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ABSTRACT

One of the most crucial tasks for naval architects is computing the energy required to meet the ship’s operational needs. 
When predicting a ship’s energy requirements, a series of hull resistance tests on a scale model vessel is carried out in 
constant speed stages, while the acceleration stage measurements are ignored. Another important factor in seakeeping 
analysis is the ship’s hydrodynamic added mass. The second law of dynamics states that all this valuable information, 
that is, the dependence of the hull resistance on the vessel’s speed and the added mass, is accessible from just one 
acceleration stage towing test done up to the maximum speed. Therefore, the acceleration stage, often overlooked in 
traditional towing experiments, can be a valuable source of information. For this reason, this work aims to generalise 
Froude’s scaling procedure to full-scale vessels for the accelerated stage towing tests.

Keywords: ships energy requirement, towing tank tests, acceleration stage, hydrodynamic added mass

INTRODUCTION

In 1870, W. Froude initiated an investigation into ship 
resistance with the use of vessel models. The resistance is the 
horizontal component of the force opposing the forward motion 
of a vessel’s hull. Froude noted that the wave configurations around 
geometrically similar forms were similar if compared at speeds 
proportional to the square root of the model length. He propounded 
that the total resistance could be divided into skin friction resistance 
and residuary ‒ mainly wave-making ‒ resistance. The specific 
residuary resistance would remain constant at corresponding speeds 
between the model and the full-scale vessel. Next, estimates of 
frictional resistance from a series of measurements on planks of 
different lengths and with different surface finishes were derived 
[1]. The scaling procedure proposed by Froude was based on towing 
experiments at constant speed on the model vessel. Further, in 1874 

Froude carried out full-scale tests on HMS Greyhound (100 ft), and 
the results showed substantial agreement with the model predictions 
[2]. Finally, in 1877 he gave a detailed explanation of wave-making 
resistance, supporting his scaling methodology [3]. Froude’s ideas 
still dominate this subject.

Nowadays, when predicting ships’ energy requirements, 
resistance tests on model vessels are still conducted. For constant 
speed, the resistance is determined by towing force measurements. 
In the next step, the resistance test results are scaled from the 
model to the full-scale ship. A modification of Froude’s scaling 
method by splitting the residual resistance into the form resistance 
and the wave-making resistance, suggested by Hughes [4], and 
known as the form factor (1+k) approach, was later adopted by 
the International Towing Tank Conference (ITTC).

The scaling procedures, as mentioned above, refer to towing 
tests at constant speed. Another important aspect is the derivation 
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of the hydrodynamic added mass of the ship, which may account 
for up to 30% of the ship’s mass and therefore represents significant 
inertia for the accelerated motion. It follows from the laws of 
dynamics that all this information, i.e., the dependence of the 
resistance on the speed and the added mass, is accessible from the 
acceleration stage towing test done up to the maximum speed. The 
measuring apparatus in the 19th century did not allow Froude to 
conduct his research on the acceleration stage with the same level 
of precision as is possible now. Despite the development, great 
accuracy, and sampling rate of measurements, however, the author 
is unaware of any scaling procedures from the acceleration stage 
towing tests. Therefore, this paper derives a dynamical scaling 
proposition for the propulsion force needed to estimate the full-
scale ship’s energy consumption. A fully dynamic model can 
simulate any profile: constant speed, acceleration, deceleration, 
and gliding. Moreover, such an approach allows for optimisation 
of the required energy based on dynamical systems, which is 
especially desired for short-range vessels, where constant speed 
is not the major stage [5].

This paper is organised as follows. First, all the components 
of the ship’s resistance in accelerated motion, with some 
historical background, are introduced. Next, the standard 
scaling procedure for the constant speed towing tank tests 
is described because most of the methodology used for the 
scaling from the accelerated motion tests is the same. Finally, 
a proposition for the towing tank tests in the accelerated stage 
and a scaling procedure for such tests are explained.

