial and error in terms of combining a 
few basic components such as circular or square resonators, stubs, slots, etc. This is accompanied by parametric 
analysis guided by engineering experience. At the same time, the design process is most often oriented towards 
implementing operating parameters (target frequency and/or increasing the resonance depth for resonator-
based sensors28). Direct enhancement of the device’s sensitivity is rare29. Notwithstanding, hands-on sensor 
development considerably limits the number of potential architectures that can be inspected. Also, these 
architectures—due to being based on a small set of underlying components—often closely resemble each other. 
More versatile techniques include topology optimization, where the space assigned to a device is discretized, e.g., 
split into pixels, which may be associated with metallization of left empty30–33. Another option includes pixel 
devices (e.g., antennas), in which the system architecture is determined by optimizing connections between pre-
defined metallic cells34–36. The free-form topology optimization offers enhanced flexibility in terms of realizing 
almost arbitrary parameterization of the structure metallization37–40. Many of these techniques utilize custom 
electromagnetic solvers to improve computational efficiency41. These frameworks employ artificial intelligence 
(AI) tools such as nature-inspired algorithms and/or machine learning procedures. Yet, they have been mostly 
developed for designing antenna systems. An example can be found in42, where an evolutionary algorithm 
combined with gradient-based search routines was utilized to carry out unsupervised design of compact 
antennas (multi-band, broadband, etc.) using elementary building blocks in the form of movable rectangular 
patches and holes of adjustable sizes. Development of AI-based tools for the design of microwave sensors is 
highly desirable and may lead to the creation of high-performance structures, the properties of which surpass 
those developed using conventional techniques.

This study introduces an innovative methodology for the unsupervised design of resonator-based microwave 
sensors realized in microstrip technology. According to our methodology, the geometry of the sensor under 
design evolves by accommodating a variety of potential building blocks, such as circular and square resonators, 
stubs, and slots, all being of adjustable size and spatial allocation. The sensor’s topology is determined through 
Boolean operations over these building blocks. The design process is governed by artificial intelligence (AI) 
tools, specifically evolutionary algorithms, as well as conventional numerical optimization methods (specifically, 
gradient-based constrained optimizers). The former controls the topological arrangement of the sensor, whereas 
the latter allows for explicit enhancement of the sensor’s sensitivity. The design process is driven by performance 
specifications, with the user determining the target operating frequency of the device and a set of building blocks 
to be utilized. The design process is unsupervised once initiated, it does not require any designer’s interaction. 
The presented technique has been demonstrated through the design of a family of high-performance sensors, 
some of which were experimentally validated and calibrated to corroborate their utility in terms of material 
characterization. Furthermore, the superiority of AI-generated sensors over state-of-the-art designs reported in 
the literature is showcased through extensive benchmarking.

The key contributions of this work include:

 1. This study addresses the challenge of designing high-performance microstrip sensors for the characteriza-
tion of dielectric materials without manual intervention. Traditional techniques13–27 often require manual 
tuning and expertise, which can be time-consuming and may not always yield optimal results.

 2. To automate the design process, the proposed method uses AI-driven tools, particularly evolutionary algo-
rithms and gradient-based optimizers for final tuning.

 3. One of the critical and original components of the proposed design strategy is parameterization of the sensor, 
which includes a carefully selected set of fundamental cells. This allows for a huge variety of possible circuit 
architectures while maintaining simplicity in terms of a limited number of adjustable parameters. Conse-
quently, the proposed approach can be categorized as a knowledge-based one.

 4. The design approach is exclusively guided by specifications to improve sensor sensitivity and explicitly 
achieve desired operating frequencies. This strategy, which focuses on objectives, ensures that the sensors 
produced meet performance requirements without any operator intervention.

 5. The research showcases substantial improvements in sensitivity augmentation and frequency optimization 
compared to the most advanced designs documented in the literature27,50–54, achieved through rigorous val-
idation, calibration, and experimentation.
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 6. The paper indicates several areas for future investigation, such as improving AI-based design methodologies, 
broadening the range of operating frequencies, studying scalability and applicability to different sensor types 
and applications, and incorporating advanced machine learning techniques like deep learning to enhance 
design and optimization.

Resonator-based microwave sensors
Microwave sensors based on complementary resonators detect changes in physical parameters, such as 
temperature, pressure, humidity, or proximity of objects, by measuring variations in the dielectric characteristics, 
impedance, or electromagnetic field distribution within resonators. Typically, these sensors are constructed 
on a dielectric substrate that has a conductive microstrip transmission line (MTL) printed on one side and a 
complementary resonator on the other side, as shown in Fig. 1.

The design process for planar microwave sensors requires meticulous attention to the selection of substrate 
material, size, impedance matching, and the architecture of complementary resonators43. The substrate employed 
in this study is RT5880 (εr = 2.2 ± 0.02, tanδ = 0.0004) material suitable for high-frequency applications.

The arrangement of complementary resonators beneath the 50 Ω MTL provides for an efficient coupling 
between the resonators and the electromagnetic waves produced by the MTL, as shown in Fig.  1(c). This 
coupling leads to a narrow stopband with a strong rejection, as shown in Fig. 1(d). The stopband properties of 
these resonators can be employed to detect changes in the surrounding environment. The main design goals 
for microwave sensors are high sensitivity, linearity, stability, and reproducibility in measurements. Designers 
iteratively modify parameters such as substrate material, resonator dimensions, and geometry to get the desired 
performance.

