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To my mother and [father

There must be something worth living for
There must be something worth trying for
Even something worth dying for!

And if one man can stand tall

There must be some hope for us all
Somewhere, somewhere in the spirit of man.

from Jeff Wayne’s musical version of

“The War Of The Worlds” by Georg H. Wells
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Summary

The Thesis deals with the very important engineering problem of the behaviour of sandy
seabed sediments due to wave-induced cyclic loading. The main focus of the work is
an analysis of the pore pressure distribution with depth, the knowledge of which is
necessary for a proper and realistic description of transient and cyclic changes in the
stress-state existing within the soil.

The contents of the Thesis are divided into six Chapters.

In Chapter 1, a proposition of the Thesis is submitted, and the general assumptions,
under which the Thesis is to be proved, are given. The main goal of the work was
to study the influence of different soil saturation conditions on the process of cyclic
oscillations in the pore pressure induced by a continuous passage of surface water waves.

From many existing theories which have been developed for the case of a stiff or
elastc two-phase medium, a theory proposed by Madsen (1978) was chosen. This theory,
which is relatively sophisticated regarding the number of soil-water parameters, is not so
taxing for the engineer to manipulate and to transform into a mathematical simulation
of the instantaneous wave-induced pore pressure oscillations in seabed sediments. The
theory allows, among other things, an investigation of the effect of partly saturated soil
conditions by permitting optional compressibility of the pore fluid.

The main assumptions used to examine the Thesis can be summarised as follows:

- the soil skeleton and the pore fluid are compressible,

- the behaviour of the soil skeleton is ruled by the linear theory of elasticity,

- the flow of the pore fluid through a porous medium is laminar and governed by
Darcy’s law,

- the dissipation capabilities of the seabed sediments are large enough to prevent
a development of the pore pressure accumulation (which is sometimes called the
residual pore pressure, excess pore pressure, permanent pore pressure, or pore
pressure build-up) from one loading cycle to the next,

- the waves are regular, as defined by the linear theory for small-amplitude surface
waves,

- the seabed consists of homogeneous and isotropic sandy sediments,

- the soil skeleton can be treated as either fully saturated or partly saturated,

- the seabed layer has a finite thickness, limited by the existence of an impermeable
and stiff base.

Chapter 2 contains a review and comparison of different published theories of the
wave-induced pore pressure cyclic oscillations in the seabed. Firstly, a theory by Putnam
(1949) is cited. Its general assumptions (incompressibility of both the soil skeleton and
the pore fluid), afford the simplest known solution for the wave-induced pore pressure;
it takes the form of the Laplace equation (potential theory solution), and therefore it is
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independent of any parameters characterizing the two-phase soil/pore-fluid medium. A
further theoretical development has led to another solution presented by Moshagen &
Tgrum (1975). This differs from earlier one in that it assumes a compressibility (related,
however, only to the soil skeleton). As a consequence, the partial differential equation
describing the wave-induced pore pressure fluctuations within the seabed sediments
takes the form of the diffusion equation (also known as the consolidation equation or
the heat conduction equation).

The analysis and discussion of the wave-induced pore pressure theories clearly
showes that all simplified theories (i.e., those which assume incompressibility of the
soil skeleton or pore fluid, or both) are special cases of more advanced theories, which
assume realistic properties of the soil/pore-fluid mixture as much as possible; the most
important assumption seems to be the compressibility of both components of the two-
phase medium. Therefore, greater emphasis has been given to this fact in the next
part of the review. Thus, three theories were considered, i.e. those by Madsen (1978),
Yamamoto et al. (1978), and Okusa (1985(%)). All of them fulfil the aforementioned
requirements concerning compressibility of the two phases. Additionally, they permit
the study of anisotropy in soil permeability. These theories, which are founded on the
same assumptions, use the same governing equation which resembles in its form an
extended diffusion equation, and known in the literature as the storage equation. In
fact, it is a combination of the Laplace equation and the diffusion equation. The only
difference between these theories is the manner in which they obtain a general solution
to the main partial differential equation.

The conclusion of the literature review is that any suitable theory should contain the
compressibility of both the soil skeleton and the pore fluid. This is a necessary condition
for a realistic approach. This means that all simplified theoretical considerations and
equations have to be rejected because they are not able to reproduce the soil/pore-fluid
interaction adequately. This statement implies that the governing equations, required
for the subsequent analysis, are necessarily complicated, and that analytical solutions
can only be expected in the case of simple boundary conditions.

Presented also in Chapter 2 is a review of results from various laboratory tests
on the phenomenon of wave-induced pore pressure cyclic oscillations in sandy seabed
sediments. The review concludes that until present there has been a dearth of detailed
investigations, in which the modelling and controlling of some of the very important,
indeed decisive soil/pore-fluid parameters, such as the degree of saturation or the soil
permeability, has been possible. For this reason, the theoretical considerations disclosed
in the following Chapters were verified later by means of specially prepared model tests
and laboratory investigations.

Chapter 3 treats the subject of the properties of the soil skeleton and the pore fluid
by characterization of their basic physical parameters. In reality, seabed sediments are
three-phase media where the soil skeleton, water, and air contained in soil pores are the
components. However, solutions for the wave-induced pore pressure cyclic oscillations
in a three-phase medium are very complicated and therefore not practically widely
applicable. In order to deal with this problem it was necessary to make a simplification
by assuming the medium under consideration is represented by only two phases, i.e.
soil skeleton and pore fluid, where the pore fluid consists of a mixture of water and
air occupying the soil pores. After the discussion of the main soil parameters (shear
modulus, Poisson’s ratio, permeability, porosity), the next part of Chapter 3 relates to
a search for a practical formula capable of defining the elastic properties of the pore
fluid. It was proved that the compressibility of water containing small air particles is
most dependant on the amount of the air present, i.e. the degree of saturation. Using
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a few computational examples, it was shown what dramatic changes in compressibility
can occur when the degree of saturation deviates by only few percent, or even a fraction
of percent, from fully saturated conditions.

Many formulas for the pore fluid compressibility have been proposed to give a
mathematical relation which is practically applicable. In most cases, however, they
require a knowledge of parameters which are extremely difficult or even impossible to
measure to satisfactory accuracy (e.g., the diameter of air bubbles existing in the water,
or the surface tension between water-phase and air-phase). The meaning of air solubility
in water and its influence on pore fluid compressibility was also taken into account and
discussed. Finally, as a result of a wide comparison of many approaches available in
literature, the equation proposed by Verruijt (1969) was accepted for further study. The
choice of such simple formula permits the computation of the pore fluid compressibility
from knowledge of only basic parameters (i.e., the compressibility of a pure water, the
degree of saturation, and the absolute hydrostatic pressure exisiting in a certain depth
of the seabed). Although the formula is very simple, it reflects the physical phenomena
perfectly, giving a quantity with a practically acceptable accuracy.

The range of validity of the chosen formula covers the degree of saturation between
S =1 (i.e., fully saturated soil) and S = 0.85 (z.e., partly saturated soil). In order to
investigate and quantify partly saturated conditions in natural seabed sediments, a series
of in-situ sampling was carried out along the shoreline of a tidal area. Computed values
and their statistical analysis confirmed the existence of partly saturated soil conditions.

Chapter 4 opens with a brief description of Madsen’s (1978) pore pressure theory,
adopted for further analysis. A detailed analysis of the mathematical operations, re-
quired to obtain a particular solution analytically, indicated that Madsen’s theory was
the most convenient as regards the implementation of boundary conditions. The basic
two-dimensional partial differential equations result from the equilibrium conditions in
horizontal and vertical directions and from the requirement of mass conservation. The
basic physical assumptions are that the soil skeleton obeys Hook’s law and the pore fluid
flow obeys Darcy’s law. A presentation of the governing partial differential equation of
the 6" order is followed by a discussion of the boundary conditions necessary to derive
a particular solution, assuming a finite thickness of the permeable seabed layer sited on
a stiff and impermeable base. A development of an extention to the existing particular
solution for a layered system with finite thickness was motivated by a future require-
ment to verify results from model tests, in which only a relatively small thickness of the
permeable layer can be physically modelled. It must be emphased, however, that the
aforementioned sophisticated pore pressure theories have been published together with
particular solutions only for the case of infinite thickness of the seabed sediments. An
analytical solution of the governing equation with the ‘finite-thickness layer’ boundary
conditions is much more complicated in comparison with the case of infinite-thickness
layer but, on the other hand, it was essential to be able to verify the theory on the
basis of model test results. A finite thickness of seabed sediments can also exist in the
natural environment.

Using the general solution for the pore pressure, published by Madsen (1978), a
particular solution for a permeable layer of finite thickness was derived analytically. The
solution, presented in terms of the amplitude and the phase lag of the pore pressure
oscillations within the seabed sediments, was tested and discussed considering, among
other parameters: the influence of the layer thickness, the degree of saturation, the type
of stiff and impermeable base (i.e., rough or smooth), the soil skeleton compressibility,
and the soil permeability. The results, gained from the parameter study, showed the
predominant influence of the degree of saturation, the soil permeability, and the thick-
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ness of the seabed layer, on the distribution of the wave-induced pore pressure cyclic
oscillations with depth. It appeared also that the character of the impermeable base
seems to be of little practical consequence and the soil skeleton compressibility becomes
important only when the soil sediments are in a loose state.

The derived analytical solution is two-dimensional and, therefore, this solution
can be a very useful tool in the verification of results from large-scale model tests.
However, the intended implementation of small-scale laboratory tests prompted also
an elaboration of a one-dimensional mathematical model for the wave-induced pore
pressure oscillations. Such a solution was derived in Chapter 4 and studied for even wider
range of soil/pore-fluid parameters than it was possible for the large-scale modelling.
The solution to the ordinary one-dimensional partial differential equation was obtained
using the Crank-Nicolson numerical method.

Chapter 5 contains a description of model tests intended to illustrate the pore
pressure response and verify the theoretical considerations by modelling various soil
skeleton and pore fluid parameters. Large-scale model tests performed in a large wave-
flume made it possible to study the pore pressure phenomenon under quasi-natural
conditions. A soil layer, 0.5m thick, formed by a medium sand, was cyclically loaded
by surface water waves. The regular waves applied in the tests were characterized by a
wave period T'= 3 — 10s and a wave height H = 0.25 — 1.0m. All the tests were per-
formed at a constant water depth h = 4.5m. The sand layer was instrumented with 10
pore pressure transducers installed in two vertical profiles. Measurements of the hydro-
dynamic bottom pressure proved to be in a very good agreement with values predicted
theoretically from the linear theory for waves of a small amplitude (Airy’s theory). The
large-scale model tests confirmed qualitatively the pore pressure amplitude attenuation
with depth, together with a simultaneously associated increase of the phase lag in pore
pressure oscillations. However, the difference between measured and calculated values
becomes significant when the soil parameters (i.e., the coefficient of permeability and
the degree of saturation) are taken as determined in standard soil mechanics testing
procedure. This result indicates distinctly an important and general dilemma of the
problem:

- Simple theories go along with parameters from standard tests, which can be ob-
tained easily, but these theories are not good enough to describe the governing
problem in a sufficient and proper way.

- Taking more sophisticated theories, they may be well-prepared to describe the gov-
erning phenomena accurately but they need parameters determined very precisely
because the influence of varying parameters is decisive. However, the parameters
obtained from standard tests (based on soil mechanics field and laboratory testing
practice) proof to be not sufficient concerning their accuracy; sometimes it is even
not possible to obtain parameters with the necessary degree of accuracy.

To get a quantitative insight into the problem, small-scale laboratory tests were
carried out. The seabed layer was modelled in a homogeneous sand column, 0.2m in
diameter and 0.9m high. The main series of tests was preceded by an initial series
where a possible range of densities of the sand model was established. A very precise
control of density in the model under preparation was achieved by applying a special
technique of sand pouring, where the height of pouring and the pouring intensity control
were responsible for an exact degree of density. The small-scale model permitted also
very accurate measurements of the degree of saturation. In addition to gravitational
saturation, in which the water flows through the soil skeleton from the bottom of the
model upwards, some trials were done in order to model the possible extreme values of
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the degree of saturation. Thus, pouring the sand through the water with simultane-
ous vibration of the model resulted in almost fully saturated conditions. Alternatively,
by applying a total dewatering of the model followed by re-saturation, relatively low
values of the degree of saturation were obtained. Few types of sand, characterized by
dso ranging from 0.23 to 1.0 mm, were used in tests, allowing the permeability capabil-
ities of the sand model to be influenced. The surface of the sand column was loaded
hydrodynamically by cyclic changes of the water pressure head; the applied period of
water-table oscillations 7' =1 — 2s and the amplitude up to A = 0.4m.

Comparison of distributions of pore pressure amplitudes and phase lags with depth,
obtained from the small-scale model tests and calculated theoretically, showed a good
quantitative agreement. Only in the case of sand with relatively large soil particles
(dso = 1.0mm), and in tests where the extremely low value of the degree of saturation
(S = 0.83) was modelled, did significant differences appear. In the former case, this
could have been caused by specific water flow conditions in the soil where the application
of Darcy’s law is suspect. In the latter case, the extremely low values of the degree of
saturation obtained were almost equal to the lower limit (S = 0.85) of the practical
applicability of the formula defining the pore fluid compressibility. However, despite
these two exceptions, the results from all other tests proved the applicability of Madsen’s
theory in describing the wave-induced pore pressure cyclic oscillations within the seabed
sediments.

Chapter 6 contains a discussion of one of possible practical engineering applications
of the analytically derived and experimentally verified solution for the pore pressure re-
sponse in the sandy seabed layer of finite thickness. The considered problem relates to
the question of vertical stability of a submarine pipeline buried in seabed sediments.
Using the ‘finite-thickness layer’ solution, derived from the storage model of the pore
pressure response to water waves propagating above the seabed, the hydrodynamic up-
lift force, acting on the pipeline, was derived. Until now, all known solutions, resulting
from the potential theory (Laplace’s equation), have the drawbacks because the con-
tribution of some of important soil/pore-fluid parameters are omitted in the solution.
The proposed solution for the hydrodynamic uplift force, which takes these param-
eters into account, is discussed with reference to the soil saturation conditions and the
thickness of the permeable soil layer. Computational examples show evidently that the
hydrodynamic uplift force can reach its maximum, for a given depth of burial and wave
loading conditions, when the degree of saturation approaches a particular value. Since
this value always lies within the range of realistic soil saturation conditions, the design
of submarine buried pipelines has to be made for the case of maximum hydrodynamic
uplift force, regardless what the actual degree of saturation is.

The example of a submarine pipeline buried in seabed sediments is a good rep-
resentation of important problems that can face both coastal and offshore engineers,
showing clearly the potential and the necessity of the application of the storage model
of the wave-induved pore pressure response in permeable seabed sediments, that allows
to take into account the relative compressibility of the two-phase medium.
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Rozprawa doktorska pt. ,,Rozklad cisnienia porowego w gruncie dna morskiego po-
zostajacego pod wplywem falowania powierzchniowego” poswiecona jest bardzo waz-
nemu z punktu widzenia inzynierskiego zagadnieniu zachowania si¢ piaszczystego podto-
za dna morskiego w wyniku cigglego oddzialywania cyklicznego obcigzenia pochodzacego
od falowania powierzchniowego. W pracy skoncentrowano si¢ gléwnie na problemie ana-
lizy rozkladu okresowo zmiennego cisnienia porowego na glebokosci w dnie morskim,
znajomos¢ ktorego jest niezbedna dla poprawnego opisu aktualnego stanu naprezenia
panujacego w gruncie.

Material zawarty w niniejszej pracy ujety jest w szesciu Rozdziatach.

Rozdzial 1 prezentuje teze rozprawy wraz z podstawowymi zalozeniami przyjetymi
dla przeprowadzenia jej dowodu. I tak, tezg pracy jest stwierdzenie o dominujacym
wplywie stopnia nawodnienia (saturacji) gruntu na generacje cyklicznych oscylacji cis-
nienia porowego w gruncie dna morskiego pod wplywem falowania powierzchniowego.
Uzupelieniem powyzszej tezy jest rowniez stwierdzenie poprawnosci teorii Madsena
(1978) odnoszacej si¢ do cisnien porowych, ze szczegolnym uwzglednieniem jej rozwigza-
nia dla warstwy gruntu o ograniczonej migzszosci, oraz jej przydatnosci w zastosowaniu
do niektérych probleméw inzynierii morskiej i brzegowe;.

Dowdéd dla tak postawionej tezy przeprowadzono przy nastepujacych zalozeniach:

- zaréwno szkielet gruntowy, jak i ciecz porowa cechuje scisliwosc¢,

- odksztalcenia w rozpatrywanym osrodku wodno-gruntowym podlegaja prawom i
zwigzkom liniowej teorii sprezystosci,

- przeplyw cieczy porowej w gruncie ma charakter laminarny i podlega prawu Darcy,

- dysypacja ci$nienia porowego wygenerowanego w ciaggu jednego cyklu obcigzenia
dna morskiego falowaniem powierzchniowym jest wystarczajaca by nie dopusci¢
do stopniowej akumulacji tego cisnienia (ang. residual pore pressure, ezcess pore
pressure, permanent pore pressure, lub pore pressure build-up) wraz z kolejnymi
cyklami obciazenia,

- falowanie powierzchniowe opisane jest prosta funkcjag harmoniczna wynikajaca z
liniowe] teorii fal o malej amplitudzie,

- material dna morskiego utworzony jest z jednorodnego oraz izotropowego gruntu
piaszczystego,

- oérodek gruntowo-wodny traktowany jest jako nawodniony catkowicie lub czgsciowo,

- warstwa gruntu dna morskiego jest o skorczonej migzszosci i zalega nad sztywnym
i nieprzepuszczalnym podlozem.

W Rozdziale 2 dokonano przegladu i poréwnania opublikowanych w literaturze
$wiatowej teorii generacji cyklicznych zmian ciSnienia porowego w piaszczystym grun-
cie dna morskiego pod wplywem falowania powierzchniowego. Jako pierwszg, wy-
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mieniono teorig zaproponowang przez Putnama (1949). Podstawowe zalozenia tej teorii
(dotyczace niescisliwosci tak samego szkieletu gruntowego, jak i cieczy porowej) powo-
duja, iz jej rozwigzanie dla cisnienia porowego, bedace najprostszym ze znanych, opisane
jest rownaniem Laplace’a. Cecha charakterystyczna takiego wlasnie rozwigzania teorii
potencjalnej jest jego niezaleznos¢ od jakichkolwiek parametrow fizycznych opisujacych
osrodek wodno-gruntowy i wylaczne uzaleznienie od geometrii rozpatrywanego uktadu.

Dalszy rozwdj teorii cisnienia porowego doprowadzil do opracowania kolejnego roz-
wigzania, przykladem ktoérego moze by¢ np. teoria przedstawiona przez Moshagena
i Tgruma (1975). Podstawowag réznicg jaka cechuje to rozwigzanie od poprzednio
wspomnianego jest przyjecie zalozenia scisliwosci ale tylko wzgledem szkieletu grun-
towego. Skutkiem tego, réwnanie opisujace cykliczne zmiany ci$nienia porowego w
gruncie przyjelo forme réwnania dyfuzji, znanego rowniez pod nazwa réwnania konso-
lidacji, czy tez rownania przewodnictwa cieplnego.

Biorgc pod uwage, ze zaréwno szkielet gruntowy, jak i ciecz porowa cechuje za-
wsze pewna S$cisliwos¢, w dalszym etapie pracy skoncentrowano si¢ na analizie teorii
uwzgledniajacych ten wlasnie fakt. Nalezy tu przede wszystkim wymieni¢ teorie opra-
cowane przez Madsena (1978), Yamamoto i in. (1978) oraz Okuse (1985(). Ich uni-
wersalnos¢ polega rowniez na przyjeciu zalozenia dotyczacego anizotropii osrodka grun-
towego wzgledem jego przepuszczalnosci. Wymienione trzy teorie opieraja si¢ na iden-
tycznych podstawach i opisane sg tymi samymi wyjsciowymi rownaniami rézniczkowymi
czgstkowymi: obok dwéch réwnan rownowagii w plaskim ukladzie odniesienia wystepuje
rownanie trzecie, ktore jest rozbudowang formg rownania dyfuzji i znane jest pod nazwa
réwnania pojemnosciowego (ang. storage equation). Jedynym elementem réznigcym
wspomniane teorie jest sposéb otrzymania rozwigzania ogoélnego dla podstawowego
rownania rozniczkowego czgstkowego. Szczegolowa analiza poszczegdlnych operacji ma-
tematycznych niezbednych dla uzyskania ostatecznego rozwigzania szczegolnego pokaza-
la, ze teoria Madsena (1978) jest najbardziej dogodng dla dokonywania wszelkich prze-
ksztalcen zwigzanych z problemem uwzglednienia niezbednych warunkéw brzegowych.

Przeprowadzona analiza istniejgcych teorii ci$nienia porowego wykazala, ze teorie
uproszczone, zakladajace niescisliwos¢ szkieletu gruntowego lub cieczy porowej lub obu
ich jednoczesnie, stanowia przypadki szczegdlne teorii bardziej zaawansowanych przyj-
mujacych w swych zalozeniach realistyczne wartosci parametréw wodno-gruntowych;
chodzi tu gléwnie o jednoczesne przyjecie Scisliwosci tak dla samego szkieletu grun-
towego, jak i dla cieczy porowej. Rozwigzania plyngce m.in. z teorii Putnama (1949)
oraz Moshagena i Tgruma (1975) wyznaczaja granice zakresu mozliwych rozwigzan
plynacych z teorii Madsena (1978), Yamamoto i in. (1978) oraz Okusy (1985(%)).

W Rozdziale 2 znalezé mozna réwniez charakterystyke niektorych, bardziej zna-
miennych badan laboratoryjnych zjawiska cyklicznych oscylacji ci$nienia porowego w
gruncie piaszczystym, opublikowanych dotychczas w literaturze swiatowej. Podsta-
wowym wnioskiem z dokonanego przegladu jest przekonanie o braku jak dotad szcze-
gotowych badan, ktére zapewnialyby mozliwos¢ modelowania i kontroli niektorych para-
metréw wodno-gruntowych, np. stopnia nawodnienia gruntu oraz wspoélczynnika fil-
tracji, majacych decydujace znaczenie dla przebiegu zjawiska cyklicznych oscylacji cis-
nienia porowego w gruncie dna morskiego wywolanych falowaniem powierzchniowym. Z
tego gldwnie wzgledu, rozwazania teoretyczne zawarte w dalszej czgsci pracy poparte sg
wynikami specjalnie dla tego celu przygotowanych badan laboratoryjnych, tak w duzej,
jak 1 malej skali, co pozwolilo na dokladng weryfikacje zaproponowanego rozwigzania
dla ciénienia porowego w przepuszczalnej warstwie gruntu dna morskiego o ograniczone;j
migzszosci.
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W Rozdziale 3 oméwiono wlasciwosci rozpatrywanego osrodka wodno-gruntowe-
go oraz scharakteryzowano go biorgc pod uwage jego podstawowe parametry fizyczne.
W warunkach rzeczywistych, dno morskie jest osrodkiem tréjfazowym, w ktorym wy-
szczegdlni¢ mozna szkielet gruntowy oraz wodeg i gaz (w gruntach piaszeczystych jest to
najczesciej powietrze) zawarte w porach gruntu, jako jego elementy skladowe. Jednakze,
rozwigzanie dla cisnienia porowego w osrodku tréjfazowym jest sprawg niezmiernie
skomplikowang, a jego praktyczne zastosowanie z punktu widzenia czysto inzynierskiego
jest malo przydatne. Dlatego tez, koniecznym okazalo si¢ dokonanie pewnego upro-
szczenia, polegajacego na umownym przyjeciu materialu dna ntorskiego jako osrodka
dwufazowego utworzonego z szkieletu gruntowego i cieczy porowej, przy czym ciecz
porowa reprezentuje tu mieszaning wody i powietrza wypekiajacych pory gruntu. Po
omoéwieniu wazniejszych parametréw fizycznych cechujacych szkielet gruntowy (np.:
modul sprezystosci, wspotczynnik Poissona, wspétczynnik filtracji, porowatosc), przy-
stagpiono w dalszej czesci Rozdzialu 3 do szukania praktycznej formuly opisujacej sprezy-
ste wlasnosci cieczy porowej. W trakcie przeprowadzonej analizy wykazano, ze $cisliwos¢
mieszaniny wody i zawartych w niej drobnych czastek powietrza zalezna jest przede
wszystkim od ilosci tegoz powietrza, czyli od tzw. stopnia nawodnienia gruntu. Po-
stugujac sie kilkoma przykladami pokazano w jak dramatyczny sposéb potrafi zmienié
si¢ Scisliwos¢ cieczy porowej, gdy stopien nawodnienia maleje tylko o kilka procent,
a nawet o ulamek procenta, przyjmujac — jako wyjsciowe — warunki gruntu nawod-
nionego. Poszukiwania zwigzkow o praktycznej przydatnosci, okreslajacych Scisliwosé
cieczy porowej, wykazaly istnienie wielu rozwigzan, postugiwanie si¢ wigkszoscia ktérych
wymaga jednak znajomosci trudnych do zmierzenia parametréw, takich jak np.: sredni-
ca zawartych w wodzie porowej czastek powietrza, czy tez wartos¢ napiecia powierzch-
niowego panujacego na granicy woda-powietrze. Przedyskutowane zostalo rowniez zna-
czenie zjawiska rozpuszczalnosci czastek powietrza w wodzie porowej i jego wplyw na
wartosc scisliwosci cieczy porowe].