NEWTON’S SECOND LAW OF DYNAMICS 
FOR TOWING TESTS

To explain the concept of the proposed scaling procedure 
from the acceleration towing tank tests, let us start with Newton’s 
second law of dynamics, which for any vessel takes the following 
form:

mv´ = FP(v, v´) – RT(v) .        (1)

Here m stands for the total mass, which is the sum of the 
mass of the vessel mv and the hydrodynamic added mass of 
the water madd , i.e.,

m = mv + madd .            (2)

In general, the added mass is a second-order tensor relating 
the fluid acceleration vector to the resulting force vector on the 
body. Only the surge added mass is taken into consideration 
in this work. Further, in formula (1), v´ denotes the speed 
derivative over time, FP is the propulsion force for the full-scale 
vessel, or the towing force in the case of the model vessel, and 
RT is the total hull resistance force.

In the case of constant speed, i.e. v´= 0, the towing force is 
equal in magnitude to the total hull resistance, and the second 
law takes the following form:

FP(v, 0) = RT (v).            (3)

Then, after rewriting (1), we get

FP(v, v´) = FP(v, 0) + (mv + madd) v´.      (4)

Formula (4) shows that, from the acceleration stage towing 
tests, which give data FP(v, v´), information on both the total 
hull resistance dependence on constant speed FP(v, 0) and the 
hydrodynamic added mass madd  are accessible.

THE ADDED MASS

In 1786 Du Buat found by experiment that the motion of spheres 
oscillating in water could only be described if an added mass was 
included in the equations of motion. In fluid mechanics, the added 
mass is defined as an extra fluid mass that accelerates with the 
body. It is the inertia added to a system because the accelerating 
body, to pass through, must move aside and then close in behind 
a specific volume of the surrounding fluid. The fluid thus possesses 
kinetic energy that it would lack if the immersed body were not in 
accelerated motion. The body has to impart this kinetic energy to 
the fluid by doing work on the fluid. Any corresponding equations 
of motion for the immersed body must take into account this loss of 
kinetic energy. This can be modelled in the equations of motion as 
some volume of fluid moving with the object although, in reality, the 
fluid will be accelerated to varying degrees. When the body moves 
at a constant speed, the corresponding motion of the fluid is steady; 
thus, the kinetic energy of the fluid is constant. It follows that for 
constant-speed motion, the added mass terms can be omitted in 
the equations of motion [6].

The added mass depends on the size and shape of the 
immersed body, the direction in which it moves through the 
fluid with respect to its axis, and the density and viscosity of the 
fluid. It can be described by a dimensionless coefficient which 
depends on the shape of the immersed body. The dimensionless 
added mass coefficient CM is the added mass divided by the 
displaced fluid mass [7]; that is, divided by the fluid density ρ 
times the volume of the body under water V; therefore

madd = CMρV.            (5)

The same principles apply to ships. In the marine sector, added 
mass is referred to as hydrodynamic added mass. The hydrodynamic 
added mass has also been investigated in the maritime area. Motora 
first conducted model testing for a ship called Mariner to predict the 
added mass [8]. Ghassemi and Yari proposed a numerical calculation 
of the marine propeller’s added mass using the boundary element 
method [9]. Zeraatgar et al. investigated the surge added mass of 
planing hulls by model vessel experiments and by approximations 
with a quasi-analytical method [10]. The conclusion was that the 
surge added water mass could account for 10% of the total mass 
for the investigated planing hulls.

Essentially for ships, the added mass can reach even one-
third of their mass, representing significant inertia in addition 
to the viscous and wave-making drag forces. Thus, the energy 
required to accelerate the added mass should also be considered 
when performing a seakeeping analysis.

When conducting a towing test in the acceleration stage, the 
surge added mass can be obtained from the equations of motion 
by extrapolating the towing force to zero speed FP(0, v´), i.e.,
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(mv + madd)v´ = FP(0, v´) – RT(0).      (6)

Then the total hull resistance can be neglected, RT(0) = 0, 
and it follows that

madd = FP(0, v´)
v´  – mv.        (7)

THE TOTAL HULL RESISTANCE

Even in calm water, a ship experiences the water’s resistance 
to its motion. This force is referred to as the total hull resistance 
RT. This resistance force is needed to calculate the ship’s effective 
power. Many factors combine to form the total resistance 
force acting on the hull. The physical factors affecting ship 
resistance are the friction and viscous effects of the water acting 
on the hull and the energy required to create and maintain 
the ship’s characteristic bow and stern waves. Finally, a minor 
contribution is made by the resistance that the air provides to 
the ship’s motion. This may be written in the following form:

RT = RV + RW + RA,          (8)

where RT is the total hull resistance, RV is the viscous friction 
resistance, RW is the wave-making resistance, and RA stands 
for the air resistance.
The total hull resistance RT can also be formulated by means 
of the dimensionless total resistance coefficient CT with the 
following equation:

RT = 1
2 CTρSv2.            (9)

Here ρ is the water density, S is the wetted surface area of the 
underwater hull, and v is the speed of the vessel.