As mentioned earlier, the development of microstrip sensors is a tedious process that requires a careful selection 
of the circuit geometry and its dimensions, which is normally carried out through trial and error. Furthermore, 
it is oriented towards achieving a specific operating frequency (and, optionally, satisfactory resonance depth), 
none of which can directly control the most important performance parameters, which is sensitivity. The 
unsupervised design methodology introduced in Section “Unsupervised sensor design: methodology” aims at 
alleviating these difficulties and enabling the automated development of high-performance sensors without any 
interaction with the human expert.

Fig. 1. Microstrip sensors: (a) microstrip transmission line (MTL) imprinted on the RT5880 substrate’s upper 
layer, (b) complementary resonator etched in the ground plane, (c) orientation of the electromagnetic fields 
produced by the MTL, (d) transmission response of the complementary resonator-based microwave sensor.
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Unsupervised sensor design: methodology
This section presents our proposed method for the unsupervised design of resonator-based microstrip sensors. 
We begin by outlining the fundamental assumptions in Section “Basic assumptions”. Sensor parameterization is 
discussed in Section “Sensor parameterization”, followed by an elucidation of the computational model in Section 
“EM model”. Sections “AI-based sensor evolution” and “Final parameter adjustment” delve into the evolution 
of sensor geometry and dimensions through AI techniques, as well as fine-tuning for sensitivity enhancement. 
Finally, the overall operation of the algorithm is summarized in Section “Complete algorithm”.

Basic assumptions
The AI-based design methodology introduced in this study is developed using the following set of fundamental 
assumptions. To begin with, the sensor is implemented on a specific substrate, which is kept fixed during the 
design process. Here, we use low-loss 0.51-mm-thick RT5880 material featuring relative permittivity of εr = 2.2. 
The overall structure follows the guidelines discussed in Section “Resonator-based microwave sensors”, in 
particular, we have a microstrip line on the back side of the device, whereas the resonators are etched on the front 
layer. The sensor’s geometry is determined by allocating elementary building blocks (to be introduced in Section 
“Sensor parameterization”), which are of adjustable size, and can be enabled (i.e., present) or disabled (removed 
from the structure). The allocation and sizing of these unit cells are governed by the evolutionary algorithm 
discussed in Section “AI-based sensor evolution”. The sensor evolution process will be followed by local tuning 
(arranged using a gradient-based procedure), the aim of which is explicit improvement of the sensor’s sensitivity. 
The computational models involved in the process are explained in Section “EM model”.

Sensor parameterization
The design methodology proposed in this study assumes that the microstrip sensor under development 
incorporates a certain number of basic components, which include complementary square and circular 
resonators, stubs, and slots. These components undergo size modifications and integration to form complex 
geometries. It is also possible to disable particular unit cells by assigning them zero sizes. Table 1 provides the 
geometric parameters of the aforementioned building elements.

As illustrated in Fig. 2, the considered elementary building elements are sufficient to create essentially an 
infinite number of diverse sensor topologies of various shapes, which is indicative of the possibility of developing 
high-performance devices through appropriate evolution and optimization. Both will be elucidated in detail in 
Sections “EM model” through “Complete algorithm”.

There are two main reasons for selecting the proposed sensor parameterization approach. The first reason is 
associated with computational efficiency: sensor’s evolution requires solving computationally heavy optimization 
tasks where all decision variables are simultaneously adjusted. The number of parameters determines the 
complexity of the problem and the CPU time required to solve it. Alternative representations, such as pixel-
based structures, feature excessive amounts of decision variables, and to achieve sufficient resolution of the 
device’s geometry, the pixel sizes must be small enough, and, consequently, their number must be large. On 
the other hand, the proposed technique uses a small number of parameters (only sixteen), yet enables a huge 
number of potential architectures, as illustrated in Fig. 2. This translates into computational efficiency, as the 
evolution process only requires about 1000 EM simulations. The second reason is flexibility. Compared to other 
options (e.g., pixel-based structures), our technique uses continuous parameters, which enable a large variety of 
possible topologies but also allow for fine tuning using local algorithms. Furthermore, the specific selection of 
building blocks (e.g., square and circular resonators) incorporates problem-specific knowledge, which reduces 
computational complexity without compromising the number of possible options to be considered.

EM model
The underlying computational model utilized in this study is CST Microwave Studio43. The raw EM model 
implements all building blocks of the sensor as discussed in Section “Sensor parameterization”. As demonstrated, 
this set of unit cells allows us to generate a large variety of sensor architectures, the complexity of which can be 
controlled by enabling/disabling particular components. In practice, to disable a component, it is assigned a zero 
size. While evaluating the sensor frequency characteristics, the vector of parameters x is assigned to adjust the 
sizes of individual components and to realize the specific topology represented by x. EM simulation is performed 
in a batch mode using a custom-designed socket between Matlab44 and CST Microwave Studio, outlined in 
Fig. 3. The key component of the interface is a Visual Basic script generated on the fly to set the value of the 
sensor parameters according to the evaluation vector x. Other components are utilized to run the simulation 
and extract the results. The simulation process entails rebuilding the original (raw) computational model to 
represent a sensor’s topology corresponding to the vector x, EM analysis, and post-processing the output data, 
as indicated in Fig. 4.