Wynikiem dokonanego poréwnania, przeprowadzonego dla kilku podstawowych
zaleznosci, byl ostateczny wybdr zwigzku zaproponowanego przez Verruijta (1969),
umozliwiajacego obliczenie scisliwosci cieczy porowej przy znajomosci tylko takich pod-
stawowych parametréw, jak: $cisliwos¢ wody (bez domieszek powietrza), stopienn nawod-
nienia gruntu oraz absolutne cisnienie statyczne panujace na rozpatrywanej glebokosci
w dnie morskim. Pomimo tego, ze zakres stosowalnosci powyzszego zwigzku okreslony
jest dla stopnia nawodnienia zawartego w przedziale od S = 1 do S = 0.85, to jednak
w celu potwierdzenia istnienia w rzeczywistosci warunkéw nie w pelni nawodnionego
gruntu dna morskiego, jak rowniez okreslenia z pewnym przyblizeniem rzeczywistej jego
wartosci, wykonano szereg badan in-situ w strefie linii brzegowej obszaru pltywowego.
Zaréwno otrzymane bezposrednio z pomiaréw wartosci stopnia nawodnienia, jak i dal-
sza ich statystyczna analiza potwierdzily mozliwos¢ istnienia nie w pelni nawodnionego
gruntu dna morskiego.

Rozdzial 4 poswiecono krétkiemu opisowi przyjetej do dalszej analizy teorii ciSnienia
porowego, podanej przez Madsena (1978). Po zaprezentowaniu postaci ogdlnej roz-
wigzania gléwnego réwnania rézniczkowego czastkowego, oméwiono warunki brzegowe,
przyjecie ktérych umozliwia znalezienie rozwigzania szczegolnego dla przepuszczalnej
warstwy gruntu dna morskiego o ograniczonej migzszosci i zalegajacego nad sztywnym
i nieprzepuszczalnym podlozem. Koniecznos¢ znalezienia takiego wlasnie rozwigzania
podyktowana byla gléwnie zamiarem dokonania weryfikacji wynikow wlasnych badan
laboratoryjnych, w ktérych mozliwe jest wylacznie modelowanie przepuszczalnej war-
stwy gruntu dna morskiego o stosunkowo niewielkiej, skonczonej migzszosci. Warto
w tym momencie podkresli¢, ze wraz z opublikowanymi teoriami, Madsen (1978), Ya-
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mamoto i in. (1978) oraz Okusa (1985(*)) przedstawili réwniez rozwigzania szczegdlne
dla cisnienia porowego, jednakze tylko przy zalozeniu nieskonczenie duzej migzszosci
dla przepuszczalnej warstwy gruntu dna morskiego. Rozwigzanie zagadnienia, ktére
uwzglednialoby warunki brzegowe sformutowane dla warstwy gruntu o skoniczonej migz-
szoscl, jest juz sprawag duzo bardziej skomplikowang.

Opierajac si¢ na rozwigzaniu ogélnym dla ciSnienia porowego, przedstawionym
przez Madsena (1978), wyprowadzono i zaproponowano rozwigzanie dla cyklicznych os-
cylacji ci$nienia porowego w przepuszczalnej warstwie gruntu o ograniczonej migzszosci.
Jak juz wspomniano, takie potraktowanie problemu podyktowane bylo przede wszyst-
kim potrzebg przygotowania narzedzia obliczeniowego do analizy wynikéw z badan la-
boratoryjnych. Trzeba tu jednak réwniez zaznaczyé, ze sytuacja przepuszczalnej (np.
piaszczystej) warstwy gruntu o ograniczonej migzszoéci, zalegajacej ponad warstwa
nieprzepuszczalng, moze takze pojawi¢ si¢ w warunkach rzeczywistego $rodowiska mor-
skiego.

Otrzymane rozwigzanie analityczne, przedstawione w formie amplitudy i prze-
sunigcia fazowego cyklicznych oscylacji ci$nienia porowego na glebokoéci w dnie mor-
skim, poddano dyskusji badajagc m.in. wplyw miazszosci warstwy gruntowej, $ci§liwoéci
cieczy porowej (modelowanej stopniem nawodnienia gruntu), modutu sprezystosci szkie-
letu gruntowego oraz rodzaju sztywnego i nieprzepuszczalnego podloza (np. podloze
porowate lub gladkie) zalegajacego pod przepuszczalng warstwg gruntows. Przeprowa-
dzona analiza wykazala dominujgce znaczenie zaréwno warunkéw nawodnienia gruntu,
jak 1 przepuszczalnosci gruntu oraz migzszosci warstwy gruntowej na rozklad ci$nienia
porowego na glebokosci w dnie. Wplyw charakteru nieprzepuszczalnego podloza okazal
si¢ praktycznie rzecz biorgc znikomy, a sprezystos¢ szkieletu gruntowego zaczyna odgry-
wac istotna role tylko w przypadku gruntu bedgcego w stanie luznym.

Analityczne rozwigzania pochodzace z teorii Madsena (1978) opisane sg w prze-
strzeni dwuwymiarowej, a tym samym mogg one z powodzeniem shuzyé weryfikacji
wynikéw podstawowych badan laboratoryjnych przeprowadzanych w duzej skali. Jed-
nakze zamiar wykonania badan laboratoryjnych réwniez w malej skali pociggnal za
sobg konieczno$¢ opracowania dodatkowego modelu jednowymiarowego dla ci$nienia
porowego. Tak wigc, w Rozdziale 4 sformulowano takie wlaénie zagadnienie i doko-
nano ilustracji jego rozwigzania dla parametréw wodno-gruntowych charakteryzujacych
warunki przeprowadzania badan modelowych w malej skali. Rozwigzanie jednowymiaro-
wego rownania rézniczkowego czgstkowego otrzymano na drodze numerycznej, stosujac
metode Crank-Nicolsona.

Rozdzial 5 zawiera opis szeregu badan laboratoryjnych zaplanowanych z mysla
szczegolowego zbadania rzeczywistego zachowania sig ci$nienia porowego w gruncie pia-
szczystym, poddanym dzialaniu falowania powierzchniowego, modelujac rézne wartosci
glownych parametréw wodno-gruntowych.

Jako pierwsze, przeprowadzono badania w duzym kanale falowym, ktérego rozmiary
pozwolily na symulacj¢ warunkéw falowych i gruntowych zblizonych do wystepujacych
w warunkach naturalnych. Warstwe gruntu o migzszosci 0,5m, utworzong z piasku
srednioziarnistego, poddano cyklicznemu dzialaniu progresywnego falowania powierzch-
niowego. Zastosowane w badaniach parametry fali regularnej zawieraly sie¢ w naste-
pujacych granicach: okres fali T = 3 — 10s oraz wysokosé fali H = 0,25 — 1,0m,
przy glebokosci wody wynoszacej h = 4,5m. W warstwie gruntowej zainstalowano 10
czujnikéw (po 5 w kazdym z dwéch profili pionowych) do pomiaru ciénienia porowego.
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Na podstawie dokonanych pomiaréw cisnienia hydrodynamicznego w poziomie dna
morskiego stwierdzono jego zadawalajgcg zgodnos¢ z wartosciami obliczonymi na pod-
stawie liniowej teorii Airy’ego dla fal o malej amplitudzie, a zaistniale réznice nie
przekraczaly kilku procent wartosci teoretycznych. Przede wszystkim jednak, badania
laboratoryjne przeprowadzone w duzej skali potwierdzily w sposéb jakosciowy zjawiska
zanikania (tlumienia) amplitudy oraz wzrostu przesuniecia fazowego cyklicznych oscy-
lacji ci$nienia porowego na glebokosci w piaszczystym gruncie modelowanego dna mor-
skiego.

Celem dokonania ilosciowej oceny obu wyzej wspomnianych zjawisk wykonano
cykl badan laboratoryjnych w malej skali, gdzie jednorodna warstwa gruntowa mo-
delowana byla w cylindrycznej kolumnie o srednicy 0,2m i wysokosci 0,9 m. Gléwnag
serie badan poprzedzily wstepne badania majace na celu okreslenie zakresu mozliwych
do otrzymania stopni zageszczenia osrodka gruntowego. Pomocng w tym zakresie
okazala sie specjalnie opracowana technika sypania piasku, w ktérej to stala kontrola
wysokosci sypania piasku pozwalala uzyskiwa¢ zamierzone, ale przede wszystkim jed-
norodne zageszczenie modelu gruntowego. Mala skala modelu umozliwiala réowniez
dokonanie dokladnego pomiaru stopnia nawodnienia gruntu. Poza nawadnianiem mo-
delu wymuszonym przeplywem grawitacyjnym wody przez pory gruntu, wykonano kilka
prob wytworzenia ekstremalnych warunkéw nawodnienia gruntu. I tak, stosujac sypanie
piasku bezposrednio do wody, polaczone z jednoczesng wibracja calego modelu, uzyski-
wano stosunkowo wysoki stopien nawodnienia gruntu; stosujac natomiast chwilowe
odwodnienie calego modelu, a nastepnie jego natychmiastowe powtérne nawodnienie,
otrzymywano niskie wartosci stopnia nawodnienia. W badaniach uzyto kilka rodzajow
piasku, ktorego srednice miarodajne zawieraly si¢ w przedziale dso = 0,23 — 1,0 mm.
Specjalnie skonstruowany system tlokowy, umieszczony w glowicy kolumny modelu, poz-
wolil na symulacje obcigzenia warstwy gruntu cisnieniem hydrodynamicznym o okresie
oscylacji T'=1 — 2s i amplitudzie do A = 0,4 m slupa wody.

Poréwnanie teoretycznie obliczonych wartosci amplitud i przesunieé fazowych cy-
klicznych oscylacji ci$nienia porowego na glebokosci w gruncie piaszczystym z wynikami
pomiaréw przeprowadzonych na modelu wykonanym w malej skali wykazalo ich zado-
walajaca zgodnos¢. Jedynie w przypadku modelu zbudowanego z piasku o stosunkowo
duzej $rednicy miarodajnej (dso = 1,0mm) oraz w przypadku stosunkowo niskiego
stopnia nawodnienia gruntu (S = 0.83) pojawily si¢ do$¢ znaczne réznice. Thumaczy¢ to
nalezy prawdopodobnie tym, ze po pierwsze — przeplyw wody porowej w gruncie o dos¢
znacznych $rednicach ziaren nie jest juz w zadawalajacy sposob opisany prawem Darcy,
a po drugie — znajdujac si¢ w dolnej strefie (S = 0.85) obszaru stosowalnosci zwigzku
pozwalajacego wyznaczy¢ Scisliwosé cieczy porowej, obliczona wartos¢ scisliwosci obar-
czona jest juz znaczacym bledem. Jednakze poza tymi dwoma wyjatkowymi sytuacja-
mi, wszystkie pozostale badane przypadki wykazaly dobra zgodnos¢ wynikéw badan
laboratoryjnych z wartosciami obliczonymi teoretycznie (analitycznie lub numerycznie),
potwierdzajac jednoznacznie poprawnos¢ przyjetej do analizy teorii opisujacej cykliczne
oscylacje ci$nienia porowego wywolane progresywnym falowaniem powierzchniowym nad
dnem piaszczystym.

Rozdzial 6 stanowi ilustracje jednego z mozliwych, praktycznych zastosowan teo-
retycznego rozwigzania teorii Madsena (1978) cyklicznych oscylacji ci$nien porowych,
otrzymanego w niniejszej pracy dla przypadku przepuszczalnej warstwy gruntu dna
morskiego o ograniczonej migzszosci. Omoéwiony przyklad dotyczy problemu stateczno-
éci rurociggu podmorskiego zaglebionego w dnie. Poslugujac sig¢ szczegdlnym rozwigza-
niem teorii Madsena (1978), uzyskano rozwigzanie pozwalajace na okreslenie rozkltadu
ci$nienia porowego na obwodzie rurociggu. Rozwigzanie to daje m.in. mozliwos¢ wyz-
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naczenia wartosci sity wyporu hydrodynamicznego, dzialajacej na rurociag podmorski
zaglebiony w dnie i wywolanej progresywnym falowaniem powierzchniowym. Znane do-
tychczas rozwiagzania tego zagadnienia opieraly sie wylacznie na rozwigzaniu rownania
Laplace’a, co bylo ich duza wada, gdyz nie zawieraly zadnych mozliwosci uwzglednienia
znaczenia nawet tylko niektérych, istotnych parametréw wodno-gruntowych. Zapro-
ponowane rozwigzanie dla sily wyporu hydrodynamicznego przedyskutowano z punktu
widzenia wplywu stopnia nawodnienia gruntu oraz migzszosci przepuszczalnej warstwy
gruntu dna morskiego.

Przyklad rurociggu podmorskiego zaglebionego w dnie reprezentuje soba istotne
problemy, z jakimi mozna si¢ spotka¢ w inzynierii morskiej i brzegowej, wykazujac jedno-
znacznie mozliwos¢ i zarazem potrzebe praktycznego zastosowania teorii cyklicznych
oscylacji ci$nienia porowego wywolanego progresywnym falowaniem powierzchniowym,
opracowanej przy zalozeniu istnienia Scisliwosci tak samej cieczy porowej, jak i szkieletu
gruntowego.



Chapter 1

Main thesis and main assumptions

Over the last 40 years there has been a lot of work performed on the prediction of wave-
induced pore pressures, stresses and displacements in the seabed sediments. These
predictions are based upon the assumptions that the wave loading acting upon the
seabed is sinusoidal in form and the seabed has homogeneous and elastic properties.
Under these conditions, various analytical solutions have been developed. However,
such solutions are limited because partly saturated soil conditions, that introduce a
certain but meaningful compressibility to the pore fluid, and a finite thickness of the
permeable seabed layer, make the analytical solutions rather complex to be derived.

Here arises the main aim of the present work which is, namely, a study of wave-
induced cyclic oscillations of the pore pressure within a sandy seabed for a particular
case of partly saturated seabed sediments and a limited thickness of the seabed layer. An
intention of the author was also to present a verification of the derived finite-thickness
solution by means of laboratory modelling (small- and large-scale model tests) as well
as to illustrate the application of the theoretical solution in some practical problems
from the coastal and offshore engineering.

The following thesis is submitted:

Soil saturation conditions play a predominant role in generation of instanta-
neous pore pressure cyclic oscillations induced in seabed sediments by surface
waves loading.

The wave-induced pore pressure theory by Madsen (1978), represented
here by the ‘finite-thickness layer’ particular solution, obtained by the author
in terms of the analytical functions and verified experimentally, gives a realis-
tic picture of the soil-water system interaction under natural environmental
conditions (i.e., partly saturated seabed sediments), contributing thereby to
more precise design procedures in foundation engineering.

This proposition will be tried to be proved under the following main assumptions:

- the soil skeleton and the pore fluid are compressible media,
- deformations of the soil skeleton are governed by the linear theory of elasticity,
- a flow of the pore fluid is laminar and governed by Darcy’s law,
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a rate of the pore pressure dissipation within one period of wave loading is high

enough to prevent a long-term accumulation of the pore pressure, also known as the

pore pressure build-up, residual pore pressure, permanent pore pressure or excess

pore pressure (Fig. 1.1),

- progressive surface waves are defined according to Airy’s linear theory for waves of
small amplitude,

- a seabed material consists of an uniform and anisotropic (with respect to soil per-
meability) sandy sediments,

- seabed sediments are treated as fully saturated or partly saturated,

- a permeable sandy seabed layer has a finite thickness and is underlaid by a stiff

and impermeable base.
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(case considered in the present work)

Figure 1.1 Distinguishing between instantaneous pore pressure (cyclic oscillations)
and pore pressure build-up (continuous increase)

A short review of existing pore pressure theories is presented in Chapter 2. Different
theories are compared and analysed from their assumptions point of view.

Complex properties of the three-phase medium like the soil-water-gas mixture are
discussed in Chapter 3 where the problem of pore fluid compressibility, which mainly
influences the character (i.e., magnitude and phase lag) of wave-induced pore pressure
oscillations, and particularly the relation between the degree of saturation of the seabed
sediments and the pore fluid compressibility are specially emphased and widely analysed.

Practical situations show very often that a layered permeable seabed of a finite
thickness is found instead of a homogeneous half-space. The different properties of soil
skeleton and pore fluid in a layered seabed and, especially, the impermeable boundary
condition at the bottom of the seabed layer, may have a strong influence on the wave-
induced pore pressure cyclic oscillations. In order to study this effect, the instantaneous
pore pressure response in the homogeneous permeable seabed layer of finite thickness,
overlaying a stiff and impermeable base, is analysed in Chapter 4. Such a simple seabed
stratification can be also considered as a component case of a more advanced multi-
layered seabed system.



Chapter 5 brings a detailed description of the large- and small-scale model tests
performed to obtained necessary data that could be used in verification of the formerly
derived analytical solution.

Finally, Chapter 6 illustrates one of possible engineering applications of the ‘finite-
thickness layer’ solution for the wave-induced pore pressure oscillations in seabed sedi-
ments. And thus, a vertical stability of a submarine pipeline buried in seabed sediments
is considered and investigated, assuming different relative compressibilities of seabed
sediments, and different thicknesses of the permeable seabed layer.
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Chapter 2

Review of existing theories

2.1 Theoretical approaches

The wave-induced pore pressure and seepage forces in the seabed as well as the damping
of water waves have been the subject of several investigations and theoretical considera-
tions over the last 40 years (e.g.: Biot, 1941; Putnam, 1949; Reid & Kajiura, 1957; Hunt,
1959; Murray, 1965; Sleath, 1970; Liu, 1973; Moshagen & Tgrum, 1975; Prevost et al.,
1975; Massel, 1976; Yamamoto, 1977, 1978, 1981, 1983; Madsen, 1978; Yamamoto et
al., 1978; Phillips et al., 1979; Mei & Foda, 1981; Nago, 1981; Finn et al., 1983; Tsui &
Helfrich, 1983; McDougal & Sollitt, 1984; Nago & Maeno, 1984, 1986, 1987; Kraft et al.,
1985; Okusa, 1985(%), 1985(%); Chari et al, 1987; Spierenburg, 1987; Muthukrishnaiah,
1989; Gatmiri, 1990).

Putnam (1949) assumed that the pressure variation at the sea bottom due to wave
motion induces currents in the permeable layer, and that these currents in turn dissipate
some of the mechanical energy of the waves. The analysis, required to estimate the
energy loss due to flow of water into and out of the permeable seabed as the pressure
varies about the mean hydrostatic pressure, was based upon the following assumptions:

- the sea bottom is horizontal and the permeable material has uniform permeability,
- the permeable material does not move,

- the water motion is two-dimensional,

- viscous flow prevails in the permeable material (Darcy’s law is applicable),

- the pore fluid is incompressible,

- the problem is a potential flow problem.

The above assumptions imply that Putnam (1949) investigated transient Darcy’s
law for flow in a homogeneous, inelastic (rigid) and isotropic soil due to monochromatic
wave-induced pressure fluctuations travelling along the sea bottom. The assumptions
of incompressible water and a non-deformable grain skeleton in the seabed was also the
basis of investigations made by Reid & Kajiura (1957), and Liu (1973). Under this
assumption, the application of Darcy’s law leads to the potential equation, described
by the Laplace equation, for variations of the pore water pressure in the seabed:
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&*p 0%p
Ap=V3p=_—- 4+ <=0 2.1
P P= 53t 0 (2.1)
where: Ap - laplacian of p-function,
V - Hamilton’s operator (also called the nabla),
p - wave-induced pore (water) pressure [kPal,
z,z - horizontal and vertical coordinates of the Cartesian coordinates system,

respectively, [m)].

Sleath (1970) and Moshagen & Tgrum (1975) presented the solution of the above
problem in a seabed of finite depth when linear and unidirectional waves pass over it,
in the absence of any sea structure.

The problem of damping of small amplitude gravity waves propagating over a
permeable seabed was also the subject of investigations made by Hunt (1959) in terms of
the viscous-flow theory. Murray (1965), using the same theory but for different boundary
conditions at the seabed surface, obtained a complete solution with accordingly different
results when compared with Hunt (1959).

The preceeding analyses were all based on the assumption of incompressible pore
water and soil skeleton and with the flow in the porous seabed governed by Darcy’s law.
In this case, if the seabed is isotropic in permeability, the pore pressure is governed by
the Laplace equation and independent of the permeability of the seabed. The solution
developed by Moshagen & Tgrum (1975) was based upon the potential theory whilst
the main assumption for the theoretical model of the seabed response was that the
pore water is compressible (compressibility of pore water is mainly due to inclusion of
small amount of air into the water; the pore water is then practically two-phase medium
and, in order to make a distinction with respect to the pure water, is called the pore
fluid), and that the seabed material is anisotropic (with respect to soil permeability)
with a completely rigid grain skeleton. The flow in the seabed was considered to be
two-dimensional and in Darcy’s law range, while the soil was assumed to be fully or
partly saturated. Under these assumptions, the governing equation for the pore pressure
in seabed sediments becomes the diffusion equation (also known as the consolidation
equation or the heat conduction equation) which for the case of isotropic permeability
conditions can be written as:

?p 9p 1 Op

522 T 822 o 0 (2.2)

where, additionally:
p - wave-induced pore (fluid) pressure [kPal,
cq - coefficient of diffusion [m?/s],
t - time [s].

The coefficient of diffusion depends on the porosity and permeability of soil as well
as the unit weight and the compressibility (inverse of the bulk modulus) of pore fluid
according to the following formula:

_ knp'

Y

Cd (2.3)

where: ¢4 - coefficient of diffusion [m?/s],
k - coefficient of permeability for isotropic soil [m/s],
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n - porosity of soil [-],

B' - compressibility of pore fluid (3’ = 1/K') [m?/kN],
K' - bulk modulus of pore fluid [kPa],

v - unit weight of pore fluid (y = pg) [kN/m?],

p - density of pore fluid [Mg/m?],

g - acceleration due to gravity [m/s?].

Moshagen & Tgrum (1975) found that the inclusion of pore fluid compressibility
in the analysis of wave-induced pore pressures in a porous soil altered significantly the
vertical seepage forces acting on the soil.

A similar conclusion can be drawn from the proposition made by Prevost et al.
(1975). They pointed out that the assumption made by Moshagen & Tgrum (1975),
regarding the relative compressibilities of the pore fluid and the soil skeleton, appears
somewhat unrealistic and therefore they suggested to treat the soil as compressible
and the pore fluid as incompressible. For a soil of low permeability, they presented
a simple solution for the pore pressure distribution which was showed to be identical
with the solution obtained from the analysis based on incompressible pore fluid and
soil skeleton. This can only certify a minor sensitivity of the solution for pore pressure
on the compressibility of soil skeleton, especially when a dense and very dense state
of soil is assumed. An incompressible pore fluid (i.e., pore water), however, forms the
assumption which is hardly to believe and far away from reality.

Nakamura et al. (1973), similar to Moshagen & Tgrum (1975), treated again the
seabed as a rigid permeable porous medium whilst the water was assumed to be com-
pressible. These assumptions lead again to an equation for the pore pressure in the
same form as that of the diffusion equation.

Massel (1976) considered analytically the case of propagation of gravity waves over
a permeable bottom, assuming laminar transition of turbulent flow, pore fluid compress-
ibility and soil skeleton consolidation. Taking into account the non-linear damping and
the inertia term in the momentum equation in place of Darcy’s law for a rigid porous
bed, it was concluded that the influence of the permeability on the pressure distribution
in both sea and seabed is negligibly small and that the result is essentially the same as
that from the Laplace equation.