As the total hull resistance RT is the sum of the viscous RV and 
wave-making RW resistance, when neglecting the air resistance, 
one can write an equation for the total dimensionless resistance 
coefficient in terms of the viscous and wave-making coefficients, 
such that

CT = CV + CW ,          (10)

where CT is the coefficient of the total hull resistance, CV is the 
coefficient of the viscous frictional resistance, and CW is the 
wave-making resistance coefficient.

To quantify these dimensionless resistance coefficients, two 
numbers are used. The Reynolds number Re quantifies the 
influence of viscous forces on the fluid’s motion. It indicates 
the ratio of inertial to viscous forces and, for the ship, is defined 
as a dimensionless ratio

Re = vρL
μ  = vL

v  ,          (11)

where v is the vessel’s speed, L is the length of the wetted surface, 
µ is the dynamic viscosity, and ν is the kinematic viscosity.

The Froude number Fr, in hydrology and fluid mechanics, 
is used to quantify the influence of gravity on a fluid’s motion. 
It indicates the ratio of the inertia forces to the gravitational 
forces related to the mass of water displaced by a floating vessel. 
It is defined by a dimensionless ratio: 

F r = 
√gL

v  .              (12)

Here g denotes the gravity acceleration. Then, the relationship 
between these two numbers can be written in the following 
form, which is practical for scaling purposes:

Re = ρ
μ √g L1.5 F r.          (13)

THE VISCOUS RESISTANCE

Although water has low viscosity, it produces a significant 
friction force opposing the ship’s motion. The viscous resistance 
RV is made up of the skin friction resistance and the viscous 
pressure resistance. Experimental data have shown that water 
friction can account for most of the hull’s total resistance at low 
speeds and is still dominant for higher speeds [11]. The ship’s 
hull shape influences the magnitude of the viscous pressure drag. 
Vessels with a lower length-to-beam ratio will have greater drag 
than those with a higher length-to-beam ratio.

The dimensionless viscous coefficient CV, taking into account 
both the skin friction and the viscous pressure resistance, can 
be derived from the formula

CV = (1 + k)CF .            (14)

Here (1+k) is the form factor, which depends on the hull form, 
and CF is the skin friction coefficient based on the flat plate 
results. The form factor (1+k) can be derived from low-speed 
tests when, at low Froude numbers Fr, the wave resistance 
coefficient CW tends to zero and therefore (1+k) = CT/CF. The 
skin friction resistance coefficient CF is assumed to be dependent 
on the Reynolds number Re and is recommended to be calculated 
through the ITTC-1957 skin friction line as

CF (Re) = 0.075
(log10 Re – 2)2 .        (15)

The ITTC-1978 powering prediction procedure for deriving 
the viscous coefficient CV recommends the use of formula (15), 
together with the form factor (1+k). The same methodology for 
calculating the CV coefficient can be used for the proposed scaling 
procedure from the acceleration stage towing tests.

THE WAVE-MAKING RESISTANCE

When a submerged vessel travels through a fluid, pressure 
variations are created around the body. Near a free surface, the 
pressure variations manifest themselves through changes in the 
fluid level, creating waves. Such a wave system is made up of 
transverse and divergent waves. With a body moving through 
a stationary fluid, the waves travel at the same speed as the 
body. It follows that the transverse wavelength depends on the 
ship’s speed. The mathematical form of such a wave system is 
called the Kelvin wave after Lord Kelvin [12]. The first step in 
formulating an analytical expression for the wave resistance 
was taken by Michell in 1898 [13]. A review of Michell’s wave 
resistance approach and its impact on ship hydrodynamics 
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SCALING PROCEDURE FOR CONSTANT 
SPEED TOWING TESTS

Before explaining the scaling procedure from the acceleration 
stage, let us look at the constant speed stage towing tests because 
most assumptions will be the same for both approaches. 
To perform a scaling procedure for constant speeds, first, 
a geometric scale λ is set as the ratio of the full-scale ship length 
LS to the model vessel length LM, i.e.,