In the design process, two EM models are employed, one corresponding to the unloaded sensor, denoted as 
REM.0(x), and another one, corresponding to the sensor loaded with a dielectric sample of the size 5 × 5 × 0.51 mm 
(relative permittivity εr = 2.2), denoted as REM.0(x), cf. Figure 5. Evaluation results of both models allow us to 
directly compute the sensor’s sensitivity using the formula

 
S(x) = fr(REM.0(x)) − fr(REM.1(x))

fr(REM.0(x)) [εr − 1]  (1)

where fr(REM.j(x)) is the resonant frequency of the unloaded and loaded sensor (j = 0 and 1, respectively).
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AI-based sensor evolution
The unsupervised microstrip sensor design process is realized in two stages. In the first stage, a global search 
procedure is launched, which aims at simultaneous adjustment of the sensor architecture and dimensions. 
Leveraging the properties of sensor parameterization introduced in Sect. 2.2, this boils down to a continuous 

Component
name Geometry Design variables

Lower variable bounds
[mm]

Upper variable bounds
[mm]

Square 1 as11
as12

1.00
0.10

2.00
0.30

Square 2 as21
as22

0.01
0.10

1.50
0.30

Circle 1 ac11
ac12

1.00
0.20

2.00
0.30

Circle 2 ac21
ac22

0.01
0.20

1.50
0.30

Cross 1 cl1
cw1

0.1
0.1

2.5
0.3

Cross 2 cl2
cw2

0.1
0.1

2.5
0.3

Stub 1 sl1
sw1

0.1
0.1

2.5
0.3

Stub 2 sl2
sw2

0.1
0.1

2.5
0.3

Table 1. Geometric parameters of the basic Building elements of the microstrip sensor.
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Fig. 3. Matlab-CST interface employed in this study. Using the sensor’s geometry parameters and data 
pertinent to EM analysis setup, a working CST file is generated based on the raw (template) .cst project and the 
template Visual Basis script. The EM analysis is carried out, and the data post-processing is realized to prepare 
the final results of sensor evaluation (in particular, its transmission response).

 

Fig. 2. A selection of randomly generated sensor geometries utilizing the components enlisted in Table 1. 
These geometries indicate the ability to generate a large variety of complex geometries by utilizing a few 
essential building elements. The sizes as marked on the picture axes are in millimeters.
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optimization of the parameter vector x. The second stage is local parameter tuning oriented towards explicit 
enhancement of the sensor’s sensitivity (cf. Section “Final parameter adjustment”). The operating flow of the 
sensor’s development process has been shown in Fig. 6. Note that the diagram represents both stages. The only 
difference is the specific optimization algorithm. Note that the process is entirely specification driven (here, 
represented as the target operating frequency). All supplementary data (dielectric substrate, geometric details of 
the complete device and the microstrip line, etc.) are encoded in the raw EM model supplied by the user.

Design task
The design problem to be addressed during the first stage is formulated as follows

 
x∗ = arg min

x∈X
Uglobal(x) (2)

In (4), x* is the optimum design to be found. The design variable space X is defined using the sensor variable 
bounds. The analytical form of the merit function Uglobal is

Fig. 6. Generic flow diagram of unsupervised microstrip sensor development by means of optimization tools 
and parameterization of Sections “Sensor parameterization” and “EM model”.

 

Fig. 5. Computational model: (a) unloaded sensor REM.0(x), (b) sensor loaded with a dielectric sample of the 
size 5 × 5 × 0.51 mm (εr = 2.2), denoted as REM.1(x).

 

Fig. 4. Evaluating simulation model (here, realized and simulated in CST Microwave Studio): (a) raw model 
showing all elementary building blocks, (b) specific sensor structure rendered for a particular parameter vector 
x, (c) transmission response obtained through EM simulation.

 

Scientific Reports |        (2025) 15:17986 7| https://doi.org/10.1038/s41598-025-03056-x

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


 
Uglobal(x) =

{
|S21(x, ft)| if |S21(x, ft)| > −20dB
|S21(x, ft)| · [1 + S(x)] otherwise

 (3)

In (3), ft is the target operating frequency. The transmission response S21 is evaluated using the unloaded sensor 
(model REM.0(x)), whereas sensitivity S(x) is obtained as in (1). Note that the second part of Uglobal requires 
evaluation of both unloaded and loaded sensor models, but it is only carried out if the transmission response at 
the target frequency ft falls below − 20 dB.

It should be reiterated that the sensor parameterization of Sect. 2.2 has a fundamental advantage of the vector 
x simultaneously determining the circuit’s architecture and dimensions. This allows us to concurrently adjust 
both in a single global optimization process, and then execute fine tuning using local algorithms (cf. Section 
“Final parameter adjustment”).

Evolutionary algorithm
The sensor evolution and global optimization stage is realized using a floating-point evolutionary algorithm 
(EA)45,46 outlined in Fig.  7. The algorithm employs elitism and adaptive adjustment of the mutation rate to 
facilitate precise optimum identification at the later stages of the search process (cf. Figure 8). In particular, 
gradually reducing the mutation rate at late stages of the search process suppresses the number of random 
changes of the candidate designs, thereby promoting exploitation of the design variable space region identified 
in the process. At the same time, larger changes of the sensors topology are limited as well. This translates into 
additional improvements of the objective function, as opposed to reaching a plateau towards the end of the 
search run (see also Fig. 11).