For many purposes in soil mechanics, it is permissible to uncouple the soil solid part
(i.e., soil skeleton) and the fluid part of any analysis in order to treat them separately.
However, it may also be desirable on occasion to analyse the true coupled performance
of a composite continuum, in which the two phases interact. Examples of practical
importance would involve external loads which vary in time, and structure-foundation
interaction analyses where the generation of foundation pore pressure is completely
dependent upon the relative stiffness of the components of the system. That is, a stiff or
inhomogeneous structure causes different pore pressures from a flexible or homogeneous
one.

In many practical problems appeared in the coastal engineering, there are many
subsoil stratifications and hydrotechnical structures that can be treated as vertically
two-dimensional. Assuming also that the seabed is loaded by harmonic waves charac-
terized by long crests parallel to each other, then as a result the seabed is deformed
under plain strain conditions. Under these conditions, the following two equations, de-
scribing elastic deformations of the soil skeleton, together with the so-called storage
equation constitute the coupled problem and can be written as:
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a u, + 8%u, i G 0 [Ou, 4 Ou, B B_p 5.4
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where: p wave-induced pore pressure [kPa,
Ug, U, - soil displacements in z- and z-direction, respectively, [m],
shear modulus for isotropic soil [kPal,
v Poisson’s ratio for isotropic soil [-],
ke, k, - coefficients of soil permeability in z- and z-direction, respec., [m/s],
- unit weight of pore fluid [kN/m?],

Q

Y

B’ - compressibility of pore fluid [m?/kN],

n - porosity of soil [-],

t - time [s],

z,z - horizontal and vertical coordinates of the Cartesian coordinates system,

respectively, [m].

The first Eq. (2.4a) is formed from the equilibrium condition in the z-direction, the
second Eq. (2.4b) is formed from the equilibrium condition in the z-direction, and the
third Eq. (2.4c) comes from the continuity principles incorporating Darcy’s law of fluid
flow through a porous medium. The last equation assumes anisotropic conditions as
far as the soil permeability is concerned. Assuming an isotropic permeability, however,
Eq. (2.4c) can be written in the following simplified form:

Op 0 [Oup, Ou, kE(0%p 0%p
1
—+ = =—|=—=+=— 4d
'Bnat+3t(3m+az) 7(8m2+8z2 \244)
where, additionally:

k - coeficient of permeability for isotropic soil [m/s].

The problem of response of the seabed to water waves was the subject of a number
of papers published by Yamamoto (1977, 1981, 1983) and Yamamoto et al. (1978).
The solution presented concerns a poro-elastic seabed whilst the proposed model is
based on the three-dimensional consolidation theory developed by Biot (1941). The soil
skeleton obeys Hook’s law, i.e. the soil has linear, reversible, isotropic, and non-retarded
mechanical properties. The movement of the pore fluid is assumed to obey Darcy’s law.

A solution based on similar assumptions to those introduced by Yamamoto (1977)
was presented by Madsen (1978) who also adopted the governing equation, for flow of
a compressible fluid in a homogeneous compressible porous medium, in the form of the
consolidation equation of Biot (1941) or storage equation given by Verruijt (1969). The
pore pressure and effective stresses are assumed to be induced by a plane progressive
wave described by the linear wave theory, although it is stated that the general solution
for a progressive wave may be readily extended to non-linear progressive plane waves
or to random ocean waves by employing the principle of superposition, thanks to the
assumption of the linear elastic behaviour of the seabed sediment. The flow in the
porous bed is assumed to be governed by Darcy’s law for an anisotropic property of
permeability of the medium.
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Yamamoto et al. (1978) indicated theoretically that the seabed response to waves
is strongly dependent on the permeability, the stiffness of the porous medium, and the
compressibility of the pore fluid. The earlier solutions for the pore pressure response by
various authors are given as the limiting cases of the solution presented by Yamamoto et
al. (1978). The theoretical values calculated from their theory lie between the solutions
of the Laplace equation by Putnam (1949) and the diffusion equation by Nakamura et
al. (1973) and Moshagen & Tgrum (1975).

Madsen (1978) and Yamamoto et al. (1978) employed Biot’s consolidation equa-
tions for the pore pressure and effective stresses in a plane poro-elastic seabed and
obtained analytical solutions. Since their final governing equation was a linear partial
differential equation of the 6** order, it was rather complex to visualize the physical
meaning of the solutions, which were represented in terms of the pore pressure and
the displacement components. Okusa (1985(*)) solved the problem of the wave-induced
pore pressure and effective stresses in a poro-elastic sediment, using the compatibility
equation under elastic conditions. All assumptions are the same as in Madsen’s (1978)
theory. The only difference is that the governing equation has been reduced to a linear
partial differential equation of the 4** order which helped more clear understanding
the physical meaning of the solution. In deriving the governing equations for partly
saturated sediments the conventional assumptions employed in Biot’s theory have been
used with the following additions:

- the water and gas phases within the sediment can be considered as a single com-
pressible fluid,

- the effects of gas diffusing through water and the movement of water vapour are
ignored,

- the effective stress principle is unchanged from the normal definition for fully sat-
urated soils.

Okusa (1985(%)) discussed also a problem of the phase lag (also called the time
shift) phenomenon existing in a gas-laden sediment for the wave-induced pore pressure
and stresses.

Mei & Foda (1980) showed that the boundary layer approximation, well-known
in fluid mechanics, greatly facilitates the solution of Biots’s equation for a variety of
boundary conditions. For sufficiently high frequencies, typical for ocean and seismic
waves, a boundary layer of Stokes’ type was shown to exist near the free surface of the
solid. Outside the boundary layer, fluid and the solid skeleton move together according
to the laws of classical elasticity for a single phase. In the vicinity of the seabed surface,
however, the pore fluid has more freedom in flowing into and out of the soil skeleton and,
thereby, the difference in movement velocities of the two phases exists. This division
simplifies the analysis of the equations governing the two phases.

In order to estimate the influence of certain parameters on the pore pressure so-
lution, a simple analytical approximation has been obtained by Verruijt (1980). The
solutions presented for wave-induced pressures in the seabed are based on either one of
the following three assumptions for soils:

- the seabed soils are rigid and non-deformable,

- the seabed soils are an elastic continuum and no water is present within the soils,

- the seabed soils are poro-elastic (governed by Biot’s three-dimensional consolidation
theory which takes into account soil deformations, volume change, and pore fluid

flow).
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Similarly, for the kinematics of the sea, different wave theories were chosen (e.g.,
Airy’s wave linear theory, Stokes’ wave theory, cnoidal wave theory, and solitary wave
theory). Considering that the seabed soils are subjected to complex three-dimensional
stress-strain histories involving cycles of loading, unloading and subsequent reloading,
Verruijt (1969) concluded that the above mentioned three soil models may not, due
to their basic assumptions, be adequate to cope with such complex cyclic histories.
This may indicate that for this case, a poro elastic-plastic model could be introduced
which would allow a proper description of the stress-strain properties of saturated soils
subjected to cyclic loading paths.

Spierenburg (1987) modelled the effect of a layered soil system, in which a perme-
able soil layer of a finite thickness overlaying a stiff impermeable base was considered as
the extreme of a layered seabed. He presented two methods of solution for the response
of a finite layer to water waves. In the first method the problem is treated analytically
by solving the partial differential equations to derive a general solution. The second
method is based on a variational principle, in which the problem is formulated by an
integral that replaces the set of basic differential equations. It was shown by Spieren-
burg (1987) that this approximation technique is only appropriate for relatively thin
layers when the ratio of the permeable layer thickness to the wavelength, d/L, is less
than 1/(27).

Nago & Maeno (1987) investigated the behaviour of pore pressure and effective
stress in a near-saturated sand bed under variations in the water pressure on its sur-
face. The vertical one-dimensional analytical model, suitable to handle the important
question of the finite thickness of permeable sand layer, was verified by experiments.
Nago & Maeno (1987) pointed out that the most important factor in the whole inves-
tigated phenomenon seems to be a small amount of air present in the sand bed.

The wave-induced pore pressure and effective stresses in partly saturated subma-
rine sediments were treated not only analytically but also by means of the finite element
method (FEM). By using the general theory of behaviour of the saturated poro-elastic
media (Biot, 1941), and its simplified formulation, the well-known equations of consoli-
dation were obtained by Gatmiri (1990) who made a comparative study with the infinite
depth solution given by Yamamoto et al. (1978) and Madsen (1978), investigating the
effects of seabed thickness, permeability and soil stiffness on the wave-induced pore
pressures, effective normal stresses, shear stresses, horizontal and vertical displacement
at the mud line and with depth in the seabed.

A similar approach was presented by Nago & Maeno (1984), who developed the
theoretical method to analyse the pore pressures in the sandy seabed under the os-
cillating surface water pressure. The derived fundamental equations for the general
three-dimensional model of sand layer under the oscillating water pressure were treated
numerically (FEM) and verified by experiments for the two-dimensional problems. In
their theoretical treatment, Nago & Maeno (1984) assumed that:

- the sandy seabed is composed of three phases, i.e.: sand grains, water and air; the
porosity of water-air system is the sum of two parts made up of water and air,

- the sandy seabed is near-saturated, i.e. the amount of air present is considered to
be very small in comparison to the total volume of the porous part,

- the sandy seabed skeleton is deformed in accordance with Hooke’s law, but the
deformation of sand grains themselves is negligible,

- the density of water changes with the compressibility of water,

- the volume of air changes in accordance with Boyle’s law,

- the pore water moves in accordance with Darcy’s law.
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A comparison of important assumptions, related to the soil and pore fluid pa-
rameters, obtained from some of the main pore pressure theories reviewed above, is
presented in a tabular form (Tab. 2.1).

Table 2.1
Comparison of main assumptions in different theories describing
wave-induced pore pressure oscillations in seabed sediments

Assumptions Soil skeleton Pore fluid
Incompres- | Compres- Permeability Incompres- | Compres-
sible sible sible sible

Iso- Aniso-

Author(s) tropic | tropic

"Putnam (1949) . . .

Reid & Kajiura (1957) . . .

Sleath (1970) . . .

Liu (1973) . . .

Moshagen & Tgrum (1975) . o .

Madsen (1978) . . .

Yamamoto et al. (1978) . . .

Nago & Maeno (1984) . . .

Okusa (1985) . . .

2.1.1 Character of the wave-induced pore pressure solution

The problem considered in the present work is two-dimensional. A homogeneous and
isotropic sediment layer of a constant thickness, d, underlaid by a rigid and impermeable
base, is assumed. The z-axis is taken on the horizontal seabed surface and the positive
direction of the z-axis is taken vertically downwards from the seabed surface. Regular
long-crested progressive waves are propagating from left to right on a constant water
depth A (Fig. 2.1).

At the top of the seabed, the pressure fluctuations follow the movement of surface
waves. Therefore, the pressure at the seabed surface (so-called the hydrodynamic bot-
tom pressure) is assumed to be periodic. Its value may be measured (in-situ or in a
laboratory experiment), or determined by a higher-order wave theories. In any event,
the periodic signal can be expanded in a Fourier series and it is, therefore, sufficient
to study a singular sinusoidal fluctuation. Assuming the soil skeleton response to be
governed by the linear theory of elasticity, the final result, related to the wave-induced
soil displacements, soil stresses, and pore pressure, can be always easily achieved by a
simple superposition of the results obtained for a series of singular sinusoidal oscillations
of the surface wave loading.
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Figure 2.1 Definition sketch for the wave-induced pore pressure analysis

Above the surface of the seabed, it is assumed that the wave loading (forcing or
inducing function) is travelling in the form of a two-dimensional harmonic wave (e.g.,
propagating sinusoidal surface wave):

—(h+nw) =— |+ g cos(az — wt) (2.5)

where: 7, - water surface elevation, with respect to the still water level, [m],

h - water depth [m],

H - wave height [m],

a - wave number (¢ = 27/L) [m™?],

L - wavelength [m],

w - wave angular frequency (w = 27/T) [s7!],

T - wave period [s],

t - time [s],

z,z - horizontal and vertical coordinates of the Cartesian coordinates system

[m)].

Resulting from the surface wave oscillation, the hydrodynamic bottom pressure
oscillation, derived from Airy’s linear wave theory, is given as:

pp = Py cos(az — wt) (2.6)
with
H |

Py=~

2 ‘Ywm (2.7)

where, additionally:
py - hydrodynamic bottom pressure [kPal,
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Py - amplitude of the hydrodynamic bottom pressure [kPa],
~w - unit weight of water [kN/m?].

Since all the above mentioned investigators assumed that the loading boundary
condition is periodic in both time and horizontal space, it is reasonable to assume that
the solution sought is a steady state (periodic) solution, and the dependent variables
(i.e., both the soil displacements and the pore pressure) can be expressed in terms of
periodic functions in time, with the same frequency w, and in space, with the same wave
number a.

For the convenience, especially in mathematical descriptions of the problems where
a relative compressibility of the two-phase seabed medium is assumed, the use of complex
variables was introduced. It is understood that only the real part of the complex solution
has a physical meaning, and is to be considered the solution to the problem at hand.
In the following it is implicitly assumed that only the real part of any complex solution
constitutes a solution to a given problem. Additionally, if there is a complex variable
appearing in any equation given in the following, the unit given after the explanation
of this complex variable in the equation legend will always pertain to the real part and
the imaginary part of the complex variable, and must not be related with the complex
variable as a whole.

Taking the above into account, the surface wave motion equation [see Eq. (2.5)],
and the wave-induced boundary condition imposed at the surface of the porous seabed
[Eq. (2.6)], can be respectively presented in terms of complex variables as:

e g%{exp[i(aw —wt)|} (2.8)

and

py = PyR{expli(az — wt)]} (2.9)

where, additionally:
R{ } - denotes a real part of { },

7 - imaginary unit (z = y/—1).

If it is assumed that the harmonic wave loading is the dominant loading flow, then
under poro-elastic conditions, it can also be assumed that any particular variable ¢
(representing either the hydrodynamic bottom pressure, or wave-induced soil displace-
ment, or wave-induced pore pressure), which is dependent on z, z and ¢, can be given
in the complex-valued trigonometric form as:

é(z,2,t) = ¢(2)[cos(az — wt) + isin(az — wt)] (2.10)
which can be also written, for convenience, in the exponential form as:

B(2,2,) = §(z) explilaz — wt) (2.11)
where, additionally:
¢ - arbitrary harmonic function (complex-valued), dependent on z,z and ¢,
é - arbitrary function (complex-valued), related to ¢-function and dependent
on z only.

The introduction of complex variables was allowed because of the linearity of the
governing equations used by the authors of the pore pressure theories. This suggested
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also that all variables will depend on z and ¢ in the form given by the forcing function,
i.e., exp[i(az — wt)|. This greatly facilitated the subsequent analysis since the differen-
tiation of any variable with respect to z or ¢ reduced to the variable itself multiplied by
(ia) or (—wt), respectively.

Consequently, the wave-induced soil displacements and pore pressure may be writ-
ten in the form:

z)exp[i(az — wt)] (2.12a)
z)exp[i(az — wt)] (2.12b)
p(z,z,t) = p(z) exp[i(az — wt)] (2.12¢)

where: u, - horizontal (i.e., in z-direction) displacement of soil (complex-valued), de-
pendent on z,z and ¢, [m],
%, - horizontal displacement of soil (complex-valued), dependent on z only,
[m],
u, - vertical (z.e., in z-direction) displacement of soil (complex-valued), de-
pendent on z,z and ¢, [m],
u, - vertical displacement of soil (complex-valued), dependent on z only, [m],

p - wave-induced pore pressure (complex-valued), dependent on z,z and ¢,
[kPal,

p - wave-induced pore pressure (complex-valued), dependent on z, [kPal,

a - wave number [m™!],

w - wave angular frequency [s7!],

t - time [s],

z,z - horizontal and vertical coordinates of the Cartesian coordinates system,

respectively, [m],
¢ - imaginary unit.

Equations (2.12a) to (2.12c) give the complex-valued solutions. A momentary (i.e.,
for an arbitraty time-point denoted by t) value of the wave-induced pore pressure, for
example, in the permeable seabed layer (for any arbitrary point in space, denoted by z
and z), can be easily obtained by extracting a real part from the complex-valued pore
pressure solution:

p' = R{p} (2.13)
where: p' - wave-induced pore pressure (real-valued) [kPal,
p - wave-induced pore pressure (complex-valued) [kPa],

R{ } - denotes a real part of { }.

Taking the properties of complex variables into account (Fig. 2.2), there is also
another method of presentation of the wave-induced pore pressure solution, namely in
terms of two characteristic parameters, i.e.: the amplitude and the phase lag (also called
the time shift) of pore pressure oscillations:

P = |p| = v/(R{p})? + (3{p}) (2.14a)

§ = arctan (%) (2.14b)
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where: P - amplitude of the wave-induced pore pressure [kPal,
|p| - modulus of the complex-valued wave-induced pore pressure [kPa,
) - phase lag of the wave-induced pore pressure oscillations [rad],
p - wave-induced pore pressure (complex-valued) [kPal,

R{ } - denotes a real part of { },

${ } - denotes an imaginary part of { }.

(a) Given a complex number: p = R{p} +iS{p} =4 +i4

R R

14
—
ol = /(R{p})? + (35D’
=142 +42=5.66
6 = arctan (S{p}/R{p})
= arctan(4/4) = 45°
(b) p as vectors in rectangular (c) Conversion to magnitude
coordinates system and phase

©

0° p = |p| L6 = 5.66 L45°

\Q\A’\

RN
N

—90°

(d) Magnitude and phase in polar
coordinates system

Figure 2.2 Complex number expressed in rectangular and polar form [Ramirez, 1985]

The amplitude, P, and the phase lag, §, of the wave-induced pore pressure oscil-
lations constitute entirely the wave-induced pore pressure solution. The both of these
parameters are independent of z and ¢, being funcions of z only. A proper combination
of these two parameters allows to present a momentary value of the wave-induced pore
pressure in the permeable seabed layer, using — this time — a real-valued variables only.

And thus:
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p' = Pcos(az — wt + §) (2.15)

where: p' - wave-induced pore pressure (real-valued) [kPal,
P - amplitude of the wave-induced pore pressure [kPa],
8 - phase lag of the wave-induced pore pressure oscillations [rad],
a - wave number [m™!],
w - wave angular frequency [s7!],
t - time [s],
z - horizontal coordinate of the Cartesian coordinates system [m].

For simplicity and convenience of presentation of pore pressure results, the momen-
tary value, p', and the amplitude, P, of the wave-induced pore pressure oscillations, are
very often given in relative and dimensionless forms obtained by dividing them by the
amplitude of the hydrodynamic bottom pressure, Py. Denoting the new relative and
dimensionless parameters by a super-imposed ‘bar’, one obtains:

!

_p
= 2.16
P=5 (2.16a)

_ P
P = = (2.16b)

where: - relative (and dimensionless) wave-induced pore pressure [-],

P

P - relative (and dimensionless) amplitude of the wave-induced pore pressure
H’

p' - wave-induced pore pressure (real-valued) [kPal,

P - amplitude of the wave-induced pore pressure [kPal,

P, - amplitude of the hydrodynamic bottom pressure [kPa].

Yamamoto et al. (1978) presented general solutions for vertical and horizontal dis-
placements of the soil skeleton and pore pressure in a semi-infinite (half-space) domain.
It is interesting to note that the solution for the response in a fully saturated seabed un-
der undrained conditions is the same as that obtained by Putnam (1949) who assumed
that soil is rigid and the water is incompressible. The solutions for the pore pressure, soil
displacements, and soil stress components in a fully saturated and semi-infinite seabed
(i.e., of infinite thickness) can be written as (Yamamoto et al., 1978):

p = Py exp(—az)expi(az — wt)] (2.17a)
uy = —tazexp(—az )2 G exp[i(az — wt)] (2.17b)
uy = (1 + az)exp(—az )2 G exp[i(az — wt)] (2.17¢)

o, = —o., = Pyaz exp(—az) exp[i(az — wt)] (2.17d)

7 = —%Poaz exp(—az)expli(az — wt)] (2.17¢)

where: p - wave-induced pore pressure (complex-valued) [kPal,
ug - horizontal displacement of soil (complex-valued) [m],

u, - vertical displacement of soil (complex-valued) [m],

o! - horizontal effective normal stresses (complex-valued) [kPal,
o! - vertical effective normal stresses (complex-valued) [kPal,
7' - effective shear stress (complex-valued) [kPal,

G - shear modulus for isotropic soil [kPal.



Sec. 2.2 Experimental verifications 17

2.2 Experimental verifications

Besides the numerous theoretical solutions (from quite simplified to more advanced) for
the wave-induced pore pressure prediction, the published laboratory and field data are
very scare, while all experimental investigations can be divided into two groups, namely:
site investigations and laboratory tests.

Cross et al. (1979) investigated wave-induced pore pressures in the near-shore fine
sand seabed by means of a vertical piezometer. The theoretical relationship developed
by Putnam (1949) is reported to predict adequately the magnitude of wave-induced
pore pressure and their attenuation with depth below the seafloor. An agreement was
also found by Sleath (1970) who introduced different permeabilities in the vertical and
horizontal directions.

In a laboratory study on the stability of buried pipelines, Phillips et al. (1979)
concluded that the potential theory did not generally give an accurate representation
of the transmission of wave-induced pressures through the sand when compared to
their test results. Their tests indicated also that the theoretical prediction made by
Moshagen & Tgrum (1975) overestimates the magnitude of the pore pressure response,
and underestimates the actual phase lag in pressure transmission through the soil as a
function of depth. This discrepancy between theoretical and measured values indicates
above all that the assumption concerning rigidity of the soil structure was inaccurate.

Dunlap et al. (1978), Bennett & Faris (1979), and Cross et al. (1979) have pre-
sented the results of experiments on the pore pressure generation in the sediments of
Mississippi and coastal zone of Pacific. However, they are mainly related to the long-
term changes. The relation of the observed pressure to the surface oscillations was not
considered.

Massel & Kaczmarek (1988) reported a study of pore pressure behaviour in a nat-
ural sandy seabed in the coastal zone of the Baltic Sea. The pore pressure attenuation
was measured at several levels in the porous medium under the wind waves action.
The collected data were used to analyse the problem from the statistical and spectral
point of view. The comparison of experimental data with various theoretical solutions
demonstrated that the boundary layer approximation by Mei & Foda (1980) and the
solution by Yamamoto et al. (1978) properly reflect the observed physical mechanism.

In 1988 and 1989 the Soil Mechanics Group at the University in Oxford made
many visits to five UK coastline locations in order to carry out measurements of wave-
and tide-induced pore pressures (Thomas, 1991). The results of measurements showed
that there is a higher degree of wave amplitude reduction with depth for the short-
period waves than for those of long-period waves. The observed pore pressure response
was also quantified. During this research, in order to analyse the arbitrary pressure
waves, the Discrete Fourier Transform analysis was applied to each wave in turn. This
procedure separated out each wave into a spectum of sinusoidal waves over a range
of wave periods. Using both the analytical solution of Yamamoto et al. (1978) and
their own mathematical model, an excellent comparison between theory and practice in
Geotechnical Engineering was pointed out.

Okusa (1985(%)) carried out wave-induced pore pressure measurements at four sites
around Shimizu Harbour, Central Japan. According to his observations the measured
pore pressures in seabed sediments decrease faster than the predicted ones for fully
saturated sediments. The existence of pore gas in the sediment or other damping mech-
anisms are mentioned to be required to explain the observed phenomenon.
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Yamamoto et al. (1978) compared the theoretical results with wave tank exper-
imental data on pore pressure in coarse and fine sand beds which were described to
contain a small amount of air. An agreement between the theory and the experiment
was estimated as a good one which indicated that, according to the theoretical assump-
tions, the seabed response to waves is strongly influenced by the permeability and the
stiffness of the soil. The data for coarse sand showed practically no phase lag and were
in a very good accordance with the theoretical values determined by the solution of
the Laplace equation for finite thickness given by Putnam (1949). The comparison of
measured data with the previously proposed theories is concluded that none of these
theories are adequate for predicting the wave-induced pore pressure cyclic oscillations in
the fine sand. The potential solution by Putnam (1949) predicts a much more smaller
pressure attenuation with depth in the seabed, comparing to the solution of the diffusion
equation given by Moshagen & Tgrum (1975) and Nakamura et al. (1973). A direct
determination of the soil-water-air mixture parameters (e.g., soil permeability, degree
of saturation) was not made in tests performed by Yamamoto et al. (1978), so that
direct comparisons between their theory and the experiments could not be done.