λ = LS
LM

              (18)

Then for equal Froude numbers of both the full-scale ship 
and the model vessel: FrM = FrS, Froude’s law of similarity sets 
the corresponding speeds:

vS
vM

 = λ0.5.            (19)

Here vS is the full-scale ship speed and vM denotes the model 
vessel speed. Newton’s second law of dynamics (1) for constant 
speeds takes the following form for both the full-scale and the 
model vessel:

0 = FP(v, 0) – RT(v).          (20)

Therefore, for constant vessel speeds, the towing force is 
equal in magnitude to the total hull resistance force; thus, 
Eq. (3) holds. Moreover, the propulsion force needed to assess 
the energy requirement for constant full-size vessel speeds is 
equal to the total resistance force acting on the full-size hull. 
In general, the scaling procedure for determining the total 
hull resistance of a full-scale ship from constant speed towing 
experiments on a geometrically scaled model vessel may be 
described in the following steps:
Step 1: �Setting the range of the full-scale ship speed vS, from the 

minimum to the desired maximum ship speed.
Step 2: �Calculating the corresponding towing speeds for the 

model vM using Froude’s law of similarity (19).
Step 3: �Recording, from the constant speed stage, the total hull 

resistance force RT(vM) of the model vessel towed in 
a series of tests at each speed vM.

Step 4: �Determining the coefficient of the total hull resistance 
for the model at each speed CT(vM) from formula (9).

Step 5: �Determining the coefficient of the viscous resistance for 
the model vessel at each speed CV(vM) using the ITTC 
recommended formulas (14) and (15).

Step 6: �Calculating the wave-making coefficient for the model 
vessel at each speed CW(vM) = CT(vM)−CV(vM).

Step 7: �The wave-making resistance coefficients for the full-
scale and the model vessel are equal: CW(vS) = CW(vM).

Step 8: �Determining the coefficient of the viscous resistance 
for the full-scale ship CV(vS), at speeds corresponding 
to the model towing speeds, with the use of the ITTC 
recommended formulas (14) and (15).

Step 9: �Calculating the dimensionless coefficient of the total 
hull resistance for the full-scale vessel at each speed: 
CT(vS) = CW(vS) + CV(vS).

Step 10: �Determining the total hull resistance of the full-scale 
vessel for each speed using formula (9).

is given by Tuck [14]. Further, in 1909 wave resistance 
was investigated both theoretically and experimentally by 
Havelock [15] and elaborated in [16]. The findings are that the 
amplitudes of the waves directly depend on the ship’s Froude 
number Fr. Thus the dimensionless coefficient for the wave-
making resistance CW is assumed to depend only on the Froude 
number. The wave resistance for low speeds is negligible, but 
for Froude numbers over 0.35, the wave resistance may exceed 
the viscous resistance for most vessels [11]. Setting equal 
Froude numbers for the model and full-scale ship, such that 
the wave resistance coefficients are equal, still dominates the 
subject of scaling procedures. This assumption will also be 
used in the proposed scaling procedure for the acceleration 
stage towing tests.

THE RESISTANCE BREAKDOWN

Within the subject of the resistance breakdown, it is worth 
emphasising the fundamental difference between the scaling 
methods proposed by Froude and Hughes. Froude assumed 
that all residuary resistance scales according to Froude’s law, 
that is, for the same Froude number Fr. This is not physically 
correct because the viscous pressure drag included within 
the CV dimensionless coefficient should scale according 
to Reynolds’ law. Hughes assumes that the total viscous 
resistance, i.e., the friction and the form, scales according 
to Reynolds’ law. This leads to the dimensionless resistance 
coefficient breakdown:

CT (Re, F r) = CV (Re) + CW (F r).    (16)

This also needs to be adjusted, as the viscous resistance 
interferes with the wave-making resistance. The reason is 
that the boundary layer growth suppresses the stern wave; 
thus, the wave resistance can depend on Re. Moreover, the 
viscous resistance depends on the pressure distribution 
around the hull, which depends on wave-making [17]. 
Thus, an interaction term CINT(Re,Fr), depending on both 
numbers, is non-zero, i.e.