Final parameter adjustment
In the second design stage we explicitly enhance the sensor’s sensitivity while maintaining the target center 
frequency ft (of the unloaded sensor). The objective function handled at this stage is Ulocal defined as

 Ulocal(x) = −S(x) + β[fr(REM.0(x)) − ft]2 (4)

where the sensitivity S(x) has been defined in (3), whereas β is a penalty coefficient, here, set to 10. As indicated 
in (4), the main goal is improvement of sensitivity, whereas the second (penalty) term is introduced to enforce 
the (unloaded) operating frequency to stay at ft.

Fig. 7. Evolutionary algorithm (EA) utilized for unsupervised design of microstrip sensors using 
parameterization of Section “Sensor parameterization” and computational model of Section “EM model”: (a) 
main algorithm components, (b) flow diagram.
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Here, local optimization is executed using is a trust-region (TR) gradient-based algorithm47 with numerical 
derivatives48, outlined in Fig. 9. The initial design x(0) is the one produced by the evolutionary algorithm. The 
TR algorithm yields a sequence x(i), i = 0, 1, …, of parameter vectors approximating the optimum x* using a 
first-order Taylor expansion model of the sensor’s outputs constructed at x(i). The local optimization task (6) is 
resolved by means of a Sequential Quadratic Approximation (SQP) algorithm49 (here, we use implementation 
available in the Matlab Optimization Toolbox44).

Again, it should be emphasized that owing to the parameterization introduced in Sect.  2.2, the same 
parameter vector x is utilized in both global and local search stages. On the one hand, large-scale alterations of 
the sensor’s parameters mainly affect the circuit architecture. On the other hand, local changes (as in gradient-
based optimization) allow us to control the devices responses without changing its overall topology.

Complete algorithm
The complete algorithm for unsupervised design of microstrip sensors proposed in this study has been shown 
in Fig. 10. The process is automated and only necessitates—as its inputs—the target operating frequency, and 
the raw computational model, which encapsulates components such as the microstrip line implemented on the 
substrate of choice, as well as building blocks of the circuit as elaborated on in Section “Sensor parameterization”.

The specific sensor topology and the circuit’s dimensions are adjusted through two consecutive stages, a 
global search (architecture evolution) and local tuning (final adjustment of circuit’s geometry parameters). 
Both stages are driven by their corresponding objective function, which are defined (cf. (3) and (4)) to promote 
designs that exhibit target operating frequency with deep notch depth and maximize the sensor’s sensitivity.

It should be noted that dividing the optimization process into two phases (global and local) allows for more 
efficient operation of the framework. In the first phase, the primary objective is sensor architecture evolution 
as well as bringing its operating frequency to the assumed target. In the second stage, the circuit’s sensitivity 
is explicitly optimized while maintaining its operating frequency. At this stage, large-scale adjustments of the 
circuit topology are no longer occurring. Figures  11 and 12 show typical evolution of the global and local 
objective function, as well as the improvement of the circuit sensitivity in the course of the optimization process.

It should also be emphasized that the proposed design framework works irrespective of the assumed operating 
frequency. The frequency is only used in formulating the objective function, meaning that the sensor’s evolution 
and optimization work regardless of its particular choice. This is evident when looking at the formulation (3) of 
the global objective function (where the target frequency ft is a parameter used to evaluate the design quality), as 
well as the local objective function (4), where, again, ft is used for the same purpose. This means that the center 
frequency selected for the purpose of illustration in Section “Demonstration examples” could have been changed 
to any value the user wished the sensor to be designed for. To lower the operating frequency, one also needs to 
adjust the bounds of the design variables (cf. Table 1) to make the structure physically realizable. For example, 
the upper bounds should be enlarged for lower values of the target operating frequency. At the same time, it 

Fig. 8. Adjusting mutation probability in the EA of Fig. 7.
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should be emphasized that the material parameters of the substrate are also just design parameters, which can be 
changed according to the designer’s needs.

A comment should be made concerning the computational cost of the sensor design process. The cost of 
the first part (topology evolution) is 1200 EM simulations (60 iterations of the evolutionary algorithm with the 
population size of 20), whereas local tuning typically takes up to 200 EM analyses (instance dependent). The 
evaluation time of the EM model is typically 40 s at the global search (where coarser-discretization is employed), 
and about one minute at the fine-tuning stage (using fine-discretization analysis). Thus, the total cost is around 
16 h, which is practically acceptable given the fact that the process is entirely unsupervised.

Fig. 10. Unsupervised microstrip sensor design: flow diagram.

 

Fig. 9. The outline of the TR algorithm for final adjustment of sensor’s geometry parameters.
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Demonstration examples
For demonstration purposes, the unsupervised design framework introduced in Section “Unsupervised sensor 
design: methodology” has been employed to develop sensors operating at various frequencies (3 GHz, 6 GHz, 
9 GHz, 12 GHz, and 15 GHz) and a few high-performance microstrip sensors. Selected examples are briefly 
outlined in this section. In all cases, the evolutionary algorithm (global search stage) and the local tuning 
procedure have been executed using the setup detailed in Section “Unsupervised sensor design: methodology”.