Tsui & Helfrich (1983) presented results of measured wave-induced pore pressures
in a model sand layer. Their report is probably one of the best from all the published
information because the test preparation and execution procedure are documented very
clearly and in detail. It is stated that the measured pressures varied with the wave height
and period, sand layer thickness, and sand density. For short-period waves, measured
pressures compare well with theoretical (Stokes’ 2™¢ order wave theory) pressures on the
surface of the sand layer. Measured pressures were greater than theoretical when the
model wave period was greater than 1.7s. Pressures within a sand layer were observed
to decrease more rapidly with depth than predicted by many of the published pore
pressure theories. The existence of the pore pressure phase lag was also found, however,
this phenomenon was reported to be not well-understood.

A similar study was made by McDougal & Sollitt (1984) where large-scale la-
boratory experiments were conducted to validate Biot’s consolidation model for cyclic
loading of layered seabeds. A horizontal layered soil system was modelled with an im-
permeable bottom, fine sand lower layer, geotextile between layers and gravel surface
layer. Vertical pressure profile measurements demonstrated a hyperbolic decay of pres-
sure amplitude with depth in accordance with Biot’s theory. Results were shown to be
linearly proportional to wave amplitude. Increased pressure attenuation with depth was
observed with increasing wave frequency.

Demars & Vanover (1985) examined experimentally the effects of water wave load-
ing on the pressure and stress distributions within a sandy seabed model in a laboratory
wave tank. They proved that the potential theory acurately predicted wave-induced
pore pressures in a stiff, fully saturated and permeable sandbed.

Chari et al. (1987) reported results of experiments in a soil wave tank in which the
pore pressure variation profile inside a porous seabed of sand was measured for diffe-
rent wave types. His tests showed that for porous seabed sediments the pore pressure
developed below the mudline is the major factor causing the instability. Using storm
wave conditions, shallow slope failures of 2 to 3m depth were indicated to be likely to
happen on underwater seabed slopes with an inclination of 10 %.

Muthukrishnaiah (1989) confirmed the observation of Tsui & Helfrich (1983) that
the density, porosity, and permeability of the soil have a very significant influence on
the wave-induced pore pressure which Putnam’s (1949) theory completely ignores.
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2.3 Conclusions

Many theories, describing the wave-induced pore pressure cyclic oscillations in sandy
seabed sediments have been derived and published. Among them, there are theories
which are simple from the mathematical point of view [e.g., the potential theory by
Putnam (1949)], being based on the assumptions of incompressible pore fluid and soil
skeleton. These rigorous assumptions are far away from the realistic conditions of the soil
and pore fluid two-phase medium. The above presented review showed that all simplified
theories are mostly extreme cases of more advanced theories and have to be treated only
as approximating methods. Others, more advanced theories (e.g.: Yamamoto et al.,
1978; Madsen, 1978; Okusa, 1985(“)) seem to be enough developed in order, at least, to
describe the governing problem by introducing additional but meaningful parameters,
thereby giving a possibility of wide analyses of real soil-water conditions.

There is an evident lack of information on physical sea bottom parameters when
site investigations are performed. Only a wave climate is well-recognized and defined in
these cases. In some of the available reports, the results are presented where the first
measuring point in a vertical profile is located few meters below the seabed surface,
omitting thereby the upper part of sediments, from where the information on pore
pressure amplitude and phase lag could be of a great interest for many engineering
problems.

A short review of some representative laboratory investigations indicates the follow-
ing remarks:

- in majority, results obtained from tests are reported to be observed and not mea-
sured which is a certification for only a qualitative character of conduced tests,

- in few cases a good agreement between measured pore pressures values and those
obtained from the potential theory (Putnam, 1949) is proved, but the sand used
for experiments was always reported to be stiff and fully saturated,

- authors, mentioning the potential theory (Putnam, 1949) as a good tool for de-
scribing the pore pressure distribution with depth, say nothing about the way of
the phase lag interpretation (using this theory it is impossible to incorporate the
phase lag effect into a mathematical model and to predict its value),

- not all of the soil-water-air mixture (i.e., pore fluid) parameters are given when
presenting results of pore pressure measurements; very seldom information on sat-
uration conditions exists — if any, they are described as fully saturated or partly
saturated, but not quantified by concise values.

Taking the above into account, the following conclusions can be drawn concerning
the aim of further studies:

- a wide range of theoretical descriptions of the governing problem exists; only these
theories should be considered which contain soil and pore fluid parameters, impor-
tance of which is reported in both theoretical parameter studies and observations
from laboratory and site investigations,

- a best-fitting theory must also be adapted to solve problems with boundary con-
ditions typical for laboratory investigations — this requirement is necessary for any
comparison between theory and experiment,

- as far as an experiment is concerned, measurements must supply a quantitative
picture of the pore pressure oscillations due to wave action to give a precise answer
on a possible application of a certain pore pressure theory into many different
practical engineering problems.
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Chapter 3

Properties of the soil-water-air
three-phase medium

3.1 Soil skeleton

3.1.1 Saturated and partly saturated soil

Soil is composed of solid particles with intervening spaces. As shown in Fig. 3.1, using
the nomenclature wide-accepted in soil mechanics, the solid particles of the system are
referred to the soil skeleton, and the spaces in the system to the pore spaces, pores, or
voids. The pore spaces are usually filled with water and air. A soil in which the pore
spaces are completely filled with water is called fully saturated, or simply — saturated.
If any gas (e.g., air) is present in the pore spaces, the soil is used to be called partly
saturated, or simply — near-saturated. For convenience, and in order to distinguish
between a pure water and a water-gas mixture, the mixture of water and gas is called
the pore fluid.

A real soil is a complex multi-phase system. Its properties depend on the size and
shape characteristics of the constituent parts, or phases, on their relative volumes and
weights, and finally on the interactions between them. A soil medium can be composed
of either two or three different phases. In a completely dry soil there are two phases,
namely the solid particles and the pore air. A fully saturated soil is also a two-phase
medium, being composed of the solid soil particles and the pore water, whereas a partly
saturated soil is represented by a three-phase system where the third component is
formed by the pore air. All the components of a soil are shown in Fig. 3.2.

3.1.2 Porosity

Porosity and void ratio are used to describe numerically the same quantity, namely, the
relative volume of the voids in the soil. The porosity is the ratio of the volume of voids
to the total volume of soil (see Fig. 3.2), i.e.:
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Mineral skeleton

Pore spaces, pores,

or voids
Figure 3.1 Constituents of soil [Dunnicliff, 1988]
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Figure 3.2 Phase diagrams [Craig, 1983]

where: n - porosity [-],
V, - volume of voids in soil skeleton [m?],
V; - total volume of soil [m?].

The void ratio is the ratio of the volume of voids to the volume of solids (see
Fig. 3.2), t.e.:

Vy
€ = 7, (32)
where: e - void ratio [-],

V, - volume of voids in soil skeleton [m?],
V, - volume of solids in soil (volume of soil skeleton) [m?].
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The void ratio and the porosity, respectively, are inter-related as follows:

where: e - void ratio [-],
n - porosity [-].

The only granular system for which porosity can be determined by relatively simple
mathematical methods is a package of uniform spheres. In the loosest stable arrange-
ment of equal-sized spheres, when sphere centres from a rectangular space lattice (cubic
package) and each sphere is in contact with six neighbourning spheres, the maximum
porosity is n = 0.476; in the densest state of package, when sphere centres from a rhom-
bohedral array and each sphere is in contact with 12 neighbourning spheres, porosity is
n = 0.259.

In the case of coarse and medium sand the porosity can vary from 0.4 to 0.45 and
from 0.25 to 0.32 for loose and dense state, respectively. Porosities of a uniform fine sand
range from 0.45 to 0.48 and from 0.33 to 0.36 for loose and dense state, respectivelly
(Kézdi, 1974).

Information on values of porosity for sandy seabed sediments, citied and used by
the authors of the formerly mentioned pore pressure theories, is rather coherent. And
thus: n = 0.3 (Moshagen & Tgrum, 1975), n = 0.4 (Madsen, 1978; dense sand), n = 0.3
(Yamamoto, 1981; North Sea geotechnical design condition), n = 0.4 (Nago & Maeno,
1986).

This range of possible values of the soil porosity was confirmed by in-situ mea-
surements performed on German coastline of the North Sea (Magda & Davidov, 1990)
where the mean from more than 200 sand samples was found to be n = 0.36.

3.1.3 Degree of saturation

Soil saturation is quantitatively characterized by the degree of saturation, given in
percentage or as a fraction, which is the ratio of the volume of water in the soil to the
total volume of void spaces (see Fig. 3.2):

Vo
S=— 3.5
2 (35)

where: S - degree of saturation [-],
Vw - volume of water in soil pores [m?],
V, - volume of voids in soil skeleton [m?].

The degree of saturation can range between the limits S = 0, for a completely dry
soil, and S = 1, for a fully saturated soil. It is also convenient to introduce additionally
the water content definition (also called the moisture content) which is the ratio of the
mass of water to the mass of solids in the soil:
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= 3.6
e (3.6)
where: w - water content [-],
m., - mass of water in soil pores [kg],
ms - mass of solids in soil (mass of soil skeleton) [kg].
The degree of saturation can be now expressed as:
i it (3.7)

€

where: S - degree of saturation [-],
w - water content [-],
0s - specific gravity of solid soil particles [-],
e - void ratio [-].

In order to calculate the degree of saturation, the water content and the void ratio
need to be determined by laboratory measurements. Regarding the specific gravity of
the solids, the use of the tabulated average values will normally be accurate enough.

Figure 3.3 shows a linear relationship between the degree of saturation, S, and the
water content, w, where the range of the degree of saturation for partly saturated soils
is divided into four subintervals.
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Water content, w [-]
Figure 3.3 Degree of saturation versus water content [Kézdi, 1974]
Saturation conditions are very often desribed by the air content:
ne =n(l —5) (3.8)

where: n, - porosity of soil occupied by air content [-],
n - porosity of soil [-],
S - degree of saturation [-].
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Generally, the determination of the content of air, which is present in the form of
small entrapped bubbles dispersed throughout the soil, is very problematic and difficult
to perform with a satisfactory accuracy.

As it will be shown in the following, the degree of saturation has a direct influence
on the compressibility of pore fluid and, therefore, plays a very important role in the
process of the wave-induced pore pressure cyclic oscillations within the sandy seabed.
It has a great bearing on many applications in both onshore and offshore engineering.

3.1.3.1 In-situ measurements and their statistical analysis

A better knowledge of a real value or possible range of values of the degree of saturation
typical for the natural environmental conditions is very needed as an important input
parameter for many different mathematical modellings and numerical computations. A
well-known characteristic of soil saturation conditions can be also very helpful when
performing laboratory investigations and making a comparative analysis of a certain
phenomenon observed under both laboratory and natural conditions.

In order to get a better insight into the problem, the measuring campaign was con-
ducted on the sea-side of Norderney Island, located very close to the German coastline
of the North Sea (Magda & Davidov, 1990). The main task of the expedition was to
perform sampling of the seabed sediment and to gather as much sandy bottom samples
as possible for determining the degree of saturation typical for natural environmental
conditions. During the expedition, 186 samples of sandy seabed sediments were taken
underwater in different phases of the tidal motion (z.e., low tide and high tide). The
degree of saturation was calculated using the following practical expresion:

mw’ wg
8
S = L S (3.9)
(14 w)espw — Vv,
where: S - degree of saturation [-],
Mqs - mass of wet soil sample [kg],
V; - total volume of soil sample [m],
w - water content [-],
os - specific gravity of solid soil particles (with respect to the density of pure

water) [-],
pw - density of water [kg/m?].

On the basis of the values measured on Norderney Island, a further data analysis
was made using a statistical approach in three common statistical terms, namely: the
mean, the standard deviation, and the coefficient of variation.

A representative value for the specific gravity of solid soil particles was found as the
mean from 8 samples randomly selected from the whole group of 186 samples, and was
equal g, = 2.66. Using this value together with other measured values (m,s and w),
assuming p, = 1,020kg/m? for sea water, and applying Eq. (3.9), the mean value of
the degree of saturation, for the total group of 186 samples, was found to be S = 0.967,
whereas the standard deviation g = 0.037.
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The coefficient of variation is given as:

o
Voar = — (3.10)
0]
where: V,,, - coefficient of variation of random variable v, [-],
o, - standard deviation of random variable v, [the same unit as for v],
¥ - mean of random variable v, [the same unit as for v],

Therefore, the coefficient of variation of the degree of saturation, computed directly
on the basis of the measured soil parameters (w and my;), equals V,qr(S) = 0.038.

The quality of the performed measurements of the wet sample mass, m.,,, the water
content, w, the specific gravity of solid soil particles, p;, and the computation of the
degree of saturation, S, can be estimated when comparing the coefficient of variation,
calculated in the present analysis with values published in the literature.

When rewieving the calculated values of the degree of saturation, it was noticed
that some of them (23 from 186 tests, which is 12.37 %) have values higher than 1. From
a physical point of view it is impossible to have a degree of saturation S > 1, however,
from an engineering point of view this result is not so much surprising because of the
nature of the testing procedure used and a certain testing variability. Furthermore,
rejection of tests that plot above the ZAVL (Zero-Air-Voids-Line; S = 1) distorts any
statistical findings from the field sampling and may have important engineering and
economic consequences (Schmertmann, 1989). On the other hand, values of the degree
of saturation S > 1 cannot be directly used for the evaluation of the mean of the degree
of saturation to characterize average, real soil saturation conditions.

In order to overcome this problem, a statistical analysis of the measured soil pa-
rameters can be very useful. By adopting one of the statistical distributions analytically
formulated, it becomes possible to calculate the expected percentage of tests which are
characterized by computed values of S > 1. It appears that the normal (Gaussian)
distribution gives the most convinient shape in terms of mathematics. Schmertmann
(1989) confirmed also that on the basis of general impressions from his experience and
from the literature, as well as from specific comparisons using normal distributions to
describe the variability in some soil parameters in tests, acceptable approximations are
achieved. The calculations of the normal distribution, performed in the present work,
were based on the formulas for:

- the normal probability density function, f,(v),
- the normal probability distribution function, P,(v).

A random variable v follows the normal distribution if its probability density func-
tion is given by (Bendat & Piersol, 1971):
_\2
exp l— u] (3.11)

2
207

1
falv) = 0y 2T

where: f,(v) - normal probability density function of random variable v, [-],

v value of random variable v, [the same unit as for v]|,
standard deviation of random variable v, [the same unit as for v|,
mean of random variable v, [the same unit as for v].

Oy
v
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A more convenient form of the normal distribution, however, can be obtained by
using a standarized random variable v', the value of which is given by:

9 = (3.12)

Thus, the normal probability density function can be expressed by:

V2 2

and the normal probability distribution function is:

fr(v') = - exp !—(v,) ] (3.13)

P2 Bt <ol = \/% /_ oo = (‘%) de (3.14)

~ The normal probability distribution function, P,(v'), informs about the expected
percentage of random events characterized by values lower or equal to a value of v'. If
one has to compute P,(v > v') [e.g., Po(S > 1)], Eq. (3.14) must be changed into the
following form:

oo 2
Pu(v' >9') = \/% /, exp (—%—) dé (3.15)

The field and laboratory tests for the mass of wet sand sample, water content, and
specific gravity of soil have very little, if any, interdependence. Calculations showed that
the results from repeated tests varied approximately symetrically around their means in
a normally distributed, random manner. After assuming independence and randomness
of the variables in Eq. (3.9), one can use the first two terms of the Taylor series to obtain
a first-order approximation of the variability in the degree of saturation. The following
gives the differential equation for the first-order approximation:

e OMmiys S ow P 0os Te (3.

where: os - standard deviation of degree of saturation [-],
S - degree of saturation [-],
m.s - mass of wet sample [kg],
o0m - standard deviation of mass of wet sample [kg],
w - water content [-],
0, - standard deviation of water content [-],
os - specific gravity of solid soil particles (with respect to the density of pore
fluid) -],

o, - standard deviation of specific gravity of solid soil particles [-].

Using Eq. (3.9), one can derive individual parts of Eq. (3.16). And thus,

1 p?
—w—"(1+ w)
05 __ % b 3.17
3m N m 2 ( ' a)
(14+w)gs — ——

Vi
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_Mwe? 1
gi: Vi Z;” 5 (3.17¢)
[+ wpe. - 2]

where, additionally:
V; - total volume of soil sample [m®].

Table 3.1 gives a comparison of the coeflicients of variations published by Schmert-
mann (1989), with those obtained in the present analysis. The values of the coefficient of
variation obtained from Norderney Island data are rather close to the values, described
by Schmertmann (1989) as V") Low values of the coefficient of variation can certify
and prove a good quality of the applied sampling procedure.

Table 3.1
Comparison of coefficients of variation

Soil parameter After Schmertmann (1989) ‘Norderney’
Var? (%) | Vi %] | Ve (%] | Vear [%)

e 1.5 3 6 1.2

w 7.5 15 30 5.1

Qs 1.0 2 4 ==

S (analytical) 7.0 14 28 4.3

In the above described procedure it is assumed that the volume of the sample,
Vi, as well as the density of water, p,,, have constant values for all the samples. This
assumption seems to be correct because, if any, the variations of these parameters
compared with the variation of the mass of wet sand sample and the water content
is supposed to be very small. The variability values for the mass of wet sand and
the water content found from the samples taken on Norderney Island are in a very
good accordance with those presented by Schmertmann (1989) and denoted by Vv(,if‘w).
Because of that fact, the variability of the third parameter, i.e. the specific gravity
of soil, which is needed for the calculation of the standard deviation of the degree of
saturation [Eq. (3.16)], was taken directly from Schmertmann’s (1989) publication where

Vv(i?.w)(p,) =1.0.
The standard deviation of the degree of saturation computed analytically o
0.041, using the statistical approach described above [see Eq. (3.16)], is only slightly

larger than the value calculated directly from the measured soil parameters (o5 = 0.037).
The same is with the coefficient of variation of the degree of saturation; the analytically

(a) _
g =
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comupted value, Vé:g(S) = 0.043 (see Tab. 3.1), exceeds slightly the value computed
directly from the measured soil parameters [Vy,,(S) = 0.038].

Assuming that the deviation in the degree of saturation is in accordance with the
normal distribution, Fig. 3.4 presents the distribution of the degree of saturation from
the field sampling and shows that the equivalent normal distribution gives a reasonable
approximation thereof.
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Figure 3.4 Field data showing approximate normal distribution for calculated values
of degree of saturation (based on seabed sampling from Norderney Island)
[Magda & Davidov, 1990]

If the normal distribution approximation is accepted, the next step that can be
done is to calculate the standard deviation, using Eq. (3.16), for different, hypotheti-
cally assumed, mean values of the degree of saturation. Then, using the formula for
the normal probability distribution function, Eq. (3.15), or entering appropriate tables
of normal distribution values, one can finally obtain the expected percentage of tests
that will compute with S > 1. In the present work, this calculation was performed
numerically where the procedure of numerical integration, using the extended midpoint
rule, had to be implemented because of the integral to be calculated is an improper
integral, the upper limit of which approaches infinity [see Eq. (3.15)].

A graphical presentation of the calculated values of the probability P(S > 1) is
illustrated in Fig. 3.5. By entering the probability curve (obtained for the coefficients of
variation of ‘Norderney Sand’ parameters) for P(S > 1) = 12.37 %, one can easily read
out (see Point Ps) that the mean value of the degree of saturation equals S(%) = 0.95.

Comparing the analytical result 5(*) 2 0.95, obtained taking the variability of the
degree of saturation into account, with the mean value S = 0.967, evaluated directly
from the field sampling and laboratory test measurements, a very good agreement was
found that can only confirm a proper assumption of the normal distribution for the
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statistical analysis of the degree of saturation from in-situ measurements. Additionally,
the analytically obtained result, slightly smaller than the directly computed value of the
degree of saturation, is more realistic because the meaning of tests with S > 1 is taken
into account throught the statistical approach that assumes the possibility of man-made
errors in soil testing procedures.

The finally obtained result for the mean degree of saturation confirms undoubtedly
the existence of partly saturated seabed sediments in the natural environment. This has
obviously important consequences for the coastal engineering practice. This problem
will be dealed with in the following.
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Figure 3.5 Analytical values of percentage of field tests expected to plot above ZAVL
(S > 1), computed for ‘Norderney Sand’ variabilities from Tab. 3.1, and
assuming g, = 2.66

3.1.4 Elastic parameters

Displacement solutions from the theory of elasticity can be used at relatively low stress
levels, so as for seabed sediments loaded by surface water waves is believed to be. These
solutions require a knowlegde of the values of Young’s modulus, E, and Poisson’s ratio,
v, for the soil, either for undrained conditions or in terms of effective stress. Poisson’s
ratio is required for certain stress solutions. It should be noted that the shear modulus:

E

=3+

(3.18)
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where: G - shear modulus for isotropic soil [kPal,
E - Young’s modulus of elasticity for isotropic soil [kPa,
v - Poison’s ratio for isotropic soil [-],

is independent of the drainage conditions, assuming that the soil is isotropic.

In the following, the above mentioned constants will be used in sense of linear
elasticity, i.e. describing a material having a linear, reversible stress-strain relationship.
Additionally, since the considered seabed material is assumed to be anisotropic only
with respect to soil permeability, the term ‘isotropic’ used in the description of the
shear modulus and Young’s modulus of the soil will be omitted in the following.

The volumetric strain of an element of linearly elastic material under three principal
stresses is given by:

AV, 1-2
Vt: =~ Y (01 4+ 02 + 03) (3.19)
where: AV, - increment of total volume of soil [m?],
Vii - initial total volume of soil [m?],
E - Young’s modulus of elasticity [kPal,
v - Poison’s ratio of soil [-],

01,02,03 - total principal stresses in z-, y- and z-direction, respectively, [kPa).

If the above expression is assumed to be applied to soil-like media, then for un-
drained conditions AV;/V;; = 0, hence v = 0.5. If consolidation takes place, then
AV,;/Vy; > 0 and v < 0.5 for drained or partially drained conditions.

The value of Young’s modulus, F, can be estimated from the curve relating principal
stress difference and axial strain in an appropriate triaxial test. The value is usually
determined as the secant modulus between the origin and one-third of the peak stress,
or over the actual stress range in the particular problem. However, because of the
effects of sampling disturbance, it is preferable to determine F, or G, from the results
of in-situ tests. One such method is to apply load increments to a test plate, either
in a shallow pit or at the bottom of a large-diameter borehole, and to measure the
resulting vertical displacements. The value of E is then calculated using the relevant
displacement solution, with an appropriate value of Poisson’s ratio, v, being assumed.
The shear modulus, G, can be determined in-situ by means of the pressuremeter.

Poisson’s ratio may be evaluated from the ratio of lateral strain to axial strain
during a triaxial compression test with axial loading. During the early range of strains,
for which the concepts from theory of elasticity are of use, Poisson’s ratio is varying
with strain. Poisson’s ratio for sand becomes constant only for large strains which imply
failure, and then has a value greater than 0.5. Poisson’s ratio is less than 0.5 only during
the early stages of such a test where the specimen decreases in volume.

Because of this behaviour, it is very difficult to make an exact evaluation of the value
of v. Fortunately, the value of v usually has a relatively small effect upon engineering
predictions of a certain phenomena. For the early stages of a first loading of sand,
when particle rearrangements are important, v typically has values of about 0.1 to 0.2.
During cyclic loading v becomes more of a constant, with values from 0.3 to 0.4.

Values of the shear modulus and Poisson’s ratio used by different authors of the
pore pressure theories are shortly reviewed and compared here. And thus, Yamamoto
et al. (1978) stated that the value of shear modulus for soils varies from about G =
4.8 x 10° kPa for very dense sand to G = 4.8 x 10?2 kPa for silt and clay, and Poisson’s
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ratio was assumed to be v = 0.33. Madsen’s (1978) values of the shear modulus and
Poisson’s ratio are G = 10°kPa and v = 0.3, respectively. Okusa (1985(*)) presented
elastic properties of the soil in terms of soil compressibility which was assumed to be
a = 9.18 x 10~° m? /kN, for loose sand, and @ = 1.84 x 10~°> m? /kN, for dense sand. A
recalculation of these values, using the following equation:

_3(1-2v)

¢= 21+ v)a

(3.20)

where: G - shear modulus of soil [kPal,
v - Poison’s ratio of soil [-],
a - compressibility of soil [m?/kN],

results in G = 5 x 10® kPa and G = 2 x 10* kPa, respectively, assuming Poisson’s ratio
v = 0.3, for loose sand, and v = 0.33, for North Sea sand. Nago & Maeno (1986)
reported the soil shear modulus G = 3.42 x 10°kPa and Poisson’s ratio v = 0.48,
whereas the EAU German Recommendations (1986) give the limits for loose and dense
sand from G = 6 x 10* kPa to G = 7 x 10* kPa, respectively, assuming v = 0.3.