CT (Re,F r)=CV (Re)+CW(F r)+CINT (Re,F r). (17)

Therefore, the resistance breakdown is an assumption 
made for the scaling practice rather than an exact physical 
representation. A detailed outline of the scaling effects and 
evidence supporting the existence of an interaction term is 
given by Terziev [18]. Nevertheless, the overall error caused 
by the resistance coefficient breakdown assumption (16) is 
sufficiently small. The form factor method proposed by Hughes 
and adopted by the ITTC is still an extremely valuable tool 
in predicting ships’ energy requirements.

For the dynamical scaling purpose of this paper, certain 
assumptions, as mentioned above, will also be made; that 
is, the viscous friction coefficient CV depends only on the 
Reynolds number Re, the wave-making coefficient CW only 
on the Froude number Fr, and the interaction term will be 
neglected.
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PROPOSED SCALING PROCEDURE  
FROM THE ACCELERATION STAGE 

TOWING TESTS
The proposed scaling procedure for accelerated motion has 

the same methodology as Froude’s scaling for constant speed 
mentioned above. The difference is that we are going to take a step 
back from the equation of motion (20) to full dynamics (1) because, 
in accelerated motion, the towing force is needed to overcome the 
total hull resistance and to accelerate the model vessel.

Table 1 presents the basic assumptions for the scaling rules 
needed in accelerated motion. Subscripts S correspond to the 
full-size vessel and M to the model vessel.

The geometric similarity and the Froude number for the full-
size and model vessels remain the same for the acceleration stage 
scaling proposition. The difference is that, when accelerated, 
the mass of the vessel and the added mass of water have to be 
taken into account and scaled. Moreover, since the acceleration 
is the derivative of speed, for geometric scale λ, the acceleration 
scales as

dvS
dt  = d(λ0.5vM)

dt  = λ0.5 dvM
dt .        (21)

To derive the scaling formula for the acceleration stage, let 
us start from Newton’s second law of dynamics in the following 
form:

mv´=FP(v, v´) – 1
2 ρSCT (F r, Re)v2.    (22)

Further, the breakdown of the resistance coefficients (16) 
is assumed, i.e.,

mv´=FP(v, v´)– 12 ρS(CW(F r)+CV(Re))v2.  (23)

Tab. 1. Scaling rules and basic assumptions

Physical quantity Scaling rule Assumptions

Length at the 
water line LS = λLm Geometric similarity

Wetted surface 
area of hull SS = λ2Sm Geometric similarity

Immersed 
volume VS = λ3Vm Geometric similarity

Mass of the 
vessel mvS = λ3mvm

The load of the model is 
prepared in such a way 
that the wetted volumes 

correspond to the 
geometric scaling.

Hydrodynamic 
added mass maddS = λ3 ρS

ρM  maddm

The accelerating vessel 
moves a specific volume 

of the surrounding water 
and this volume scales 

with respect to geometric 
similarity.

Froude number F rS = F rm

The ratio of the inertia 
forces to the gravitational 
forces related to the mass 

of water displaced by a 
floating vessel is the same 

for the model and full-
scale ship.

Reynolds 
number ReS = λ0.5 μS

μM ρS
ρM  Rem

Same Froude number and 
geometric similarity

Speed VS = λ0.5Vm Same Froude number and 
geometric similarity

Acceleration aS = λ0.5am Same Froude number and 
geometric similarity

The wave resistance coefficient CW(Fr) is assumed to depend 
only on the Froude number and may be derived from Eq. (23), i.e.,

CW(F r)= 2
ρSV2FP(v,v´) –  2m

ρSV2 v´ – CV(Re).  (24)

When the Froude number is set to be the same for both the 
full-size and the model vessel, the partial dynamic similarity 
of the wave resistance coefficient CW(Fr) can also be used for 
accelerated motion; therefore

CW(F r)=  2
ρMSMV2M (FPM(vM,vḾ)–mMvḾ) – CV(ReM),  (25)

CW(F r)=  2
ρSSSV2S  (FPS(vS,vŚ)–mSvŚ) – CV(ReS).  (26)

In formula (25), FPM(vM, vḾ) is the towing force from the 
acceleration stage towing tank test on the model vessel. Just one 
towing test up to the maximum speed is needed to access such 
information. FPS(vS, vŚ) in (26) is the propulsion force needed to 
predict the ship’s energy requirement for accelerated motion. 
Further, it is assumed that the gravitational field g is the same 
for both the model and the full-scale vessels. Then, one can 
write the wave-making coefficient CW(Fr) for the full-scale 
vessel (26) using the scaling rules in Table 1:

CW(F r)=  2
ρSMV2Mλ3 (FPS(vS,vŚ ) – λ3.5(mvM+ ρM

ρS maddM)vḾ)–

CV(λ1.5 μM
μS  ρM

ρS  ReM).            (27)

Below, let us write an equation where the upper part is the 
wave-making coefficient CW(Fr) for the full-size vessel with 
the scaling rules applied (27), and the bottom part is the wave-
making coefficient for the model vessel (25):

2
ρSMV2Mλ3 (FPS(vS,vŚ ) – λ3.5(mvM+ ρM

ρS maddM)vḾ)– 

CV(λ1.5 μM
μS  ρM

ρS  ReM)            (28)
=

2
ρSMV2M  (FPM(vM,vḾ) – (mvM+ maddM)vḾ)– CV(ReM).  (29)

Then, after basic transformations on the above equation, the 
following scaling rules for obtaining the propulsion force for the 
full-scale vessel from the acceleration stage towing experiments 
on the scaled model are derived:

		  vS = λ0.5vM ,

		  vŚ = λ0.5vḾ ,

	       mS = λ3(mvM + ρM
ρS maddM),

FPS(vS,vŚ ) = λ3FPM(vM,vḾ)              (30)

+ λ3(λ0.5 – 1)mvMvḾ                    (31)

+ λ3(λ0.5 ρM
ρS  – 1)maddMvḾ               (32)

+ λ3  2
ρSMV2M  (CV(λ1.5 μM

μS  ρM
ρS  ReM)– CV(ReM)). (33)
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Here, terms (30) and (33) are equivalent to the standard 
scaling procedures for constant speed when v´ = 0, i.e.,

FPS(vS,0) = λ3FPM(vM,0)+

λ3  2
ρSMV2M  (CV(λ1.5 μM

μS  ρM
ρS  ReM)– CV(ReM)).    (34)

Term (31) is the part of the propulsion force needed to 
accelerate a full-scale vessel. This part is equal to the part 
of the towing force needed to accelerate the model vessel 
with corresponding acceleration vḾ times the scaling factor 
λ3(λ0.5−1). Finally, the term (32) is the part of the propulsion 
force that is needed to accelerate the added water mass of the 
full-scale vessel, and this is equal to the part of the towing force 
needed to accelerate the added water mass of the model vessel 
with the corresponding acceleration vḾ times the scaling factor 
λ3(λ0.5−1ρM/ρM−1). Different water densities for the full-scale 
and model vessels were considered for the scaling factor in (32).

Therefore, the scaling approach for calculating the propulsion 
force of the full-scale vessel from the accelerated stage towing 
experiment on a scale model is proposed below:
Step 1: �Setting the range of the full-scale ship speed vS, from 

the minimum to the desired maximum speed.
Step 2: �Calculating the towing speeds for the model vM using 

Froude’s law of similarity (19).
Step 3: �Recording the towing force FPM(vM,vḾ) of the model vessel 

from the acceleration stage towed up to the maximum 
speed.

Step 4: �Calculating the added mass by extrapolating the towing 
force to zero speed and using formula (7).

Step 5: �Determining the propulsion force FPS(vS,vŚ ) using 
formulas (30)‒(33).

It should be noted that no time scale has been used in the 
proposed scaling procedure. The equations of motion for any 
profile can be derived from the second law of dynamics after 
determining the propulsion force of a full-size vessel FPS(vS,vŚ ).

CONCLUSIONS

This work derives a dynamical scaling proposition for the 
propulsion force required to estimate the full-scale vessel energy 
requirement. The towing force can be measured experimentally 
using the acceleration stage tests on a scale model vessel. This 
theoretical analysis demonstrates that such an approach may 
have advantages over constant speed towing tests. From the 
acceleration stage, it is possible to obtain information about the 
hydrodynamic added mass, which should also be considered 
when predicting the ship’s energy consumption. Furthermore, 
all information about the constant speed stage is accessible from 
only one acceleration test done up to the maximum speed. 
Finally, the proposed testing and scaling procedure can be 
used for dynamic models when simulating various profiles of 
motion, including constant speed, accelerating, decelerating, 
and gliding.
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