The simple resonator based on a square ring (as11, as12) and a stub (sl1, sw1) has been used to design 
optimized sensors operating at various frequencies, as shown in Fig. 13(a). By employing these four geometric 
parameters (as11, as12, sl1, and sw1) and the evolutionary algorithm, the geometric parameters for 3  GHz, 
6 GHz, 9 GHz, 12 GHz, and 15 GHz sensors are obtained and summarized in Table 2. To determine the relative 
sensitivity of these sensors operating at different frequencies, each sensor’s resonator is loaded with the RO5880 
substrate as a material under test (MUT). The dimensions of the MUT are 7.5 × 7.5 × 0.51 mm. The transmission 
coefficients of the sensors, both unloaded and loaded with the MUT, are displayed in Fig. 13(b), (c), (d), (e), and 
(f) for frequencies of 3 GHz, 6 GHz, 9 GHz, 12 GHz, and 15 GHz, respectively. Table 3 compares the resonant 
frequencies, geometrical sizes, and sensitivity of the sensors operating at 3 GHz, 6 GHz, 9 GHz, 12 GHz, and 
15 GHz. As the frequency of operation increases, the relative sensitivity remains generally constant, with values 
averaging approximately 9–10% for frequencies between 6 GHz and 15 GHz, and slightly lower at 3 GHz (7.12%). 
The optimized geometric parameters exhibit an inverse correlation with the operating frequency, indicating 
the requirement for reduced dimensions at higher frequencies. The reduced dimensions of the resonator pose 

Fig. 12. Typical evolution of the objective function Ulocal (4) at the final tuning stage. The local optimization 
stage normally takes a few iterations (ten in this example). The sensitivity is further improved, whereas the 
required center frequency is maintained by means of the penalty factor (cf. (4)).

 

Fig. 11. Typical evolution of the objective function Uglobal (3) at the global optimization stage. Top: objective 
function, bottom: evolution of circuit sensitivity. Recall that sensitivity is being evaluated only for designs with 
sufficiently good transmission response.
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Geometric
variables for sensors

3 GHz sensor
(mm)

6 GHz sensor
(mm)

9 GHz sensor
(mm)

12 GHz sensor
(mm)

15 GHz sensor
(mm)

as11 4.95 2.33 1.53 1.11 0.86

as12 0.5 0.5 0.5 0.5 0.5

sl1 5.45 2.83 2.03 1.61 1.36

sw1 0.5 0.5 0.5 0.5 0.5

Table 2. Geometrical dimensions of the resonator used to design 3 ghz, 6 ghz, 9 ghz, 12 ghz, and 15 ghz 
sensors.

 

Fig. 13. (a) Resonator geometry for 3 GHz, 6 GHz, 9 GHz, 12 GHz, and 15 GHz sensors, (b) transmission 
coefficients (S21) for unloaded and loaded 3 GHz sensor, (c) S21 for unloaded and loaded 6 GHz sensor, (d) 
S21 for unloaded and loaded 9 GHz sensor, (e) S21 for unloaded and loaded 12 GHz sensor, and (f) S21 for 
unloaded and loaded 15 GHz sensor.
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challenges in both the manufacturing process and the accuracy of measurements. Thus, using only one resonator 
constructed with a square ring and a stub is inadequate for achieving the desired dimensions and a sensitivity 
above 10%. The subsequent examples employ numerous fundamental resonators listed in Table 1 to generate 
high-sensitivity complex structures. It should be mentioned that achieving higher sensitivity is facilitated by 
selecting a higher operating frequency, which also improves the sensor’s predictive power in terms of estimating 
material parameters due to larger frequency variations between unloaded and loaded devices.

The first example of a high-performance microstrip sensor, shown in Fig. 14(a), depicts the ground layer of 
exemplary Sensor 1. The sensor’s resonant frequency is 17.08 GHz, whereas the notch depth is −19.44 dB, as 
indicated by the transmission response in Fig. 14(b). The complementary resonator’s geometry for Sensor 1 (cf. 
Figure 14(c)), whereas the corresponding electric field is illustrated in Fig. 14(d). The field strength is the highest 
near the edges of the slots and square of Sensor 1, with a maximum magnitude of 9.62 × 105 V/m.

To determine the sensitivity of Sensor 1, the resonator is loaded with a MUT known as RO5880 substrate 
(relative permittivity εr = 2.2), which has the following dimensions: 5 × 5 × 0.51  mm. The center frequency of 
the loaded sensor is 14.86 GHz, whereas the notch depth is −31.1 dB. Equation (1) allows for the assessment of 
sensitivity, which yields a value of 10.82% for Sensor 1.

The ground layer of exemplary Sensor 2 is shown in Fig. 15(a). This sensor’s notch depth is − 26.6 dB, and 
its resonant frequency is 14.90 GHz, as shown by the transmission response in Fig. 15(b). The geometry of the 
complementary resonator of Sensor 2 is depicted in Fig. 15(c), and the electric field generated by this sensor is 
shown in Fig. 15(d). The electric field exhibits its highest intensity near the borders of the inner ring and slots of 

Fig. 14. Exemplary Sensor 1 (a) ground layer, (b) transmission response, (c) geometry of the complementary 
resonator, (d) electric field emitted from the complementary resonator at 17 GHz.