In general, it can be noted that the mean value of the shear modulus, used by some
researchers in their example calculations, oscillates about G = 10° — 10° kPa, for dense
sand, and G = 10® — 10* kPa, for loose sand, whereas the values of Poisson’s ratio given
by the same authors are coherent, v = 0.3 — 0.33, showing only one exception, in which
the value assumed by Nago & Maeno (1986) seems to be higher.

3.1.5 Permeability

Water flows through a saturated soil in accordance with Darcy’s empirical law:

= ki (3.21)

w2

'Uq=

where: v, - discharge velocity [m/s],
g - volumetric discharge of water [m?/s],
A - cross-sectional area of soil, corresponding to the volumetric discharge, g,
[m?],
k - coefficient of soil permeability [m/s],
ip - hydraulic gradient [-].

The coefficient of soil permeability depends primarily on the average size of the
pores, which in turn is related to the distribution of particle sizes, particle shape and
soil structure. In general, smaller soil particles imply smaller average sizes of pores and
lower coefficients of permeability.

The coefficient of permeability varies also with temperature, upon which the vis-
cosity of the water depends. If the value of k measured at 20° is taken as 100 %, then
the values at 10° and 0° are 77 % and 56 %, respectively (Craig, 1983).

The coefficient of permeability can also be represented by the equation:

Yw
k= — 3.22
e, (3.22)
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where: k - coefficient of soil permeability [m/s],
Yw - unit weight of water [kN/m?],
7, - dynamic viscosity of water [kPa - s|,
k, - absolute coefficient of permeability, depending only on soil skeleton char-
acteristics, [m?].

For sands, Hazen’s formula gives an approximate value of k in the following form
(Craig, 1983):

k=10"2d%, (3.23)

where: k - coefficient of soil permeability [m/s],
dyg - effective (characteristic) size, corresponding to 10 %-ordinate on grain-size
distribution curve [mm)].

Formula (3.23) applies to clean filter sands that occur in loose packing. It does
not take into account the effect of density. Also the use of the effective size is entirely

arbitrary.
Typical values of k for different types of soil are shown in Tab. 3.2.

Table 3.2
Coeflicient of permeability (m/s) [Craig, 1983]

1 107" 1072 107* 107* 105 107 1077 107% 107° 107%

A I N (S M I NN N B N

Clean Clean sands Very fine sands, Unfissured clays and
gravels and sand- silts and clay-silt clay-silts (>20%
gravel laminate clay)
mixtures

Desiccated and fissured clays

Numerous other relationships have been developed by various investigators. Among
them is the formula, proposed by Casagrande, which reflects the effect of void ratio on
the coefficient of permeability:

k = 1.4kg gse€ (3.24)
where: k - coefficient of soil permeability [m/s],
ko.s5 - coefficient of soil permeability at a void ratio of 0.85 [m/s],

e - void ratio [-].

The influence of void ratio on the coefficient of permeability is shown in Chard-
abellas’ formula [Kezdi, 1974]:

k = a;e*? (3.25)
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where: k - coefficient of soil permeability [m/s],

e - void ratio [-],

a; - constant, representing the coefficient of soil permeability at a void ratio of
1.0 and showing the order of magnitude of k, [-],
constant (values ranging from 2 to 5), indicating the rate of change of k
with the change of e, [-].

asz

The above empirical relationships do not supply solutions for the coefficient of
permeability with a high accuracy, and therefore they have to be treated only as a first
approximation. In most cases the coefficient of permeability should be determined by
means of direct measurements, especially when the investigated phenomenon, like wave-
induced pore pressure oscillations in sandy seabed sediments, is strongly dependent and
very sensitive on the soil permeability. A detailed measurement is also of a special
importance as far as partly saturated soils are concerned.

Permeability in the sense used in the preceding discussion cannot be spoken of in
three-phase soils. The three phases may be arranged into various structural patterns
and may move separately and at different velocities in relation to each other. Combined
tests on the permeability of soil to air and to water can lead to an understanding of
this problem. The concept of relative permeability must be introduced (Kezdi, 1974).
This term means the ratio of the coefficient of permeability measured in a three-phase
state of the soil to that measured in the fully saturated state of the soil. This ratio is
a function of the degree of saturation. Test results typical for the behaviour of sands
are presented in Fig. 3.6, where relative permeabilities are plotted against the degree of
saturation.
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Figure 3.6 Relative permeability to air and water of three-phase sand versus degree
of saturation [Kezdi, 1974]
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From Fig. 3.6 it can be seen that below the lower critical value of the degree
of saturation (52” = 0.2) the relative permeability of soil to water, kf,,r ), is zero. In
other words, water cannot penetrate through the soil unless the degree of saturation
is increased above this critical value. A similar curve can be obtained for the relative
permeability of soil to air, k.(,r). If an assemblage of grains is sufficiently dry, the pore
spaces filled with air form continuous passages permitting an almost unhindered flow of
air and a high relative air permeability results. With increasing degree of saturation,
the relative permeability to air reduces rapidly and may, at the upper critical value of
the degree of saturation (Sgl) 2 0.8), diminish to zero. Beyond that point the pore air
can exist only in the form of entrapped bubbles and is thus forced to move along with
the pore water. In this state, a separate movement of the gaseous phase in relation to
the liquid phase is possible only if the gas presses water out of the pores, but then the
degree of saturation must also change. The lower and upper critical states, represented
in Fig. 3.6 by points Pgl) and Péu), respectively, are of great importance from a practical

point of view. If § < S =~ 0.2 (Point Pél)), the soil only sucks water in but does not
let it through. In this state the apparent cohesion of sands is the greatest. Beyond the

upper critical state (Point Péu); §> 8% 0.8), the soil behaves as if it were fully
saturated.

Values of the coefficient of permeability for seabed sediments can be found in some
of the publications on the pore pressure theories. And thus, Moshagen & Tgrum (1975)
characterized coarse sand by k = 1072 m/s, and fine sand by ¥ = 10~*m/s. Madsen
(1978) used in his calculation examples two values of the coefficient of permeability:
k = 1072 m/s, for 1.0mm sand, and ¥ = 3 x 10~*m/s, for 0.2mm sand. Yamamoto
(1981) gave k = 10 *m/s as a design value for the North Sea geotechnical conditions.
Okusa (1985(%)) distinguished also two values, namely: k = 10~*m/s, for loose sand,
and k = 1075 m/s, for dense sand. Nago & Maeno (1986) indicated k = 1.5 x 10~*m/s
as input data for their calculations.

In general, the value of coefficient of permeability k¥ = 10~* m/s seems to be the
most representative for fine-medium sand in a loose state. For the same type of sand, but
in a dense state, an increase in the coefficient of soil permeability is logically expected.
However, the increase will not exceed a value which is one order higher (i.e., k =
1073 m/s) than the value typical for a loose state of the sand.

3.2 Pore fluid compressibility

Air is a mixture of several gases plus varying amounts of water vapour. It behaves
essentially in accordance with the ideal gas law. Therefore, assuming an isothermal
process (i.e., with a constant temperature), Boyle-Mariotte’s law can be applied (Skorko,
1971):

P,V = const (3.26)

where: P, - absolute pressure of gas [kPal,
V, - volume of gas [kmol].

Considering a certain amount of gas, the above equation of state takes the form of
Clapeyron’s equation (Skorko, 1971):
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P,V, = W,RT, (3.27)

where: P, - absolute pressure of gas [kPa),
V, - volume of gas [m?,
W,- amount of gas [kmol],
R - universal molar gas constant [8.314kJ/(kmol - K)],
T, - absolute temperature [K].

The ideal gas law is often written in terms of the specific volume:

Py, = RT, (3.28)
in which:
1 Vq
Vg = — = —— 3.29
g pg Wg ( )

where, additionally:
vy - specific volume of gas [m?*/kmol],
pg - density of gas [kmol/m?].

Isothermal (i.e., for T' = const) compressibility of any fluid (i.e., liquid or gas) is
defined as:

1 dv

Bs = oy 35, (3.30)

where: [y - isotermal compressibility of fluid [m?/kN],
v - specific volume of fluid at a certain temperature (gas: [m®/kmol]; liquid:

[m?*/ke]),
Pj - absolute fluid pressure [kPa).

The specific volume of air can be easily derived from the ideal gas law [Eq. 3.28]:

_ RT,

B (3.31)

Va

where: v, - specific volume of air [m®/kmol],
R - universal molar gas constant [kJ/(kmol - K)],
T, - absolute temperature [K],
P, - absolute air pressure [kPa].

The specific volume can be differentiated with respect to pressure. Substitution
into the compressibility Eq. (3.30) shows that the compressibility of air is inversely
proportional to the absolute air pressure:

1
Bo= 5 (3.32)

where: [, - compressibility of air [m?/kN],
P, - absolute air pressure [kPa).
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Figure 3.7 Isothermal compressibility for fresch and salt water [Dorsey, 1940]

The compressibility of water can be obtained from the density results. It also has
been directly measured (Dorsey, 1940; see Fig. 3.7). The compressibility of water-air
mixtures is derived using a direct proportioning of the air and water, and in accordance
with the compressibility definition.

The total volume of the water-air mixture is composed of water and free air (note
that the volume of dissolved air is within the volume of water). For the compressibility
of the water-air mixture, Eq. 3.30 becomes (Fredlund, 1976):

p'= = (De o 3.33
" Vu+ Ve \dP, ' dP, ia)

where: ' - compressibility of water-air mixture [m?/kN],
Vw - volume of water in water-air mixture [m?],
V, - volume of free air in water-air mixture [m?],
P, - absolute reference pressure [kPa).

Applying the chain rule of differentiation, Eq. 3.33 changes into:

g =-

1 dv, dP, dV, dP,
(3.34)

vo +v. \ap, ap. T 4P, 4P,

Either the air pressure or the water pressure can be used as a reference pressure.
If the water pressure is used as a reference, the following pore pressure parameter can

be defined:

Bow = (3.35)

8

where: B, - pore pressure parameter |-,
P, - absolute pressure in air part of water-air mixture [kPa],
P, - absolute pressure in water part of water-air mixture [kPa].
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When the water-air mixture is in the absence of a solid, the pore pressure parameter,
Bgw, will equal 1. On the other hand, in the presence of a solid, the surface tension
effects will result in differing rates of pore air and pore water pressure change. The pore
pressure parameter, B, should always be less than 1 for undrained loading, becoming
equal to 1 at a fully saturated state of the soil.

At this point, Kelvin’s equation could be incoroporated:

P, =Py + 2% (3.36)

T

where: P, - absolute pressure in air part of water-air mixture [kPa),
P, - absolute pressure in water part of water-air mixture [kPa),
o+ - water-air surface tension of free air bubbles [kN/m],
ry - free air-bubble radius (radius of curvature of water-air meniscus) [m].

However, it will not assist in solving for the new pore pressure parameter. Differ-
entiation of Kelvin’s equation gives:
dF, d(r; h)
—2 =20,—2 - +1 3.37
dP,  ~* dP, (3:37)
This excercise merely incorporates another unknown variable which is the radius of
curvature of the water-air meniscus. Attempts have been made to use this equation in
the compressibility relationships for water-air mixtures (Schuurman, 1966). However,
this equation does not assist in solving practical problems since it incorporates a new

unmeasurable quantity.
Using the water pressure as a reference pressure, Eq. (3.34) becomes:

- 1 v, dv,
b= Vw + Va (de *ap, Bow (3:30)

B’ compressibility of pore fluid [m? /kN],

Vw - volume of water in water-air mixture [m?],
V. - volume of free air in water-air mixture [m?],
P,, - absolute pressure in water part [kPal,

P, - absolute pressure in air part [kPa],

B, - pore pressure parameter [-].

where:

The compressibility of the free air can be envisaged in terms of appling Boyle’s law
to the free air and Henry’s law to a portion of air going into solution:

dVa o (Va.b + Va.d)
dP, P,

(3.39)

where, additionally:
Vab - volume of free air bubbles in water-air mixture [m?],
Vad - volume of air dissolved in water-air mixture [m?®].

Substituting Eq. (3.39) into the compressibility equation [Eq. (3.38)], and writing
the volumes of air and water in terms of initial degree of saturation, one obtains:
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1-8 Sh,
(_Pa_) e BwTa’ (3.40)

,BI = S,Bw + Baw
where: (' - compressibility of pore fluid [m?/kN],
S - degree of saturation [-],
Bw - compressibility of pure water [m?/kN],
B,., - pore pressure parameter [-],
P, - absolute pressure in air part [kPa],
hsi - coefficient of volumetric solubility of air in water [-].

The first term in the above equation accounts for the compressibility of the pure
water, the second term accounts for Boyle’s law being applied to the free air and the
third term accounts for the air driven into solution in accordance with Henry’s law.

The disadvantage of Eq. (3.40) is that the parameter Bg,, is not known and must
be measured. In general, the actual air pressure varies and is difficult to be determined
in the case of non-coherent air bubbles (Barends, 1980).

0 T T T 1\ N T T
Compressibility | N\ Temperature = 20°
of water Compressibility | N
20 due to dissolving | . Initial pressure -
S of air in water ,’ \ = 202kPa
=)
- 40 | \ i
3 / \
: / \
3 60 ) i
S / o
> Compressibility
Jf ) \
80 / of air -
’ \
7/
- cad |
100 L T 1 I L L

108 107 10—% 1075 10~* 10—% 102 1071
Compressibility, ' [m?/kN]

Figure 3.8 Components of compressibility of miscible and immescible water-air mix-

tures [Fredlund, 1976]

Figure 3.8 shows the significance of the variables contributing to the compressibil-
ity, for the case of By, = 1 and the initial absolute air pressure P, = 202kPa. The
compressibility due to the solution of air in water is approximately two orders of mag-
nitude greater than the compressibility due to the pure water. The plot also shows
that the compressibility of the pure water is of significance only for the case of a fully
saturated soil and that the effect of air dissolving in water becomes significant for air
volumes less than approximately 20 % of the total void volume.
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Figure 3.9 shows the amplification effect of air solubility in water on the compres-
sibility of water-air mixture, for several values of the initial air pressure. The effect of
the solution of air seems to be the same (on a logarythmic scale) regardless of the air
pressure.
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Figure 3.9 Effect of solubility of air in water on compressibility of water-air mixture
[Fredlund, 1976|

The experimental data on the density of water indicate that air dissolves in water
by fitting within the water structure, causing essentially no disruption. To understand
this mechanism further, Fredlund (1976) considered a piston and cylinder arrangement
with a porous stone, having a porosity of approximately 2 %, at the base of the cylinder
(Fig. 3.10). The porous stone is to simulate the behaviour of the water. An imaginary
valve was placed at the contact between the free air and the porous stone. In this
way, the movement of air into the stone can be controlled. The air in the porous stone
simulates the air dissolved in water. It should be noted that the above analogy lacks in
that the air pressure cannot differ from the water pressure.

Initially, the cylinder contains a volume that is porous stone and a volume that is
air, subjected to equal pressures. Initially, the imaginary valve is closed and the load
on the piston is increased. The air above the porous stone compresses (Boyle’s law
simulation). When the imaginary valve is opened, some additional air passes into the
porous stone (Henry’s law simulation). As the piston load is increased, this process
continues until all the free air has gone into the porous stone. At this point, there is a
discontinuity since all the applied load is taken by the porous stone.

The above analogy assists in vizualizing the density and compressibility of the
water-air mixture subjected to various pressures. The density of the mixture can be
derived based on the conservation of masses. This law is also the fundamental basis for
the compressibility relationship since compressibility is, by definition, the inverse of the
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Figure 3.10 Piston and porous stone analogy [Fredlund, 1976|

change in density with respect to the change in pressure. The amount of air going into
or coming out of solution is time-dependent and is either ignored or taken into account,
depending upon the engineering problem being considered.

Air is dissolved in water in accordance with Henry’s law which states that the
weight of gas dissolved in a fixed quantity of liquid, at constant temperature, is directly
proportional to the pressure of the gas above the solution. The starting point for apply-
ing Henry’s law is given by the coefficient of solubility of each gas in water (Tab. 3.3).
This coeflicient of gas solubility in water, Hy;, is the total weight of each gas that can
be dissolved in water (under 100 kPa pressure). If the weights of dissolved air were
extracted from the water and compressed at the same pressure as acting on the free
air above the water, the volume occupied is described by the volumetric coefficient of
solubility, hs;.

Table 3.3
Solubility of air in water [Dorsey, 1940]

Weight of air per weight of water, Hy; [-] Vol. of air per
Temperature vol. of water
[°C] Oxygen Nitrogen, etc. Air ot [-]
0 14.56 x 10~% | 23.87 x 10~ | 38.43 x 10~© 0.02918
4 13.06 x 10~% | 21.59 x 10~% | 34.65 x 10~¢ 0.02632
10 11.25 x 10~ 18.82 x 10~ 30.07 x 108 0.02284
15 10.07 x 10~ 17.00 x 106 27.07 x 10~6 0.02055
20 9.11 x 1078 15.51 x 10~% | 24.62 x 10~ 0.01868
25 8.28 x 108 14.24 x 1078 | 22.52 x 10~ 0.01708
30 7.55 x 1076 | 13.10 x 10~® | 20.65 x 10~° 0.01564
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3.2.1 Comparison of existing formulas

The problem of pore water compressibility in connection with saturation of soils was
treated by many scientists. Some of them (e.g.: Madsen, 1978; Yamamoto et al., 1978;
Nago & Maeno, 1984; Okusa, 1985(“)) used in their works already existing formulas,
in most cases considerably simplified, containing the relationship between the degree
of saturation and the compressibility of pore fluid (i.e., water-air mixture). A cer-
tain assumption concerning this relationship was necessary to perform an analysis on
the pore pressure oscillations in partly saturated soils under sea-waves loading. Other
group of authors (e.g.: Skempton & Bishop, 1954; Koning, 1963; Schuurman, 1966;
Verruijt, 1969; Fredlund, 1976; Barends, 1980) put more attention to the theoretical
background of the relationship concerned, deriving gradually more general, but also
more sophisticated formulas, reviewed and discussed by Magda (1990(%).

- Of primary interest from an engineering standpoint is the mathematical formulation
of the compressibility relationship for the fluid phase of a partly saturated soil. An
understanding of compressibility is of importance with respect to the pore air and pore
water pressures developed under undrained loading of partly saturated soil (Fredlund,
1976).

The dramatic increase in compressibility due to the presence of a small amount of
air is of significance in studying the pore pressure reactions of soils. The pore pressure
parameter, B, depends on the compressibility of the pore fluid (Skempton, 1954):

1

=T
14"
83

B (3.41)

where: B - Skempton’s pore pressure parameter [-],
n - porosity of soil [-],
B' - compressibility of pore fluid [m?/kN],
a - compressibility of soil skeleton [m?/kN].

Gas in marine sediments has been found in various parts of the world but with a
special concentration in areas of high biogenic activity such as the mouth of rivers or
deltas. A prime example is the Mississippi Delta where the occurrence of gas in the
sediment has been reported by several investigators (e.g., Esrig & Kirby, 1977).

Degrees of saturation in-situ of partly saturated marine sediments normally lie in
the range of 0.85 to 1.0 (Esrig & Kirby, 1977). Under these conditions, the gas exists in
discrete occluded bubbles with no connections between them. This was also observed in
the laboratory by Nageswaran (1983) who performed tests on soils containing discrete
occluded gas bubbles with saturation ranging between 0.85 and 1.0.

The structure of partly saturated marine soils can vary significantly depending on
the relative sizes of the gas bubbles and the soil grains. Wheeler et al. (1991) presented
two extreme cases of the possible structure of a gassy soil. Figure 3.11(a) shows the
case, in which the pore gas exists in numerous small bubbles within the pores of the soil
matrix, whereas Fig. 3.11(b) presents an alternative soil structure, in which the fewer
gas bubbles are much larger than the soil grains. Terzaghi (1943) termed the gas in the
second of these options ‘gas voids’, as opposed to ‘gas bubbles’ for the first case.

The majority of investigators in the field of partly saturated marine soils, including
Ghaboussi & Wilson (1973), Yamamoto et al. (1978), Madsen (1978), Okusa (1985(2)),
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Figure 3.11 Schematic representation of partly saturated soil [Wheeler et al., 1991]:
(a) containing small gas bubbles in soil matrix, (b) containing large gas
voids in soil matrix, (c) idealized as saturated with compressible pore

fluid

and Spierenburg (1987), have assumed that for a soil saturated above the critical sat-
uration, that is when the gas is in occluded form, the structure of the soil becomes as
illustrated in Fig. 3.11(a). Under this assumption, it has been assumed that the two
fluid phases of gas and water have equal pore pressure and can be represented by a
single compressible pore fluid, as illustrated in Fig. 3.11(c). This is the model which
was assumed in the present work for further consideration. This results in the pore fluid
compressibility given by the following expression:

B'=(Q1-Hy)SB+(1—-S+HuS)B (3.42)

where: ' - compressibility of pore fluid [m?/kN],
H,; - Henry’s coefficient of air solubility in water [-],
S - degree of saturation [-],
B - compressibility of pure water [m?/kN],
Ba - compressibility of air [m?/kN].

It must be noted that Henry’s coefficient of solubility, H,;, must be set to zero for
a fully saturated soil. The term (1 — H,;) arises due to the fact that when the water
compresses, the reduced volume of the water is unable to hold the same amount of
dissolved gas.

The following brings a brief review of the compressibility-saturation relationships
together with specific values of the compressibility of water-air mixture used in consid-
erations and calculations presented by the authors of the above mentioned pore pressure
theories.

For partly saturated soils, the effective compressibility of the pore fluid may exceed
the compressibility of pure water by a considerable number (Madsen, 1978). Thus, a
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simple analysis by Verruijt (1969) indicates an upper bound for the compressibility of
the pore fluid (i.e, water-air mixture) to be:
1-S5

ﬂ’=ﬂw+Th for 1-S<1 (3.43)

where: ' - compressibility of pore fluid [m?/kN],
Buw - compressibility of pure water [m?/kN],
S - degree of saturation [-],
Py, - absolute hydrostatic pressure (P, = pat + ph, where: pg: = 101.325kPa is
the atmospheric pressure, and pj, is the hydrostatic pressure) [kPa).

Table 3.4 shows how strong the dependence of the pore fluid compressibility, cal-
culated from Eq. (3.43), on saturation soil conditions is. The pore fluid compressibility
was computed for two different cases of water depth i.e: h = 4.5m (e.g., laboratory con-
ditions in a wave flume) and A = 20.0m (e.g., natural conditions in a coastal region),
assuming the compressibility of pure water to be 8, = 4.2 x 10~ m? /kN.

It can be clearly seen that the reduction of the degree of saturation from 1.0 to
0.99 (i.e., only 1%) causes a dramatic increase of the pore fluid compressibility where
the order of difference is about 102.

TABLE 3.4
Dependence of the pore fluid compressibility on the degree of saturation
[(a) Pr =145.5kPa (for h = 4.5m), (b) P, = 297.5kPa (for A = 20.0m)]

Degree of Compressibility of pore fluid

saturation B' [m?/kN]
S [-] (a) h=4.5m (6) h=20.0m
1.00 4.20 x 1077 4.20 x 1077
0.999 7.29 x 10~ 3.78 x 10~®
0.99 6.91 x 10~° 3.40 x 10~°
0.97 2.07 x 10~% 1.01 x 10~%
0.95 3.44 x 107 1.69 x 10~
0.90 6.88 x 10~* 3.37 x 10~

Madsen (1978) gave some data concerning the pore fluid compressibility for diffe-
rent saturation conditions and water depth above the seabed. The data is illustrated
by the term (7y,0'), where: 7, is the unit weight of water, and 3’ is the pore fluid
compressibility. And thus, assuming the pore fluid to be water, v8' = 78, = 4 x
10~®m™! for a fully saturated soil. For the degree of saturation S = 0.99 and water
depth of 10 m, the effective compressibility of the pore fluid is reported to be as high as
YwB' = 1073 m™!, whereas the pore fluid compressibility equals 7,8’ = 10~2m™?, for
saturation conditions of § = 0.965 and water depth 7m. Assuming the pore fluid to be
water (7, = 10kN/m?), the pore fluid compressibility can be easily found:

- for a fully saturated soil (S = 1.0) and water as a pore fluid

B' =By =4x10""m?/kN
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- for saturation S = 0.99

B' =10"*m?/kN
- for saturation S = 0.965

B' =107 m?/kN

In fact, the values presented by Madsen (1978) for partly saturated sediments differ
from these calculated directly from Eq. (3.43). Assuming correct values of the abso-
lute hydrostatic pressure, the respective values of pore fluid compressibility, calculated
according to Eq. (3.43) are equal to:

- for saturation S = 0.99 and water depth A = 10m

B' =5 x107° m?/kN
- - for saturation S = 0.965 and water depth A = Tm

B' =2 x10"*m?/kN

However, these diferences are smaller than one order of magnitude and can be
used in the first approximation. In water depths greater than ca 25m, most gases
will go into solution and the compressibility of the pore fluid would approach that
of pure water (Madsen, 1978). In large scale laboratory experiments where a sand
bed is artificially constructed, it is extremely difficult to achieve fully saturated con-
ditions. The pore pressure results presented by Madsen (1978) for partly saturated
soils (S = 0.965) demonstrate therefore that one should excercise extreme caution when
interpreting model results in which the compressibility of the pore fluid may be a factor.