 

Sensor Designed at Several Frequencies
Unloaded Sensor Resonant Frequency
(GHz/dB)

Loaded Sensor
Resonant Frequency
(GHz/dB)

External
Size of Resonator
(mm × mm)

Sensitivity
(%)

3 GHz sensor 3.04/-32.11 2.78/-30.38 10.90 × 10.90 7.12

6 GHz sensor 6.06/-38.33 5.40/-51.47 5.65 × 5.65 9.07

9 GHz sensor 9.02/-29.61 7.96/-26.05 4.05 × 4.05 9.79

12 GHz sensor 12.02/-29.15 10.65/-32.71 3.21 × 3.21 9.71

15 GHz sensor 15.04/-34.43 13.29/-33.89 2.72 × 2.72 9.70

Table 3. Comparison of loaded and unloaded resonant frequencies, geometrical sizes, and sensitivity of 3 ghz, 
6 ghz, 9 ghz, 12 ghz, and 15 ghz sensors.
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Sensor 2, reaching a maximum magnitude of 2.06 × 106 V/m. The loaded sensor with the MUT has a resonant 
frequency of 12.94 GHz with a notch depth of − 26.22 dB. This sensor exhibits a relative sensitivity of 10.95%.

The third example, illustrated in Fig. 16(a), shows the ground layer of Sensor 3. The resonant frequency of 
this sensor is 15.36 GHz with a notch depth of −26.64 dB, as indicated by the transmission response in Fig. 16(b). 
The complementary resonator’s geometry for Sensor 3 is depicted in Fig.  16(c), whereas the corresponding 
electric fields is illustrated in Fig. 16(d). The electric field exhibits its highest intensity near the borders of the 
inner square and ring of sensor 3, reaching a maximum magnitude of 2.05 × 106 V/m. The loaded sensor with 
the MUT has a resonant frequency of 13.46 GHz with a notch depth of − 31.2 dB. This sensor exhibits a relative 
sensitivity of 10.30%.

The last example, Sensor 4, has been shown in Fig.  17(a). This sensor’s notch depth is − 30.8 dB, and its 
resonant frequency is 15.42 GHz, as shown by the transmission response in Fig. 17(b). The geometry of the 
complementary resonator of Sensor 4 is shown in Fig. 17(c), and the electric field generated by this sensor is 
shown in Fig. 17(d). The electric field is symmetrical and exhibits a maximum magnitude of 4.77 × 106 V/m. The 
loaded sensor with the MUT has a resonant frequency of 13.32 GHz with a notch depth of − 31.7 dB.

This sensor exhibits a relative sensitivity of 11.34%. The geometric dimensions of all presented sensors can be 
found in Table 4 in terms of the design variable values of all their corresponding building blocks. The resonance 
frequencies, geometrical dimensions, and sensitivity of all the exemplary sensors are compared in Table  5. 
The exemplary sensors have a sensitivity exceeding 10%. Among these sensors, Sensor 4 stands out with the 
maximum sensitivity, which may be attributed to its compact size and symmetrical electric field. The fabrication 
and measurement of Sensor 4 will be carried out in the subsequent section.

Experimental validation and benchmarking
For additional demonstration, this section provides a detailed description of the manufacturing specifications 
and calibration for Sensor 4. The LPKF Protolaser U4 has been used to fabricate the sensor on the RT5880 
printed circuit board (PCB) with a dual-layered copper (Cu) plating of 17.5 μm. The LPKF ProtoLaser U4 is 
a laser device that uses ultraviolet light with a wavelength of 355  nm and is guided by a scanner. The laser 
has been purposefully engineered for the manufacturing of high-frequency PCB components. The laser beam, 
with a diameter of around 20 μm, allows for the fabrication of structures on the PCB with a spacing of 65 μm. 
This spacing consists of lines that are 50 μm wide and are separated by a distance of 15 μm. The prototype of 
the fabricated sensor in both loaded and unloaded states has been shown in Fig.  18. The Anritsu MS4644B 
(40 GHz) vector network analyzer (VNA) is used to obtain the transmission coefficients of both the loaded 
and unloaded sensors. Figure 19 shows the comparison between the transmission coefficient of the unloaded 
sensor as simulated and measured. The resonant frequency of Sensor 4 is 15.42 GHz (simulated) and 15.91 GHz 
(measured). The corresponding dB values for these frequencies are − 30.8 and − 23.6. The observed discrepancy 

Fig. 15. Exemplary Sensor 2 (a) ground layer, (b) transmission response, (c) geometry of the complementary 
resonator, (d) electric field emitted from the complementary resonator at 14.9 GHz.
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of 0.49 GHz in both findings can be attributed to fabrication tolerances, which include changes in geometric 
factors, material properties, and roughness of the substrate’s surface. To evaluate the specific effects of MUT 
permittivity and thickness on the resonant frequency of the sensor, a total of nine materials under test (MUT), 
each with consistent dimensions of 5 × 5 mm, are positioned on the ground plane of Sensor 4. The thickness of 
each MUT is modified within a range of 0.1 mm to 2.1 mm, and the sensor’s transmission coefficient is simulated 
based on its interaction with each MUT. Figure 19 shows the outcomes obtained by altering the thickness of the 
MUT while maintaining a constant relative permittivity for each MUT. The resonant frequency of the sensor 
decreases as the thickness of the MUT increases. The impact of thickness on the resonant frequency is more 
significant in the range of 0.1  mm to 0.5  mm compared to the range of 0.5  mm to 1  mm. The influence of 
thickness diminishes gradually from 1.0 mm to 1.5 mm, and after 1.5 mm it completely ceases. The resonant 
frequency of the sensor is inversely related to both the permittivity and thickness of the MUT. However, the 
impact of permittivity is more significant, as shown in Fig. 20. The permittivity of the MUT directly affects 
the electrical properties of the sensor, having a greater impact on the resonant frequency than thickness. To 
calibrate, the fabricated sensor is loaded with different MUTs, and the transmission coefficient is measured, 
as shown in Fig. 21. Each MUT has a fixed size (m1 = 5 mm, m2 = 5 mm), although the relative permittivity 
(εr = 2.17–10.2) and thickness (h = 0.2–1.9) vary. The fabricated sensor exhibits a relative sensitivity of 10.69% as 
a result of interactions with the TLY-5 A substrate.