A similar approach was done by Okusa (1985(*)). He considered a submarine
sediment containing gas, the pressure of which is assumed to be equal to the pore
pressure. Using Henry’s law and Boyle’s law under a constant temperature, the relation
for the pore fluid compressibility has the following form (Okusa, 1985(“)):

B'=SBw+(1—5)B (3.44)

where: ' - compressibility of pore fluid [m?/kN],
S - degree of saturation [-],
B - compressibility of pure water [m?/kN],
Bo - compressibility of air [m?/kN].

This equation is based on the assumption that the gas and water pressures are
equal (z.e., the effect of surface tension is ignored). Equation (3.44) also ignores the
movement of gas into the solution. This second assumption is completely justifiable,
because the wave period is likely to be much shorter than the time required for the
solution process.

Yamamoto et al. (1978) presented quite the same formula as Madsen (1978) did.
The only difference is that instead of the compressibility parameter they used a pa-
rameter describing the bulk modulus of elasticity of pore fluid. If the pore water is
absolutely air-free, the bulk modulus of pore fluid, K', is equal to the bulk modulus
of elasticity of pure water, K,,. However, if the pore water contains even a very small
amount of air, the bulk modulus of elasticity of pore fluid decreases drastically and K'
is related to K,, by (Yamamoto et al., 1978; Verruijt, 1969):
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where: K' - bulk modulus of elasticity of pore fluid [kPa],
K, - bulk modulus of elasticity of pure water [kPa],

S - degree of saturation [-],
Py, - absolute hydrostatic pressure [kPa].

If the soil is saturated with water, and if the pore water does not contain gases
(S = 1.0), then the apparent modulus of elasticity, K', is equal to the modulus of
elasticity of pure water, K,, = 1.9 x 10® kPa. If the sand is saturated in 95% (S = 0.95)
with water at atmospheric pressure, the modulus of elasticity of pore fluid is, from
Eq. (3.45), K' = 9.5 x 10 kPa. Inverting the values of bulk modulus, one can easily
obtain the values of compressibility:

- - fully saturated soil (S = 1.0) and pure water as a pore fluid

B' = Pp =5.3x 107" m®/kN
- partly saturated soil (S = 0.95)

B' =1.1 x10"°m?/kN

The first value, which is independent on the water depth, stays in a good accordance
with the value presentes by Madsen (1978). The accuracy of the second compressibility
value is impossible to be judged because no information on water depth conditions are
supplied by Yamamoto et al. (1978).

In the publication by Nago & Maeno (1984) one can find only a value of the
compressibility of pure water which is shown to be 3,, = 4.46 x 10~ m?/kN, and which
corresponds very well to adequate values indicated by Madsen (1978) and Yamamoto
et al. (1978). Moshagen & Tgrum (1975) assumed the bulk modulus of water to be
K, = 2.3 x 10° kPa which in terms of the water compressibility is 4.35 x 10" m?/kN.
The values of the compressibility of pure water, given by Moshagen & Tgrum (1975),
Madsen (1978), Yamamoto et al. (1978) and Nago & Maeno (1984) are practically the
same.

Bishop & Eldin (1950) and Skempton & Bishop (1954) based their approximate cal-
culation of the compressibility of water-air mixture on Boyle’s law and also incorporated
Henry’s law to describe the effects of the solubility of air in water. The surface tension
was disregarded by them. Water vapour, bonded bubbles and pore water compressibility
were also not taken into account. They proposed the following formula:

B' = (1 — S; + haS;) P;/ P} (3.46)

where: ' - compressibility of pore fluid [m?/kN],
S; - degree of saturation at initial state [-],
hsi - coefficient of volumetric solubility of air in water [-],
P; - absolute pore pressure at initial state [kPa,
Py, - absolute hydrostatic pressure [kPa].

Koning (1963) and Verruijt (1969) included fluid compressibility and treated a
water-air mixture as an immiscible fluid and computed compressibility using Boyle’s
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law, but disregarded solubility, water vapour pressure and bonded bubbles. They only
partly accounted for the influence of the surface tension between air and water, and for
practical purposes, where small pressure changes occur, their formula is sufficient and
is expressed as:

1-S5
P,

B' = SBu+ (3.47)

where: ' - compressibility of pore fluid [m?/kN],
S - degree of saturation [-],
B - compressibility of pure water [m?/kN],
Py, - absolute hydrostatic pressure [kPa].

The first attempt to take into account the influence of all possible factors on the
compressibility of the water-air mixture was made by Schuurman (1966) who tried to
account for the surface tension effects by directly applying Kelvin’s cappilary model
equation. The given theory is only right in relation to the degree of saturation in
excess of 85 % where the free air is assumed to be present in the form of bubbles. The
bubbles are either the same size as the pores or smaller. In deriving the compressibility
equation, it was neccesary to assume the number and size of air bubbles. Therefore, the
final equation becomes unusable from the engineering point of view.

Fredlund (1976) suggested that it is not neccesary to include Kelvin’s equation,
since it results in a useless formula for the compressibility of pore fluid. Furthermore,
he introduced instead of Kelvin’s equation, which embeds the surface tension, another
pore pressure parameter, By, (see Eq. 3.35), which incorporates in fact the surface
tension influence. The parameter seems to be nearly equal to unity in many practical
cases.

3.2.2 Simplifications and choice for the present work

With the aid of previously mentioned laws and simplifications, Barends (1980) found
a convenient expression for the resultant compressibility of a water-air mixture in a
porous medium. The following assumptions are made in his analysis:

- the water-air mixture comprises water, dissolved air, isometric free bubbles sur-
rounded by water, and bonded bubbles partly adhered to solid surfaces,

- the degree of saturation is 85 % or more (S > 0.85),

- the bubbles contain free air and water vapour,

- conforming the Boyle-Mariotte law, the air density is proportional to the air pres-
sure,

- the water-air surface tension of free bubbles, the representative bonded bubble
radius, the water vapour pressure and the air solubility coefficient are considered
as constants,

- diffusion of air in water is disregarded and successive states of equilibrium are
considered.

The fluid pressure can be expressed as a function of the initial state and the degree
of saturation (Barends, 1980):
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ﬂ' = Bu
N [1—(1—ha)S) (
20 204 2 J, — Si - ‘Ub)
SA—hg)[1—(1—ha)Si]|P—w+ )— 1—(1—ha)S] @ —%
(- ha) - (1= k) i) ) () s
(3.48)
where: (' - compressibility of pore fluid [m?/kN],
Bw - compressibility of pure water [m?/kN],
S - degree of saturation [-],
hsi - coefficient of volumetric solubility of air in water [-],

S; - initial degree of saturation [-],

P; - initial absolute pore fluid pressure [kPal,

w - water-vapour pressure [kPa],

oy - water-air surface tension of free air bubbles [kN/m],
rp; - initial free air bubble radius [m],

vp - relative volume of bonded air bubbles [-].

The existence of bonded bubbles plays a minor role concerning the value of the
pore fluid compressibility when the pore fluid pressure is less than the critical pressure
(this is very often a practical case). If, additionally, the water vapour pressure and the
surface tension are disregarded, Eq. (3.48) becomes:

[1—(1—hg)S)
S(l — h,z) [1 - (1 - h_,z) Si] P;

Barends (1980) mentioned a value of the compressibility of pure water as equal to
5 x 10~"m?/kN which stays in a very good accordance with the values presented by
Fredlund (1976), Madsen (1978), Yamamoto et al. (1978), Nago & Maeno (1984).

Applying Eq. (3.49) for the degree of saturation S = 0.99 at the atmospheric
pressure py; = 101.3kPa, and assuming the coefficient of volumetric solubility of air in
water hy = 0.02, the compressibility of water-air mixture is 8’ = 3.0 x 10~* m?/kN,
which shows to be the same with that obtained by Fredlund (1976).

It is important to note that when introducing the coefficient of volumetric solubility
of air in water hy; = 0 into Eq. (3.49), and assuming independence of the degree of
saturation from the pore fluid pressure, one obtains exactly Eq. (3.43) or Eq. (3.45),
proposed by Koning (1963) and Verruijt (1969), and used by many researchers, among
others: Madsen (1978), Yamamoto et al. (1978), and Okusa (1985(%)). For a high degree
of saturation, Eq. (3.47) seems to describe properly the relation between the degree of
saturation and the pore fluid compressibility.

Equation (3.49) does not work properly for a very high degree of saturation together
with a simultaneous assumption that the coefficient of volumetric solubility of air in wa-
ter is a constant. Following Eq. (3.49) for fully saturated soil conditions (S = 1.0), and
assuming hy; = 0.02 and P, = 200kPa, the compressibility is equal to 8’ = 10~* m?/kN,
which is about 10® times higher than the compressibility of pure water. It is surely be-
cause the coefficient of volumetric solubility of air in water is assumed to be constant.
At a certain critical soil saturation condition, S, the amount of air existing in water
in terms of free bubbles is equal to the amount of air, described by the coefficient of
volumetric solubility, which is supposed to go into solution. Therefore, it is proposed in

,Blz,Bw'i'

(3.49)
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the present work to assume that the degree of saturation higher than the critical value
Scr = 1 — hg; implies values of the coefficient of volumetric solubility of air in water
smaller than for S < S.,., where hy; is assumed to be maximum and constant. And
thus, the modified Eq. (3.49) can be written as:

2
1 _ (1 — h;ls)
A YA Y2 P
where the new incorporated parameter k!, is conditionally equal to:
hlyj=Ser=1—hy for S<Sr=1—hgy (3.51a)
hl; =8 for S$>S8.+,=1—hy (3.51b)

The dependence of the new defined parameter h'; on the degree of saturation is grafically
presented in Fig. 3.12.
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Figure 3.12 Modified solubility parameter h!; [Eq. (3.50) with Egs. (3.51a,b); hy =
0.02 and P, = 200kPa are assumed]

Figure 3.13 presents a comparison of compressibility values of the pore fluid com-
pressibility, using Eq. (3.43) [or Eq. (3.45)], Eq. (3.40) for B,y = 1 [or Eq. (3.47)],
Eq. (3.49), and Eq. (4.50) together with Egs. (3.51a) and (3.51b), assuming h, = 0.02
and P = 200 kPa.

The results coming from Eq. (3.49) must be disqualified due to relatively different
and wrong behaviour, compared with the other equations, for the degree of saturation
approaching unity. Taking into account that saturation conditions of sandy seabed
sediments are normally characterized by the degree of saturation relatively close to
unity, it is proposed to use Eq. (3.43) in computations of the compressibility of pore
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Figure 3.13 Comparison of different formulas for compressibility of pore fluid

fluid in the following analysis of the wave-induced pore pressure cyclic oscillations in
sandy soils. Other formulas could be also used but:

- they are too complicated from the practical point of view, and some parameters

are hardly measureable,
- the results are similar to these obtained from Eq. (3.43).

3.3 Conclusions

The compressibility of the pore fluid constitutes one of the most important parameter
involved in a mathematical description of the wave-induced pore pressure oscillations
in the seabed. A high sensitivity of the solution to the pore pressure on the pore fluid
compressibility, especially when the soil is partly saturated, requires that the value of
compressibility used in calculation procedures must be defined with a high accuracy.

It was shown that Eq. (3.43) proposed by Verruijt (1969) and correlating directly
the compressibility with the degree of saturation, brings satisfactory accuracy when
comparing with other existing formulas. Moreover, the above mentioned relationship
has a strong practical importance because Eq. (3.43) does not contain parameters (e.g.,
diameter of air bubbles) describing a micro-structure of the three-phase medium. In
Eq. (3.43) the number of different factors is reduced to only one very meaningful pa-
rameter, namely, the degree of saturation.

As a link between theoretical considerations and practical implications, the in-situ
measurements of the degree of saturation were performed on the beach of Norderney



Sec. 3.3 Conclusions 51

Island, subjected to continuous tidal movements. During the measuring campaigne,
numerous samples were taken from sandy seabed sediments being under the water level
at the moment of sampling. Series of laboratory measurements and statistical analysis
were performed to supply information about a real, mean value of the degree of satura-
tion typical for sandy seabed sediments under the natural environmental conditions. It
was found that the soil material of that area was partly saturated and the mean value
of the degree of saturation was equal S = 0.95.

Partly saturated seabed sediments, found under the natural environmental condi-
tions, confirmed the need of taking into account the pore fluid compressibility into the
theoretical formulation of the considered problem of the wave-induced pore pressure in
seabed sediments. The results of the measurements showed also that partly saturated
soil conditions have to be taken into account at least in these situations where the
coastline zone is concerned. Partly saturation of seabed sediments can be explained by
either a turbulent water motion, due to a continuous wave breaking action typical for
transitional and shallow water conditions, or alternative saturations and dewaterings of
seabed sediments, due to tidal water movements.

The variability (defined by the coefficient of variation) in measured soil parameters,
compared with these published in the literature, confirms a very good quality of the
whole procedure applied for the sand sampling. The statistical analysis confirmed also
the assumption of a well-fitted normal distribution approximation to the distribution of
the degree of saturation from in-situ sampling.

In most practical cases, where the upper layer of seabed sediments is concerned,
the hydrostatic pressure, p;, is computed with respect to the point laying on the seabed
surface, and set to a constant in computations of the pore pressure distribution induced
in seabed sediments by a surface water wave motion. However, if a computational depth
in the seabed is relatively large (i.e., comparable with the head of atmospheric pressure,
Pat) the assumption of a constant value of the absolute hydrostatic pressure, Py, can
lead to meaningful errors. This has, however, no important meaning for the coastal
engineering practice because most of the problems concerns only with an upper (i.e.,
up to few metres) part of seabed sediments.
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Chapter 4

Pore pressure distribution in a sea-
bed layer of finite thickness

4.1 Pore pressure and effective stress principle

When the pore spaces are filled with pure water (i.e., fully saturated soil), the pressure
in the water is called the pore water pressure. If the pore spaces are filled with a pore
fluid (i.e., a mixture of water and gas; partly saturated soil), the pressure in the pore
fluid is called the pore fluid pressure, or simply — pore pressure. The last term, as more
general, can be sucsessfully used in both two main cases of soil saturation conditions.
The pore pressure acts in all directions with equal intensity.

A pore pressure can be positive, the so-called overpressure, when the pore pressure
is greater than the initial hydrostatic pressure. A pore pressure can also be negative,
the so-called underpressure, defined as the pore pressure that is less than the initial
hydrostatic pressure. A pore pressure can be increased or decreased by applying or
removing, respectively, a compressive force to the soil. A pore pressure can also increase
or decrease when a shear force is applied to a soil, in which the mineral soil skeleton is
in a loosely or densely, respectively, packed state. The present study considers changes
in the pore pressure, with respect to the initial hydrostatic state defined by the still
water level, due to cyclic oscillations of the hydrodynamic pressure at the sea bottom
as a result of water waves action. Therefore, this type of pore pressure is very often
called the wave-induced pore pressure or the hydrodynamic pore pressure (Fig. 4.1).

The importance of the forces transmitted through the soil skeleton from particle
to particle was recognized in 1923 when Terzaghi presented the principle of effective
stress, an intuitive relationship based on experimental data. The principle applies only
to fully saturated soils and relates the following three stresses (Craig, 1992):

- the total normal stress on a plane within the soil mass is the force per unit area
transmitted in a normal direction across the plane, imagining the soil to be a solid
(single-phase) material,

- the pore pressure is the pressure of the water filling the void space between the
solid particles,
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Figure 4.1 Qualitative range of cyclic oscillations of the wave-induced pore pressure,
p, in permeable seabed sediments, due to water wave loading

- the effective normal stress on the plane represents the stress transmitted through
the soil skeleton only.

The effective stress principle can be given by the following relationship:
c=0 +p (4.1)

where: o - total normal stress [kPa),
o' - effective normal stress [kPa),
p: - pore pressure [kPa).

A soil mass, having a horizontal surface and with the water table at a surface level,
is considered. The total vertical stress (i.e., the total normal stress on a horizontal
plane) at depth z is equal to the weight of all material (soil-water mixture) per unit
area above that depth, z.e.:

O =Vt (4.2)

where: o, - total vertical stress [kPa],
Ysat - unit weight of saturated soil [kN/m3,
z - depth in seabed [m].

A more proper name for the pore pressure, p;, would be the total pore pressure.
This is due to the fact that this pore pressure could be a sum of a hydrostatic pressure
(with a still water surface in or above soil sediments), since the void space between the
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solid particles is continuous, and a wave-induced instantaneous pore pressure. Therefore,
at depth z:

Pt = pn + p(2) = Twz + p(2) (4.3)

where: p; - total pore pressure [kPal,
pr - hydrostatic pore pressure [kPal,
p - wave-induced pore pressure [kPal,
Yw - unit weight of water [kN/m?3],
z - depth in seabed [m)].

Comparing Egs. (4.1) to (4.3), the effective vertical stress at depth z can be given

as:
o = Oy — Pt =
= (')’aat - 7w) z— p(z) = 7'2 - p(z) (44)
where: o' - effective normal stress [kPa],

o, - total vertical stress [kPal,

p: - total pore pressure [kPa],

p - wave-induced pore pressure [kPa],
Ysat - unit weight of saturated soil [kN/m?],
unit weight of water [kN/m3],
buoyant unit weight of soil [kN/m?],
z - depth in seabed [m)].

3 &)
g
1 1

In the case of partly saturated soils, one part of the void space is occupied by
water and another part by air. Due to the surface tension, the total pore pressure,
p¢, must always be less than the pore air pressure. Unless the degree of saturation is
close to unity, the pore air will form continuous channels through the soil, and the pore
water will be concentrated in regions around the interparticle contacts. The boundaries
between pore water and pore air will be in the form of menisci which radii will depend
on the size of the pore spaces within the soil. Part of any wavy plane through the soil
will therefore pass through water and part through air.

Bishop (1960) proposed the following effective stress equation for partly saturated
soils:

0c=0"+ps —A(Pa — pt) (4.5)

where: o - total normal stress [kPa,
o' - effective normal stress [kPal,
P - pore air pressure [kPal,
A - parameter, determined experimentally, related primarily to soil saturation
conditions, [-],
p: - total pore pressure [kPa].

The term (p, — p:) is a measure of a suction in the soil. For a fully saturated soil
(S = 1), A = 1, and for a completely dry soil (S = 0), A = 0. Equation (4.5) thus
degenerates to Eq. (4.1) when S = 1. The value of ) is also influenced, to some extent,
by the soil structure and the way the particular degree of saturation was brought about.
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Equation (4.5) is not convenient for use in practice because of the presence of parameter
A which is difficult to define.

If the degree of saturation is close to unity it is likely that the pore air will exist
in the form of bubbles within the pore water, and it is possible to draw a wavy plane
through the pore water only. The soil can then be considered as a saturated soil but
with the pore fluid having higher compressibility than pure water due to the presence of
the air bubbles. Equation (4.1) may then represent the effective stress with a sufficient
accuracy for most practical purposes (Craig, 1983).

Many advanced solutions for the prediction of the pore pressure cyclic oscillations
are, among others, strongly dependent on the compressibility of the pore fluid (i.e.,
water-air mixture) where air is partly dissolved in water and partly entrapped as air-
bubbles in pores of the soil. The formerly discussed relationship, between the amount
of air existing in the pore fluid and the compressibility of the pore fluid, can be defined
using a very common and surprisingly simple formula proposed by Verruijt (1969) [see
Eq. (3.43) and Tab. 3.4].

" An example of a direct influence of the degree of saturation on the wave-induced
pore pressure that can be produced by surface wave loading is shown in Fig. 4.2, using
the analytical solution derived by Madsen (1978) for the case of infinite thickness of the
permeable seabed layer.
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Figure 4.2 Example of wave-induced pore pressure amplitude attenuation with depth
in seabed sediments, for different values of degree of saturation [‘infinite-
thickness layer’ solution of Madsen (1978); computed for: E = 10° kPa,
k=10"%*m/s,n = 04, v = 0.3, h = 20m, T = 6s, and 8 = 4.2 X
10" m? /kN]

It is very easy to recognize that changes in the degree of saturation even by a
relatively small increment, in the range which is supposed to be found under natural
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environmental conditions, cause significant changes in the pore pressure distribution in
seabed sediments. This certifies how meaningful this parameter is. Therefore, it can
also emphase the necessity of checking and proving values of the degree of saturation
under natural conditions by means of in-situ measurements.

Firstly, in order to enable a comparison with the final solution searched for in this
work, two different cases of the wave-induced pore pressure solution, assuming: (1) both
the soil skeleton and the pore fluid incompressible (i.e., potential problem), and (2) the
soil skeleton incompressible whereas the pore fluid compressible (i.e., diffusion problem)
will be briefly described in the following.

4.2 Potential problem

Assuming that the seabed consists of sand or dense silt, the pore fluid flow and soil
displacement can be decoupled because these geological materials are relatively stiff.
For this case, named as the potential model, the pore fluid flow may be modeled by
Darcy’s equation while the soil skeleton is considered inelastic. Considering uniform
permeability of the soil, and invoking conservation of mass for an incompressible fluid,
this yields to a geometrical problem only, defined by the Laplace equation [see Eq. (2.1)]
for the dynamic pore pressure response of the seabed.

The wave-induced pore pressure distribution in a permeable seabed can be found
by solving Laplace’s equation together with appropriate boundary conditions. On the
top of the seabed, a pressure wave (hydrodynamic bottom pressure) is moving in phase
with the surface water wave. The hydrodynamic bottom pressure oscillations, and
the amplitude thereof, can be well-approximated using Airy’s linear theory of small-
amplitude waves [see Egs. (2.6) and (2.7)].

If the permeable seabed layer is infinitely deep, the wave-induced pore pressure
must vanish asymptotically with depth in seabed sediments. Taking the above into
account, the geometrical problem to be solved can be given as a system of three coupled
equations:

Vip=0 (4.6a)
ps = P cos[i(az — wt)] for z=0 (4.6b)
p—0 as z— 00 (4.6¢)
where: p - wave-induced pore pressure (complex-valued) [kPal,

py - hydrodynamic bottom pressure oscillations (complex-valued) [kPa],
P, - amplitude of the hydrodynamic bottom pressure [kPal,

a - wave number [m™?],
w - wave angular frequency [s7!],
t - time [s],

z, z - horizontal and vertical coordinates of the Cartesian coordinates system,
respectively, [m],

i - imaginary unit (2 = 4/—1).

If, on the other hand, the permeable seabed layer has a limited thickness (see
Fig. 2.1), the boundary condition of no flow of the pore fluid perpendicular to the
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impermeable and rigid base has to be assumed. This implies that Eq. (4.6¢c) must be
replaced by an alternative boundary condition in the following form:

Op
9z
The pore-pressure at any point within the seabed can be determined from a solution
of the boundary value problem, consisting of the main Laplace equation [Eq. (4.6a)] and
the boundary conditions [Egs. (4.6b), and (4.6¢c) or Eq. (4.6d)].
Assuming the permeable seabed layer to be of infinite thickness, the wave-induced
pore pressure solution, being the solution to the Laplace equation, is rather simple and
can be written as:

0 for z=d (4.6d)

p = Py exp(—az) cos[i(az — wt)] (4.7)

where, additionally:
p - wave-induced pore pressure (complex-valued) [kPa].

This potential solution was first developed by Putnam (1949) and later veryfied by
Ried & Kajiura (1957) who showed that the inertial effects can be neglected, justifying
thereby the use of Darcy’s law.

Introducing another boundary condition [see Eq. (4.6d)] in the form of impermeable
base located under the permeable seabed layer, the wave-induced pore pressure in the
seabed is also obtained from the solution of the Laplace equation, and can be presented
as:

cosh[a(d — z)]

p=P, cosh(ad) cos[i(az — wt)] (4.8)

where, additionally:
d - thickness of the permeable seabed layer [m].

For simplicity and convenience of presentation of pore pressure results, the wave-
induced pore pressure, p, can be given in its relative and dimensionless form, as it was
shown in Section 2.2.1, by dividing the momentary pore pressure, {p} = p', by the
amplitude of the hydrodynamic bottom pressure, Py. And thus, Egs. (4.7) and (4.8)
can be respectively replaced by:

P = exp(—az) cos(az — wt) (4.9)
p= coscho[;llfziag)z)] cos(az — wt) (4.10)

where, additionally:
p - relative (and dimensionless) wave-induced pore pressure [-|.

As an example, Fig. 4.3 presents the pore pressure distribution with depth in the
seabed of infinite thickness, computed for five different characteristic phases of the first
half of the wave loading cycle; the picture from the second half can be easily achieved
by a mirror-mapping of the picture from the first one.
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Figure 4.3 Wave-induced pore pressure distribution with depth in permeable seabed
layer of infinite thickness, computed for different phases of wave loading
cycle (potential problem)

Figure 4.4 compares the ‘infinite-’ and the ‘finite-thickness layer’ solution to the
amplitude of wave-induced pore pressure cyclic oscillations, computed for different thick-
nesses of the permeable seabed layer (the seabed thickness is given in a relative and di-
mensionless form, i.e. d/L, where d is the thickness of the permeable seabed layer, and
L is the wavelength). It can be indicated how the impermeable boundary condition, im-
posed at the base of the permeable seabed layer, increases the pore pressure amplitude
when approaching the lower boundary. Figure 4.5 illustrates the difference between the
‘infinite-’ and the ‘finite-thickness layer’ solutions to the pore pressure amplitude at the
lower impermeable boundary, using the following two additional parameters, i.e:

Pl = p&) _ p(9 (4.11)
, p(i) _ p(f)
G-n_ P
P, = 0 (4.12)
where: Pl(i_f ) - absolute difference (between ‘infinite-’ and ‘finite-thickness layer’ solu-
tions) in the pore pressure amplitude at impermeable base [-],
Pé’_f ) - relative difference (between ‘infinite-’ and ‘finite-thickness layer’ solu-
tions) in the pore pressure amplitude at impermeable base [-],
P _ relative pore pressure amplitude at impermeable base, obtained from
the ‘infinite-thickness layer’ solution, [-],
P{) . relative pore pressure amplitude at impermeable base, obtained from

the ‘finite-thickness layer’, solution [-].
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Figure 4.4 Wave-induced pore pressure amplitude distribution with depth in perme-
able seabed layer of different thicknesses (potential problem)
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Although the relative difference Péi_'f) can approach a value of 1 for greater thick-

nesses, the absolute difference Pl(i_f ) reaches its maximum for d/L = 0.1, becoming
smaller for all other values of the relative thickness, d/L.

4.3 Diffusion problem

Under realistic conditions, the pore fluid is represented by a two-phase medium where
the water and air components can be distinguished. However, in order to simplify the
calculation procedure, the compressibility of this two-phase medium can be defined by
a very convenient, from the engineering practice point of view, formula proposed by
Verruijt (1969) [see Eq. (3.43) in Chapter 3], and applicated by many researchers (e.g.:
Madsen, 1978; Yamamoto et al., 1978; Okusa, 1985(“)) into their wave-induced pore
pressure theories. The formula, describing the pore fluid compressibility in terms of soil
saturation conditions, represented by the degree of saturation, has already been given
in Eq. (3.43).

An analytical solution to the diffusion problem [see Eq. (2.2)], describing the wave-
induced pore pressure response in seabed sediments under the assumption of compressi-
bility for the pore fluid, was initially presented by Moshagen & Tgrum (1975). Assuming
the same boundary conditions as for the potential problem [see Eq. (4.6b) to Eq. (4.6d)],
their solution, more complicated than the solution to the potential problem, can be
presented as follows:

- for infinite thickness of the permeable seabed layer

1/2
p=R {exp |:—y. (:—:) z] exp[i(az — wt)]} (4.13)

- for finite thickness of the permeable seabed layer

con (1) " a-)

1/2
cosh [u (:—z) d:l

in which p is a complex-valued parameter, as defined by the following relations:

p=%R exp[i(az — wt)] (4.14)

p = |u|explidrg(n)] (4.15a)
,11/4
4 vy
| = [a + (sz,) ] (4.15b)
1 nyL?
Arg(p) = = arctan (W) (4.15¢)
where: p - relative wave-induced pore pressure |-,

ks, k. - coefficients of soil permeability in z- and z-direction, respect., [m/s],

K' - apparent bulk modulus of pore fluid (K' = 1/8") [kPal,
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- compressibility of pore fluid [m? /kN],

- porosity of soil [-],

- unit weight of pore fluid [kN/m?],

- wave number [m™?],

- wavelength [m)],

- thickness of the permeable seabed layer [m)],

- wave angular frequency [s7!],

- wave period [s],

- time [s],

- horizontal and vertical coordinates of the Cartesian coordinates sys-
tem, respectively, [m],

W - parameter (complex-valued) [m™?],

|l - modulus of complex-valued parameter u [m™!],

Arg(p) - argument of complex-valued parameter p [rad],

R{} - real part of { },

1 - imaginary unit (¢ = v/—1).

NE NS I®

8
18

Equation (4.13), or Eq. (4.14), gives the wave-induced pore pressure solution based
on the diffusion model of the two-phase seabed medium. The solution is given in the
form presented by Eq. 2.13. As it was already mentioned in Section 2.2.1, it is also
possible to present the pore pressure solution in the form given in Eq. (2.15), in terms
of the amplitude (modulus of the complex-valued wave-induced pore pressure, p) [see
Eq. (2.14a)] and the phase lag (argument of the complex-valued wave-induced pore
pressure, p) [see Eq. (2.14b)] of wave-induced pore pressure oscillations in the seabed.

4.3.1 Results of example calculations

In order to perform illustrative calculations of the wave-induced pore pressure oscilla-
tions in seabed sediments, governed by the diffusion problem, the following input data
were used:

- porosity of soil n =04
- coefficient of permeability k£ = 10"2%,10"*m/s (k=K = k)
- degree of saturation = 0.95 — 1.0 (from partly to fully saturated soil)
- permeable seabed layer of finite thickness (d = 0.5m)
- wave period I =ibs
- water depth h =4.5m
- permeable seabed layer of infinite thickness (half-space; d = o)
- wave period T =8s
- water depth h =20m

Results of computations performed for the case of infinite thickness of the permeable
seabed layer are presented in Figs. 4.6 to 4.10 (the layer only up to a depth of z = L/2
is illustrated), whereas the case of finite thickness is shown in Figs. 4.11 to 4.14.

In the first step, high permeable (k = 1072 m/s) sandy sediments were assumed for
computations. Figures 4.6 and 4.7 show, respectively, the wave-induced pore pressure
amplitude and the phase lag distribution with depth in the permeable seabed layer. In
the case of fully saturated soil conditions (§ = 1), the pore pressure amplitude and
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Figure 4.6 Wave-induced pore pressure amplitude distribution with depth in perme-
able seabed layer of infinite thickness, and for different soil saturation
conditions (diffusion problem; k = 1072 m/s)

the phase lag do not differ from the potential solution. However, introducing partly
saturated soil conditions, the pore pressure attenuation, accompanied by the increase
in phase lag, is indicated. The phase lag is linearly dependent on the depth in seabed
sediments. It is interesting to note that at a depth of one half of the wavelength,
soil saturation conditions S = 0.95 — 0.96 induce the pore pressure oscillations shifted
approximately 360° (i.e., one period of wave loading) with respect to oscillations of the
hydrodynamic bottom pressure. Figure 4.8 shows the pore pressure distribution in the
vertical profile just under the wave crest (kz —wt = 0) or, treating it as a mirror image,
under the wave trough (kz — wt = ).

Analogous to Figs. 4.6 and 4.7, Figs. 4.9 and 4.10 present the results of compu-
tations with a less permeable (k = 10~* m/s) sandy seabed layer of infinite thickness.
A much stronger pore pressure attenuation can be easily recognized. Practically, al-
ready for S = 0.99, the pore pressure oscillations vanish when the depth approaches
z = 0.1L. Simultaneously, a very strong increase in the phase lag is observed where,
at a depth of z = L/2, the phase lag is approximately fivefold of the period of water
loading oscillations.

If relatively high soil permeability and small (d = 0.5m) limited thickness of the
permeable seabed layer are assumed, the pore pressure is only very slightly attenuated
(Fig. 4.11), and the influence of different soil saturation conditions can be only indicated
from the phase lag distribution with depth (Fig. 4.12), although the phase lag is very
small and can be neglected from the practical point of view. The seabed layer reacts
almost immediately to the wave-induced pressure oscillations at the seabed surface, and
therefore there is almost no pore pressure demping effects in seabed sediments.
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Figure 4.7 Wave-induced pore pressure phase-lag distribution with depth in perme-
able seabed layer of infinite thickness, and for different soil saturation
conditions (diffusion problem; k = 1072 m/s)
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Figure 4.9 Wave-induced pore pressure amplitude distribution with depth in perme-
able seabed layer of infinite thickness, and for different soil saturation
conditions (diffusion problem; k = 10~*m/s)
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Figure 4.10 Wave-induced pore pressure phase-lag distribution with depth in perme-
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Figure 4.12 Wave-induced pore pressure phase-lag distribution with depth in per-
meable seabed layer of finite thickness, and for different soil saturation
conditions (diffusion problem; k = 1072 m/s)
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Figure 4.13 Wave-induced pore pressure amplitude distribution with depth in per-
meable seabed layer of finite thickness, and for different soil saturation
conditions (diffusion problem; k = 10=*m/s)
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However, assuming lower permeability conditions (e.g., & = 10~*m/s), the pore
pressure attenuation (Fig. 4.13) and the phase lag (Fig. 4.14) become meaningful, de-
pending strongly on the pore fluid compressibility which, in turn, is a direct function of
soil saturation conditions represented by the degree of saturation, S.

4.4 Storage problem — two-dimensional analytical
solution

Distinguishing between the two compressibility models of the two-phase system, i.e.:
(1) potential model, where the soil skeleton and pore fluid are treated as incompressible,
and (2) diffusion model, where only the pore fluid is assumed to be compressible, the
available solutions for the wave-induced pore pressure were presented in former Sections
4.2 and 4.3 of the present work.

For many purposes in soil mechanics, it is permissible to uncouple the solid and fluid
parts of the two-phase medium in order to treat two simpler analyses separately. This
can be done only when at least one of the two-phase components (z.e., soil skeleton
or pore fluid) is considered to be incompressible. However, it may be also desirable
on occasion to analyse the true coupled performance of a composite continuum, in
which the two phases interact. Examples of practical importance would involve external
loads which vary in time, and structure-foundation interaction analyses where the pore
pressure response in the foundation is completely dependent upon the relative stiffness
of the components of the two-phase system. That is, a stiff or inhomogeneous structure
causes different pore pressures from a flexible or homogeneous one.

Appropriate analytical solutions to this problem were presented, among others, by
Madsen (1978), Yamamoto et al. (1978), Yamamoto (1981), and Okusa (1985(*)). The
following description of the two-dimensional analytical solution is based on the theory
proposed by Madsen (1978). It is a general theory for the pore pressure and effective
stresses induced in a porous seabed by ocean waves. Both the pore fluid and the soil
skeleton are considered compressible, and the flow in the porous seabed is assumed to
be governed by Darcy’s law for an anisotropic medium. The main goal of this part
of the work is to derive an explicit solution for the wave-induced pore pressure under
the assumption of a finite thickness of the permeable seabed layer. The ‘finite-thickness
layer’ solution has a very important bearing on further analysis of laboratory test results
but would also have a wide application to several engineering problems considered to
happen under natural environmental conditions.

The ‘finite-thickness layer’ solution will be derived for the instantaneous pore pres-
sure induced in the seabed by surface water wave propagation. The effect of a layered
soil profile on the pressure distribution is emphasized here, considering a limited thick-
ness of a single permeable seabed layer resting on a stiff and impermeable base. It
is supposed that the stress level remains within the elastic range. The fundamental
description of the deformation of a saturated porous medium has been accomplished
by Biot (1941) and is known as Biot’s theory of consolidation. The problem is treated
analytically in the classic way; using the general solution to the governing partial dif-
ferential equation, given by Madsen (1978), and applaying proper boundary conditions,
an explicite solution will be derived.



Sec. 4.4 Storage problem — two-dimensional analytical solution 69

4.4.1 Basic equations

In many practical problems appeared in the coastal engineering, there are many sub-
soil stratifications and hydrotechnical structures that can be treated as vertically two-
dimensional. Assuming also that the seabed is loaded by simple two-dimensional har-
monic surface water waves characterized by long crests parallel to each other, then as a
result, the seabed is deformed under plain strain conditions (see Fig. 2.1).

Another basic assumption is that the soil skeleton obeys Hook’s law (i.e., the
soil has linear, reversible, isotropic, nonretarded, and mechanical properties). Since
the relatively small oscillatory deformations with respect to the hydrostatic equilibrium
state are of interest, such idealized assumption may be reasonable. Following the concept
of linear consolidation or poro-elasticity, three basic equations exist. From Terzaghi’s
principle of effective stress together with Hooke’s law, defined by the shear modulus, G,
and Poisson’s ratio, v, of the soil skeleton, the two equations describing equilibrium in
z- and z-directions are as follows [Yamamoto et al., 1978; Mazurkiewicz, 1985]:

G Oe Op
V 2 _— = —
GViua + (1 — 21/) Oz Oz (4.16a)
G Oe Op
2 — T
GViu, + <1 — 2,,) ol (4.16b)
where: G - shear modulus of soil [kPal,

\Y - nabla (V = 8/0z + 9/0z),

Uz, U, - wave-induced displacements of soil skeleton in z- and z-direction, re-
spectively, [m],

v - Poisson’s ratio [-],

- volumetric strain of soil skeleton (defined to be positive for elongation)

[']7

m

P - wave-induced pore pressure [kPal,
z,z - horizontal and vertical coordinates of the Cartesian coordinates system
[m].

The inertia term associated with the movement of sediment particles can be ne-
glected, and this was justified by Massel (1976). The last two equations, describing the
elastic equilibrium of a medium, can be also written in the following general form, in
which the wave-induced total stress is resolved into the wave-induced effective stress
and the wave-induced pore pressure (Haar, 1966):

dol, o7 dp
oz + 3, - 5s (4.17a)
ar' 9o Op
. + 9, 8 (4.17b)

where: ¢!, 0! - wave-induced effective stresses in z- and z-direction, respect., [kPa],
7 - wave-induced effective shear stress [kPal,
P - wave-induced pore pressure [kPa],
z,z - horizontal and vertical coordinates of the Cartesian coordinates system,

respectively, [m].
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The volumetric strain of the soil skeleton is defined as:

Ou, Ou,
e—ez-i—ez—a—m—l— o (4.18)
where: ¢ - volumetric strain of soil (defined to be positive for elongation) [-],

€z, €, - normal strains of soil in z- and z-direction, respectively, [-].

The third equation, constituing the required system of three coupled partial diffe-
rential equations, is the storage equation describing continuity for the pore fluid [Mad-
sen, 1978; Yamamoto et al., 1978]:

k
;Vzp =nf'— + — (4.19)

where: k - coefficient of permeability for isotropic soil [m/s],
4 - unit weight of pore fluid [kN/m?],
V - nabla (V = 8/0z + 8/8z),
p - wave-induced pore pressure [kPal,
n - porosity of soil [-],
B' - compressibility of pore fluid [m?/kN],
€ - volumetric strain of soil [-],
t - time [s].

Equation (4.19) is derived from conservation of mass of the pore fluid [Okusa, 1985]:

o(pvz)  O(pv,) 0O (Ouy Ou, o6
Oz + 8z  Pat\ oz * 8z ) "ot (.20}
where: p - density of pore fluid [kg/m?],

vg,v, - discharge velocities in z- and z-direction, respectively, [m/s],
Uz, U, - wave-induced displacements of soil skeleton in z- and z-direction, re-
spectively, [m],

6 - volumetric strain of pore fluid [-],

n - porosity of soil [-],

z,z - horizontal and vertical coordinates of the Cartesian coordinates system,
respectively, [m],

t - time [s],

in conjunction with the assumption that the flow of pore fluid is governed by the steady
state form of Darcy’s law (for hydraulically isotropic conditions):

L (4.21a)
pg Oz
k Op
y= ——— 4.21b
Y pg 9z ( )

where, additionally:
g - acceleration due to gravity [m/s?].

The compressibility of pore fluid, 8', is given in the following relationship:

9p ' Op
L= 4.22
at ~ "7 Bt a22)
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In principle, the pore fluid consists of two phases, i.e.: liquid (e.g., water) and air.
According to the discussion in Chapter 3, the compressibility of the water-air mixture,
B', can be expressed by Eq. (3.43), depending on soil saturation conditions and the
absolute hydrostatic pressure.

Equation (4.19), for the flow of a compressible pore fluid in a compressible porous
medium, has a form very similar to the diffusion equation, and it is called the stor-
age equation (Verruijt, 1969; Spierenburg, 1987). For a two-dimensional problem, and
treating the porous seabed as hydraulically anisotropic, the storage equation may be
given as:

k. &'p  &p _ ynf'p 0 (€= + €2)

gl
k,0z2 = 822 k, Ot k, ot

(4.23)

where, aditionally:
ks, k. - coefficients of soil permeability in z- and z-direction, respectively, [m/s].

Assuming the plain strain conditions and hydraulically isotropic soil, the following
two equations, describing elastic deformations of the soil skeleton, together with the
storage equation, constitute the coupled problem and can be written in the following
form of the system of three coupled partial differential equations:

c (82% " azuz) o G 98 (auz N auz) _ op (4.240)
Ox? 022 1—2v0z \ Oz 0z Oz
o\ e et )~ -k
S (2275 + g—;) - ﬂ'n% 4 % (%’;” + ‘?;‘;) (4.24c)
where: p - wave-induced pore pressure [kPal,

Uz, u, - wave-induced displacements of soil skeleton in z- and z-direction, re-
spectively, [m],

G - shear modulus of soil [kPa),

v - Poisson’s ratio [-],

k - coefficient of permeability for isotropic soil [m/s],
0% - unit weight of pore fluid [kN/m?],

B - compressibility of pore fluid [m?/kN],

n - porosity of soil [-].

The above three equations of the governing problem can be found in many publi-
cations, e.g. Yamamoto et al. (1978), Madsen (1978), Nago & Maeno (1984), Okusa
(1985(#)). The first Eq. (4.24a) is formed from the equilibrium condition in the z-
direction, the second Eq. (4.24b) is formed from the equilibrium condition in the z-
direction, and the third Eq. (4.24c) comes from the continuity principle incorporating
Darcy’s law of fluid flow through a porous medium.

And thus, the governing problem of poro-elastic seabed response to surface water
wave loading is mathematically defined and can be solved in terms of the three un-
knowns, i.e.: wave-induced pore pressure, p, and wave-induced displacements of soil
skeleton in z- and z-direction, u, and u,, respectively.
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4.4.2 Constitutive relations

Resulting from the assumption that the seabed can be considered as an isotropic, ho-
mogeneous, linear, and elastic medium, stresses and strains are coupled by Hooke’s law.
According to Terzaghi’s principle of effective stress, the deformations in the solid matrix
are determined by the difference of the total stress and the pore fluid pressure. This
stress difference, called the effective stress, characterizes the contact forces between the
individual soil grains. Assuming the soil skeleton to behave as an ideal, isotropic, elastic
material, and treating the governing problem under plain strain conditions, one has the
following stress-strain relations:

—(1 -2
€x = auz = ( Y ) <0’; — Y 0") (4.25@)

Oz E 1—v ~?
Ou, _ (1 - Vz) 1 v I
€ =75 "= i (a‘z - Vam) (4.25b)

where: €,,€e, - volumetric strains in z- and z-direction, respectively, [-],
ol ,o. - wave-induced effective normal stresses in z- and z-direction, respec-
tively, [kPal,
Uz, U, - wave-induced displacements of soil skeleton in z- and z-direction, re-
spectively, [m],

E - Young’s modulus of soil [kPal,

v - Poisson’s ratio [-],
z,z - horizontal and vertical coordinates of the Cartesian system, respec-
tively, [m].

From Eqgs. (4.25a) and (4.25b), expressions for the wave-induced effective stresses
may be obtained in terms of soil displacements:

i (1-v)E Ou, v Ou,

7 T T+ 0)(1-2v) (Bw Rk 3z) (4.26a)
, 1-v)E Ou, v Ou,

== i N1 — 20) ( 5z T1—v 0% ) (.266)
; E Ou, Ou,

T C2(1+4v) ( 0z 4 oz ) (4.26¢)

where, additionally:
7' - wave-induced effective shear stress [kPa].

After solving the system of three coupled partial differential equations [Eqgs. (4.24a),
(4.24b), and (4.24c)] in terms of the three unknowns, i.e.: wave-induced pore pressure,
p, and wave-induced displacements of soil skeleton in z- and z- direction, u, and u,
respectively, the wave-induced effective stresses can be also obtained using the above
presented constitutive relationships.
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4.4.3 General solution

The following final partial differential equation of the 6** order has to be solved to
obtain its general solution (Madsen, 1978):

8%u, 2 kr, &2\ 0%u, 4 ks K2\ 0%u, 6 [ k= K2
52 —a <2+E—a—2) 97t +a <1+2Ez—~2a—2) 5.2 @ (———)uz—O
(4.27)

in which:

p 1—-2v
ok [nﬂ 4 2(1 - V)G]
K =1 - (4.28)

where: u, - horizontal (i.e., in z-direction) wave-induced displacement (complex-
valued) of soil skeleton [m],

2, k. - coefficients of soil permeability in z- and z-direction, respect., [m/s],

- wave number [m™!],

- parameter (complex-valued) [m™!],

- wave angular frequency [s7?],

- unit weight of pore fluid [kN/m?],

- porosity of soil [-],

- compressibility of pore fluid [m?/kN],

- shear modulus of soil [kPal,

- Poisson’s ratio [-],

- imaginary unit (i = /—1).

-~
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The water wave loading on the surface of the seabed changes periodically in time
and space. The process of consolidation is dominated by diffusion. Combined with
low permeability, which results in small fluid velocities, it is reasonable to assume a
harmonic response of the seabed. Therefore, the general solution to the above pre-
sented Eq. (4.27) with Eq. (4.28), given by Madsen (1978) in terms of the wave-induced
horizontal displacement of soil skeleton, u,, can be written as:

Up = [(A1 + Azz)e* + (A3 + Agz)e™ " + Ageter 4 Aee_’-w‘z] expi(az — wt)] (4.29)
in which:

= k., K2
k= PR (4.30)
where, additionally:
Aj,...,Ag - arbitrary constants (complex-valued), to be determined from ap-
propriate boundary conditions,
- paramater (complex-valued) [-],
- horizontal coordinate of the Cartesian coordinates system [m)],
- time [s].

S8
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4.4.4 Boundary conditions

For a semi-infinite permeable seabed layer only half of the general solution is valid.
At infinite depth (2 — o0), all displacements and stresses in the soil matrix together
with the pore pressure must vanish. It is assumed that the seabed is homogeneous and
occupies the lower part of the (z,z)-plane where z > 0 (see Fig. 2.1). The part of the
solution with positive expotential powers does not conform to the conditions at infinite
depth and, therefore, constants A;, A; and A5 [see Eq. (4.29)] are set to zero.

On the surface of the seabed (z = 0) a water wave loading is present. It is supposed
that this load is a travelling two-dimensional harmonic wave, that for convenience will
be written in complex form. The amplitude of the wave-induced hydrodynamic bottom
pressure, Py, can be calculated using Airy’s linear wave theory [see Eq. (2.7)].

It is also assumed that the main phenomenon is a travelling pressure wave and
that the boundary effects near the surface of the seabed can be neglected. As for the
wave-induced effective shear stress at the surface of the seabed, it is known that a shear
stress is associated with the oscillatory flow above the seabed. The fluid shear exerted
at the surface of the seabed is, however, small and may be neglected. The wave-induced
pressure field has a length scale which equals the wavelength while the boundary layer
effects are rapidly damped because of relatively low soil permeability. Consequently,
the wave-induced effective shear stress, 7', is zero at the sea floor. Furthermore, the
wave-induced effective vertical normal stress, o}, must vanish at the sea floor because
the seabed is loaded by water waves only.