By processing this information, an inverse regression model is determined to realize the sensor’s calibration. 
This approach enables precise estimation of the MUT’s permittivity by utilizing the actual sample thickness and 
the measured resonant frequency of the MUT-loaded sensor. The latter depends on both the aforementioned 
factors, εr and h, so that these variables must be used as the inputs of the calibration model. Due to the weakly 
nonlinear relationship between MUT’s properties and the resonant frequency, the inverse model is assumed 
to have a simple analytical form. This ensures that any fluctuations in the resonant frequency of the training 
dielectric samples, which may be caused by measurement inaccuracies, can be smoothed out during the 
regression process. To ensure this, the number of degrees of freedom of the inverse model must be lower than the 
number of data samples used to establish it. Figure 22 shows details concerning the model and its identification 
method.

It should be mentioned that thickness h is an extra degree of freedom, which defines the sample and is 
used as one of the input parameters of the calibration model. Consequently, as the center frequency of the 
loaded sensor also depends on this parameter, the proposed methodology and resulting sensors can be used to 
estimate the permittivity of materials of different thicknesses. This is another advantage of our technique. On 
the other hand, a specific sample thickness assumed at the design process (cf. Section “Unsupervised sensor 

Fig. 16. Exemplary Sensor 3 (a) ground layer, (b) transmission response, (c) geometry of the complementary 
resonator, (d) electric field emitted from the complementary resonator at 15.3 GHz.
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design: methodology”) is necessary to compute the device’s sensitivity (maximization of which is one of the 
design objectives).

In this investigation, we used twelve calibration samples. Table 6 provides information about the samples’ 
material properties and measurement findings. Ten independent measurements were used to assess the resonant 
frequency; the mean and standard deviation are listed in the table. The latter is employed to calculate the 
measurement error. The inverse model has been identified using the procedure outlined in Fig. 22.

Geometric
variables for sensors

Sensor_1 values
(mm)

Sensor_2 values
(mm)

Sensor_3 values
(mm)

Sensor_4 values
(mm)

as11 1.82 1.81 1.04 1.09

as12 0.27 0.27 0.21 0.36

as21 1.19 1.18 1.87 1.74

as22 0.30 0.30 0.27 0.26

ac11 1.05 1.04 1.39 1.59

ac12 0.34 0.34 0.47 0.15

ac21 1.54 1.53 1.49 0.74

ac22 0.28 0.28 0.37 0.43

cl1 1.14 1.13 0.45 1.49

cw1 0.38 0.38 0.39 0.38

cl2 1.64 1.63 1.58 2.08

cw2 0.39 0.39 0.41 0.17

sl1 1.83 1.82 1.90 0.62

sw1 0.37 0.37 0.46 0.30

sl2 1.69 1.69 1.48 1.41

sw2 0.44 0.44 0.24 0.34

Table 4. Geometrical dimensions of the sensors generated by our approach.

 

Fig. 17. Exemplary Sensor 4 (a) ground layer, (b) transmission response, (c) geometry of the complementary 
resonator, (d) electric field emitted from the complementary resonator at the 15.4 GHz.
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The obtained coefficient values are a = [48.179 − 5.545 0.164 − 0.644]T. Thus, the ultimate calibration model 
is given as

 F (f0, h, a) = 48.179 − 5.545f0 + 0.164f2
0 − 0.644h (14)

Figure 23 provides a visualization of the inverse model with superimposed calibration samples and the associated 
error bars.

To validate the calibration technique and assess the properties of the sensor, the inverse model was utilized 
to forecast the relative permittivity of thirteen testing MUT samples, as outlined in Table 7. The inverse model 
demonstrates exceptional predictive capabilities, as can be clearly shown. The average relative error in forecasting 
the MUT’s permittivity is approximately 3%, while the highest error is approximately 7%.

By utilizing the estimated maximum error of measuring the resonant frequency df0 (which is determined 
as 0.2 GHz based on the data in Table 6), along with the sensitivity ∂F/∂f0 of the inverse model concerning the 
center frequency at the frequency of measurement and the MUT’s thickness h, one can compute the maximum 
estimated prediction error, which is

 
dε = ∂F (f0, h, a)

∂f0
df0 (15)

Fig. 19. Simulated versus measured transmission coefficients (S21) for the sensor in its unloaded state.

 

Fig. 18. Fabricated Sensor 4: (a) unloaded, (b) loaded with material under test.

 

Exemplary Sensor
Unloaded Sensor Resonant Frequency
(GHz/dB)

Loaded Sensor
Resonant Frequency
(GHz/dB)

External
Size of Resonator
(mm × mm)

Sensitivity
(%)

1 17.08/-19.44 14.86/-31.08 4.19 × 4.19 10.82

2 14.90/-26.63 12.94/-26.22 4.18 × 4.18 10.95

3 15.36/-26.64 13.46/-31.22 4.28 × 4.28 10.30

4 15.42/-30.78 13.32/-31.74 4.03 × 4.03 11.34

Table 5. Comparison of loaded and unloaded resonant frequencies, geometrical sizes, and sensitivity of 
exemplary sensors.
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The values of dε for all MUTs can be found in the right-hand-side column of Table 7. Figure 24 displays the 
calibration model predictions for the testing samples, overlaid over the inverse model surface, along with the 
appropriate error bars. The fabricated sensor and its calibration technique allow for reliable predictions of 
material parameters throughout a wide range of relative permittivity, ranging from around two to over ten.

Table  8 presents a detailed comparison between selected state-of-the-art complementary resonator-based 
sensors and the fabricated sensor in terms of their sensitivity and the range of permittivity measurements. The 
data supplied in Table 8 corroborates that the electrical performance of the sensor presented in this section and 
developed using AI-based approach proposed in this study is highly competitive to the benchmark sensors 
reported in the literature that operate in similar frequency ranges.

At this point, it is appropriate to summarize the advantages of the proposed unsupervised design technique 
and juxtapose it against conventional sensor design methodologies:

• In practice, conventional sensor design involves several steps, which include topology evolution decided upon 
using experience, trial and error, and repetitive parametric studies, eventually followed by more or less rig-
orous optimization. A process like that typically takes a considerable amount of time (up to several weeks) 
and requires regular expert interaction. The proposed approach is unsupervised and fully automated, and, 
eventually, much faster.

• Conventional design does not explicitly account for sensitivity, which is the main performance indicator. 
Typically, design procedures attempt to obtain a specific location of the resonance and the notch depth. Our 
technique explicitly maximizes the sensitivity.

Fig. 21. Transmission coefficients measured for the fabricated sensor when loaded with various materials 
undergoing testing.

 

Fig. 20. Simulated resonant frequencies of Sensor 4 due to its interaction with materials of different 
thicknesses (ranging from 0.1 mm to 2.1 mm) and relative permittivity values (ranging from 2.17 to 10.2).
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• Conventional methods are limited in terms of the number of architectures that can be explored. Also, they are 
unable to handle more than a few parameters, which is not the case in our method.

As indicated in Table 8, our technique leads to considerably better results in terms of sensor’s sensitivity (close to 
eleven, compared to between five and nine for the benchmark structures.

Conclusion
In this paper, we have presented an innovative approach to the unsupervised design and optimization 
of resonator-based microstrip sensors using artificial intelligence (AI) methods. Our method employs 

Table 6. Material parameters and measured data for calibration samples.

 

Fig. 22. Inverse calibration model and its identification process.
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Fig. 24. Inverse model validation. Circles indicate the test samples. The estimated permittivity prediction error 
is represented using vertical bars. The calibration model over the f0-h space is shown as a surface. Small circles 
are projections of the testing samples onto the space of f0-h space. To enhance clarity, two distinct viewing 
angles are shown.

 

Table 7. Sensor validation: model-predicted versus actual sample permittivity.

 

Fig. 23. Inverse model (1) identified to enable calibration of the fabricated microstrip sensor. The input 
parameters include the center frequency f0 and the sample’s thickness h. In the picture, red circles mark the 
calibration samples; blue circles represent samples’ projections onto the f0-h space. Standard deviation of f0, 
obtained from ten independent measurements, are marked using the horizontal bars. To improve clarity, two 
different viewpoints are given.
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fundamental building elements such as circular and square resonators, stubs, and slots, which are integrated 
into geometrically involved designs using unit cell relocation and size adjustments, as well as utilization of 
Boolean transformations. The design process, driven solely by specifications, harnesses evolutionary algorithms 
and gradient-based optimizers to explicitly enhance sensor sensitivity and to ensure the attainment of desired 
operating frequencies. This research aimed to address the challenge of designing high-performance sensors 
for dielectric material characterization without the need for manual intervention. By employing AI-driven 
techniques, we achieved significant advancements in both sensitivity enhancement and frequency optimization. 
Through extensive validation, calibration, and experimentation, we demonstrated the effectiveness of our 
approach in designing sensors capable of accurately characterizing dielectric samples across a wide range of 
permittivity and thickness. Our findings represent a significant contribution to the field of sensor design and 
optimization. The AI-generated sensors exhibited superior performance compared to state-of-the-art designs 
reported in the literature, showcasing the potential of AI methods in revolutionizing sensor technology. The 
proposed methodology faced challenges in incorporating the complex levels of freedom necessary for generating 
structures like the dual-ring CSRR within the limitations of our current approach. In the future, we aim to explore 
further and enhance our optimization technique to overcome these limitations. Another planned extension 
will be to account for the fabrication tolerances by adding another design goal, which is the tolerance-induced 
variability of the center frequency (quantified, for example, using its statistical moments as a function of the 
probability density function describing the fabrication-process-related manufacturing inaccuracies). In practice, 
the local objective function (4) may be augmented by another penalty factor computing, e.g., the estimated 
standard deviation of the center frequency. The estimation itself may be obtained using a simplified linear model 
of the sensor’s frequency characteristics (available anyway due to being required by the trust-region algorithm 
performing fine tuning). This extension will be considered as part of future work.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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