Taking the above into account, the assumption of infinite thickness of the permeable
seabed layer implies the need to fulfil the following three boundary conditions at the
surface of the seabed (z = 0):

p = Py exp[i(az — wt)] (4.31a)
o, =0 (4.31b)
=0 (4.31¢)

where: p - wave-induced pore pressure [kPal,
o! - wave-induced effective vertical normal stress [kPal,

7' - wave-induced effective shear stress [kPa].

Field investigations frequently prove the existence of a limited thickness of a per-
meable and isotropic seabed layer or layers with different properties in the upper part
of seabed sediments. The soil vertical profile may often look like a sand layer, possibly
with permeable sub-layers, a few metres thick, overlaying an impermeable clay stratum.

At the bottom of the permeable seabed layer (z = d), a stiff impermeable base is
supposed to exist. From this assumption follows that, at this level, the wave-induced
vertical displacement of soil skeleton, u,, is zero and the pore pressure gradient in
z-direction (i.e., normal to the base) is also zero which means that there is no flow
normal to the horizontal boundary. The last condition refers to the contact between the
permeable layer and the impermeable base. And thus, in the case of perfectly smooth
interface, the wave-induced effective shear stress, 7', is zero and horizontal displacements
are possible along this boundary. If, on the contrary, the contact is completely rough,
a no-slip condition exists along the horizontal boundary z = d and the wave-induced
horizontal displacement, u,, must be zero there. Generally, it can be expected that the
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constraint (i.e., no-slip) condition will be a better description of the contact between a
permeable soil layer and an impermeable base than a perfectly smooth interface.

Summarizing, the boundary conditions at the bottom of the permeable seabed layer
(z = d), required for obtaining a particular solution of the governing problem, are as
follows:

Uy =10 (4.31d)
9p

Up =0 (for a completely rough base) (4.31f)
=0 (for a perfectly smooth base) (4.319g)

where, additionally:
Uz, U, - wave-induced displacements of soil skeleton in z- and z-direction, re-
spectively, [m],
z - vertical coordinate of the Cartesian coordinates system [m)].

Basically the same methods, that will be derived here in order to obtain the pore
pressure response of a single layer, can be used for the case of a multi-layered seabed;
however, the number of mathematical manipulations will increase substantially. If a
horizontally layered (i.e., vertically inhomogeneous) seabed is considered the boundary
conditions at the interfaces between the sub-layers (z = d;) are that the wave-induced
stresses, pore pressure, pore fluid flow, and displacements of the soil skeleton are con-
tinuous (Yamamoto, 1981):

(02)i = (02)ia (4.320)
i = Ty (4.32b)
- (4.32¢)

ki% = kst a’;’:l (4.32d)

(uz); = (uz)i+1 (4.32¢)

(uz)i = (uz)i+1 (4.32f)

where k is the coefficient of soil permeability, and 7 (+ = 1,...,N) denotes the i-th
sub-layer from all N sub-layers, into which the permeable seabed layer is divided.

Substitution of proper boundary conditions into the governing general solution
[Eq. 4.29 with Eq. 4.30], and performance of some mathematical manipulations between
the fundamental realationships describing the governing problem, lead to a system of
six coupled, complex-valued, linear equations that can be solved using, for instance, one
of numerical methods.

4.4.5 ‘Infinite-thickness layer’ solution

The analytical solution for the pore pressure response of a homogeneous, poro-elastic,
semi-infinite seabed layer was derived by many authors (e.g.: Madsen, 1978; Yamamoto
et al., 1978; Verruijt, 1982; Okusa, 1985(%)).
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If the soil skeleton is incompressible and fully saturated with water, (z.e., S = 1),
the compressibility of pore fluid, A', is equal to the compressibility of pure water, 3,,.
The pore pressure response for this case is the same as it was observed from the potential
solution [see Egs. (4.9) and (4.10)] obtained by Putnam (1949), who assumed that the
soil is rigid and the pore water is incompressible, and that obtained by Prevost et al.
(1975), who assumed that the soil is an elastic continuum and no fluid flow takes place
in the soil. The pore pressure attenuation for this case is small and independent of the
soil permeability. Although the displacements are non-zero, the volumetric strain, e,
appears to be zero. The pore pressure satisfies the Laplace equation. In this case, the
coupled equations uncouple and it is possible to study the pore fluid pressure separately.
The fact that the volumetric strain, €, is zero implies that no consolidation takes place,
and that the grain skeleton has a constant volume. As a result, the seabed reacts like
an impermeable and elastic material where a good transmission of the pore pressure is
associated with the elastic deformation of the soil skeleton.

For partly saturated soil (i.e., S < 1), compressibility of the pore fluid may exceed
the compressibility of pure water by a considerable amount and, thereby, the relative
compressibility of the pore fluid with respect to the compressibility of the soil skeleton
increases drastically. For such case, the governing equations are more complicated and
can be found in the works of Madsen (1978), Yamamoto et al. (1978), and Okusa
(1985(%)). For example, Madsen’s (1978) ‘infinite-thickness layer’ solution is cited here:

p = Py [C1 exp (—kaz) + C2Cs exp(—az)| expli(az — wt)] (4.33)

where Cy, C5, and C3 are complex-valued constants given by:

(1-) (- 1)

C,=-— 4.34a
i | fl f2(1 _ 21/) ( )
1—2v)k — (1 —v)k?
A k) e Ul 0 e (4.34b)
f2
_ 1-— f]_ — 2v
Oy =~ (4.34¢)
in which:
"+i(ks —k;)a®] (1 —2
fy = Lemp +;(_ - )’] (1~ 2v) (4.34d)
wy (nﬁ'+ ) + i (ks — k) a®
=Q-fH-20)k-1-v)E®+v+fi (4.34€)
where: p - wave-induced pore pressure (complex-valued) [kPa],
P, - amplitude of the wave-induced bottom pore pressure [kPa,
G - shear modulus of soil [kPa),
v - Poisson’s ratio [-],

k., k, - coefficients of soil permeability in z- and 2-direction, respect., [m/s],
- parameter (complex-valued), given in Eq. (4.30), [-],

- porosity of soil [-],

- compressibility of pore fluid [m?/kN],

- unit weight of pore fluid [kN/m?],

- wave number [m™!],

- wave angular frequency [s7],

€ oI &
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t - time [s],

z, z - horizontal and vertical coordinates of the Cartesian coordinates system,
respectively, [m],

¢ - imaginary unit.

4.4.6 ‘Finite-thickness layer’ solution

Using the general solution of the governing problem, together with appropriate bound-
ary conditions adequate to the case of a finite thickness of the permeable seabed layer
overlaying a perfectly smooth or rough, stiff and impermeable base, the particular so-
lution for the instantaneous wave-induced pore pressure response in the seabed layer of
finite thickness has been derived analytically.

The derived set of six coupled, linear, and complex-valued equations has been
obtained. The system of six coupled equations can be solved either in its complex-
valued form or in the real-valued form. The later would involve, however, a set of twelve
coupled, linear equations involved in the solution procedure. The matrix representation
of the system of six coupled, linear, complex-valued equations can be written as:

[DI{Y} = {B} (4.35)

where:

(4.36a)

Y=¢(.°} (4.36b)

B =/{ > (4.36¢)

Matrix D contains constant coefficients accompanied by proper unknowns in equa-
tions of the boundary value problem. And thus, Dg-z) represents a set of constant coeffi-
cients related to j-th unknown in ¢-th equation. There are six equations where ¢-equation
(z = 1,...,6) relates to the boundary condition given in Eq. (4.31a) to Eq. (4.31f), re-
spectively. Matrix Y represents unknowns Y; (5 = 1,...,6), and matrix B is composed
of the free terms appearing in each expression for the boundary condition problem.
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All the 36 coefficients of matrix D can be computed using the following relationships
(Magda, 1989()):

D(l) = exp(—ad) (4.37.1a)
D(l) —dexp(—ad) (4.37.1b)
D( ) = exp(ad) (4.37.1¢)
D(l) —dexp(ad) (4.37.1d)
Dg ) = exp (—kad) (4.37.1e)
Dgl) = exp (kad) (4.37.1f)
D= (ad-X B -

T 20+ X3 . exp(—ad) (4.37.2a)
D(z) ( —ad*d— X+ Xzad — X; gi- 1) exp(—ad) (4.37.2b)
D(Z) D(z) exp(2ad) (4.37.2¢)

ad —1
D(z) (3(1 +a*d — Xy — Xpad + X3 ) exp(ad) (4.37.2d)
D(2) (k3a3 Xoka + X I_c_) exp (—Ead) (4.37.2¢)
a
@ _ _p@
Dg —D;” exp (2kad) (4.37.2f)
D = X1a* — X1 X50% + X1 X5 + Xsia (4.37.3q)
D = 4X,a® — 2X, X0 (4.37.3b)
D{» = p® (4.37.3¢)
D = —p{® (4.37.3d)
D = X k%a* — X, X k%a? + X1 X5 + Xsia (4.37.3¢)
p{® = p® (4.37.3f)
D = a + Xyia* — X1 Xpia® + Xy Xsi (4.37.4a)
1
D =1+ 3Xyia® — Xy Xyia — X1 Xsi~ (4.37.4b)
D = —p® (4.37.4¢)
D{®¥ = p{ (4.37.4d)
DY = ka + X1 E%a* — X, Xokia? + X, X3% (4.37.4e)
D = —p® (4.37.4f)
DY = X7 (a* — X0’ + Xs) + Xaia + Xo= (4.37.5a)

1
Dgs) = 2X7a (2(12 — Xz) + 2X6 ; (4375b)
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D = p{® (4.37.5¢)
D = —p{» (4.37.5d)
7.2
D(s) =X (I:B‘la,4 — szzaz + X3) + Xata + X k—a (4.37.58)
i
D = p{® (4.37.5f)
D(s) Dgs)a exp(—ad) (4.37.6a)
D(S) (D' + D") exp(—ad) (4.37.6b)
D(G) Dg )aexp(ad) (4.37.6¢)
D'¥ = (D' — D") exp(ad) (4.37.6d)
D(s) D(s)kaexp (—kad) (4.37.6¢)
D(s) D(s)ka exp (kad) (4.37.6f)
in which:
D' = X1(5¢* — 3X30® + X3) + X1 Xs X5 + Xuia + 3X6% (4.37.7a)
a2
.D" = —X7ad(a = Xza, + X3) + X1X3X6 — X4za d— Xs—d (4377b)
2(1 —v)k,
Xy = (1 —¥) (4.37.7¢)
y . L=2v . 3
aw7<nﬁ+ G )—i—z(kz—kz)a
[k (1 —2v) + k,] a® — wwynfB'(1 — 2v)
X, = 37.
2 a ok (1 — 1/) (4 ar 7d)
ks
Xy =d® (azk— - nz) (4.37.7¢)
(1-v)E
Xe=— 37.
T +v)(1—-2v) (4.37.75)
v
_Xs = 1—o (43779)
Xo = -G (4.37.7h)
X = X (K X+ X (4.37.75)

where: E - Young’s modulus of soil [kPal,
G - shear modulus of soil [kPal,

- Poisson’s ratio [-],
2,k - coefficients of soil permeability in z- and z-direction, respec., [m/s],
- parameter (complex-valued), given in Eq. (4.30), [-],
- parameter (complex-valued), given in Eq. (4.28), [m™'],
- porosity of soil [-],
- compressibility of pore fluid [m?/kN],
- unit weight of pore fluid [kN/m?],
- wave number [m™?],
- wave angular frequency [s7?],

a R
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d - thickness of the permeable seabed layer [m)],
¢ - imaginary unit.

The above presented set of coefficients is derived to solve the pore pressure problem
with the assumption of rough and impermeable base under the permeable seabed layer.
Principally, the same procedure is applied for a finite layer overlaying a completely
smooth base. The only difference is that the boundary condition given in Eq. (4.31f)
has to be replaced by Eq. (4.31g) which is foreseen for the smooth base condition. It

means that the sub-set of constant coefficients D§-6) (j =1,...,6) is built up using the
constant coefficients appearing in Eq. (4.31g). All elements in the two other matrices
(i.e., Y and B) stay unchanged. Equations (4.37.6a) to (4.37.6f) were derived for the
case of perfectly rough base. If a perfectly smooth base is assumed, these equations
have to be replaced by the following set of equations, respectively:

D{" = X¢ (a+ Xqia* — X1 Xpia® + X, Xsi) exp(—ad) (4.37.8q)
DS = X4 [1 — d + 3Xyia® — Xy dia* — X; Xsia + X, Xpdia®
(ad +1
-X1X3 M] exp(—ad) (4.37.8b)
a
D{" = — D" exp(2ad) (4.37.8¢)

D{” = X¢ [1 + d + 3Xyia® + Xidia* — X1 Xyia — X1 X, dia?

+X:1 X3 ﬁada——l)] exp(ad) (4.37.8d)

D" = x, (Ea + Xqik*a* — X1 Xyika® + X1X31) exp (—kad)  (4.37.8¢)
a

D((:) = —Dgn exp (2kad) (4.37.8f)

Because of rather lengthy form of each of 36 coefficients Dg-z) (4,7 = 1,...,6) ac-
companied by unknowns Y; (7 =1,...,6), it seems to be wise to use a computer and to
program the whole calculation procedure. The solution of the system of six coupled, lin-
ear, and complex-valued equations, obtained in terms of coefficients D;z) (3,7 =1 :..,6)
constitutes simultaneously the particular solution to the pore pressure (and also to the
wave-induced effective stresses and strains) within the permeable seabed layer of finite
thickness.

The problem considered is the wave-induced response of a single permeable seabed
layer resting on a stiff impermeable base. As it was mentioned before, basically the
same solution can be used for the case of multi-layered seabed. However, the number of
mathematical operations will increase substantially. Therefore, the use of computer may
bring additional benefits and speed up the whole computational procedure reasonably.

After Madsen (1978), the pore pressure can be written as:

, 1o7
p=—|o, + ——— (4.38)
1a 0z
where: ¢! - wave-induced effective horizontal normal stress (complex-valued) [kPa],
p - wave-induced pore pressure (complex-valued) [kPal,
7' - wave-induced effective shear stress (complex-valued) [kPa],

a - wave number [m™!],
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z - vertical coordinate of the Cartesian coordinates system [m],
¢ - imaginary unit.

Using the above computed unknowns Y; (7 = 1,...,6), one can write:
or, = X4 (Th + X5T2) expli(az — wt)) (4.39a)

and

a !
—alz = Xg [2Ysaexp(—az) + (Y1 — Y22) a® exp(—az) — 2Yiaexp(az)

+ (Y3 — Ya2) a® exp(az) + Ysk’a® exp (—kaz)
+Ysk*a® exp (kaz) + Thia| expli(az — wt)] (4.39b)
in which:
Ty = ia [(Y1 — Yaz) a® exp(—az) + (Y3 — Yaz) a® exp(az)
+Ysk%a® exp (—kaz) + Ysk?a® exp (kaz)] (4.39c¢)

T, = X1 {4Y2a® exp(—az) + (Y1 — Y>2) a* exp(—az)
— 4Y,a® exp(az) + (Y3 — Yaz) a* exp(az)
+ Ysk*a®* exp (—Eaz) + Ysk*a* exp (l?:az)
— X, [2Yaexp(—az) + (Y1 — Yaz) a® exp(—az)
— 2Ysaexp(az) + (Vs — Yaz) a® exp(az)
+Ysk%a® exp (—Eaz) + Yek?a? exp (Eaz)]
+ X5 [(Y1 — Yaz) exp(—az) + (Y5 — Yaz) exp(az)
+Y; exp (—kaz) + Ys exp (kaz)] } (4.394)

where: o} - wave-induced effective horizontal normal stress (complex-valued)
[kPal,
7! - wave-induced effective shear stress (complex-valued) [kPa,
Y1,...,Ys - coeflicients (complex-valued), being the solution to Eq. (4.35),
1,---;X¢ - coeflicients (complex-valued), given in Eqgs. (4.37.7c) to (4.37.7h),
k - parameter (complex-valued), given in Eq. (4.30), [-],
a - wave number [m™1],
w
T

b

- wave angular frequency [s7}],
" - horizontal and vertical coordinate of the Cartesian coordinates sys-
tem, respectively, [m)],
- time [s],
- imaginary unit.

&S, o~

The wave-induced pore pressure solution to the storage problem of the seabed
response due to the propagating surface wave loading is given in the complex-valued form
in Eq. (4.38) with Eqgs. (4.39a) to (4.39d). As it was formerly explained in Section 2.1.1, a
momentary (z.e., for an arbitrary time-point, ¢) value of the wave-induced pore pressure
can be easily found by: (1) extracting only a real part from the complex-valued solution
[see Eq. (2.13)], or (2) by using Eq. (2.15) together with the formulas describing the
amplitude, P [see Eq. (2.14a)], and the phase lag, § [see Eq. (2.14b)] (computed with
respect to the phase of the hydrodynamic bottom pressure oscillation), of the wave-
induced pore pressure cyclic oscillations in seabed sediments.
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4.4.7 Results of example calculations

In order to perform illustrative calculations of the wave-induced pore pressure oscilla-
tions in the seabed layer of finite thickness, governed by the storage model, the following
input data were used:

- thickness of seabed layer d =0.5m
- porosity of soil n =04
- coefficient of soil permeability &k =10"*m/s
- Poisson’s ratio of soil r =03
- Young’s modulus of soil E =10% 10°kPa
- compressibility of pure water 8 =4.2 x 107" m?/kN
- degree of saturation S =095-1.0
- atmospheric pressure Pat = 101.325kPa
- - wave period T =6s
- water depth h =4.5m

Due to the presence of complex numbers in the mathematical formulation of the
governing problem, numerical calculations were performed to obtain all the six complex-
valued coefficients, Y; (7 = 1,...,6), of the analytical ‘finite-thickness layer’ solution; the
LU Decomposition method (Press et al., 1986) was used to solve the system of six
coupled linear complex-valued equations.

The following presents the comparison of the wave-induced pore pressure solutions
obtained from the potential problem, the diffusion problem, and the storage problem
with two different compressibilities of soil skeleton introduced into computations, i.e.:
E = 10° kPa for dense or semi-dense sandy sediments, and E = 10* kPa for loose sandy
sediments. The results of the wave-induced pore pressure response in the permeable
seabed layer of finite thickness (d = 0.5m), overlaying a rough, impermeable, and stiff
base, are given in terms of the pore pressure amplitude (Figs. 4.15 and 4.17) and the
phase lag (Figs. 4.16 and 4.18) as a function of depth in the seabed and different soil
saturation conditions: S = 0.99 (Figs. 4.15 and 4.16) and S = 0.95 (Figs. 4.17 and
4.18).

Analyzing the influence of different soil saturation conditions (introduction of com-
pressible properties only to the pore fluid reflects the use of the diffusion model to the
wave-induced pore pressure response in seabed sediments), by comparing the results ob-
tained for S = 0.99 and S = 0.95, it was found that the smallest pore pressure damping
effects are indicated by the potential solution. Lower values of the degree of saturation
(S <1 and B' # B = 0), possible to be investigated in the diffusion solution, magnifies
the pore pressure damping effects that can be recognized by smaller amplitudes (com-
pare Figs. 4.15 and 4.17) and larger phase lags (compare Figs. 4.16 and 4.18) of the
wave-induced pore pressure oscillations.

A successive introduction of compressible properties to the second phase (i.e., soil
skeleton) of the two-phase seabed system, denoted by: (1) storage problem with E =
10° kPa, and (2) storage problem with E = 10*kPa, enlarges — in general — the damping
of the pore pressure amplitude (see Figs. 4.15 and 4.17). However, as it is clearly seen
in Fig. 4.17, in the upper part (z < 0.2m) of the seabed layer, the amplitudes of pore
pressure oscillations in more compressible sediments (E = 10* kPa) are greater than the
amplitudes computed for less compressible sediments (E = 10*kPa). The results from
the lower part (z > 0.2m) of the seabed layer show the opposite relation. This change
of the relative positions of the two pore pressure amplitude distributions with depth has
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Figure 4.15 Wave-induced pore pressure amplitude distribution with depth (‘finite-
thickness layer’ analytical solution) — comparison between the potential,
diffusion (S = 0.99), and storage (S = 0.99, E = 10° kPa — dense sandy
sediments, and E = 10* kPa — loose sandy sediments) solutions
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Figure 4.16 Wave-induced pore pressure phase-lag distribution with depth (‘finite-
thickness layer’ analytical solution) — comparison between the potential,
diffusion (S = 0.99), and storage (S = 0.99, E = 10° kPa — dense sandy
sediments, and E = 10* kPa — loose sandy sediments) solutions
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Figure 4.17 Wave-induced pore pressure amplitude distribution with depth (‘finite-
thickness layer’ analytical solution) — comparison between the potential,
diffusion (S = 0.95), and storage (S = 0.95, E = 10° kPa — dense sandy
sediments, and E = 10* kPa — loose sandy sediments) solutions
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Figure 4.18 Wave-induced pore pressure phase-lag distribution with depth (‘finite-
thickness layer’ analytical solution) — comparison between the potential,
diffusion (S = 0.95), and storage (S = 0.95, E = 10° kPa — dense sandy
sediments, and E = 10* kPa — loose sandy sediments) solutions
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indicated a strong influence of the ‘finite-thickness layer’ boundary condition on the pore
pressure solution according to the storage model. Assuming homogeneous conditions
and infinite thickness of the seabed layer, this phenomenon would not be observed. A
detailed explanation of this problem will be given in conclusions of Chapter 4.

Taking into account the pore pressure phase-lag, it was found that the potential
solution and the diffusion solution constitute the lower limit and the upper limit, respec-
tively, for the linear-elastic storage problem where both components of the two-phase
medium are considered to be compressible (see Figs. 4.16 and 4.18).

A proper choice of the type of boundary conditions may by a crucial point in deriv-
ing a particular solution to any partial differential equation. Therefore, the boundary
conditions at the bottom of the permeable seabed layer [see Eqs. (4.31f) and (4.31g)]
were considered. Using the analytically derived ‘finite-thickness layer’ solution (Magda,
1989(#)), two different boundary conditions were introduced in order to simulate a rough
(i.e., constrained movement of the soil skeleton; u, = 0) or smooth (i.e., free linear-
elastic movement of the soil skeleton; 7' = 0) surface of a rigid and impermeable base
underneath the permeable seabed layer.

The results of the wave-induced pore pressure response in a permeable seabed layer
of finite thickness, overlaying either a smooth or rough base, are given in the following
four figures where the solid lines denote the rough base condition whereas the dashed
lines denote the smooth base condition. The results are presented in terms of the pore
pressure amplitude (Figs. 4.19 and 4.21) and the phase lag (Figs. 4.20 and 4.22) as a
function of depth in the seabed. Different soil saturation conditions (S = 0.95 — 1.0)
as well as two different compressibilities of soil skeleton, i.e.: E = 10° kPa for dense
or semi-dense sandy sediments (Figs. 4.19 and 4.20), and E = 10*kPa for loose sandy
sediments (Figs. 4.21 and 4.22), were considered in the computational analysis.

In the case of dense sandy sediments (Figs. 4.19 and 4.20), the difference between
the rough and smooth base conditions is relatively small. The influence of introduc-
tion of the smooth base condition becomes meaningful when loose sandy sediments are
considered (Figs. 4.21 and 4.22). In both cases (i.e., loose and dense sediments), the
smooth base condition creates the pore pressure damping effects larger (i.e., the pore
pressure amplitude decreases while the phase lag increases), compared with the rough
base condition. Although the pore pressure gradient is more inconvenient (more danger-
ous situation for the stability of seabed sediments) when the smooth base is assumed,
the rough base condition seems to be more natural.

Regardless compressibility properties of the soil skeleton, soil saturation conditions
have always the same pore pressure damping effects, namely: the lower soil saturation
is, the smaller amplitude and the larger phase lag of pore pressure oscillations are. As it
was already shown in Figs. 4.15 to 4.18, Figs. 4.19 to 4.22 can only certify this statement.

4.5 Storage problem — one-dimensional numerical
solution

As an extension to the above presented realistic two-dimensional model, and its ana-
lytical solution to the pore pressure response in the permeable seabed layer of finite
thickness, due to propagating surface water wave oscillations, a one-dimensional model
of the considered problem was adopted after Nago (1981) as a necessary tool for the ver-
ification and comparison analysis of results obtained from small-scale laboratory tests
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Figure 4.19 Wave-induced pore pressure amplitude distribution with depth, for diffe-
rent soil saturation conditions and types of impermeable base (2-D stor-
age problem — ‘finite-thickness layer’ analytical solution; E = 10° kPa —
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dense sandy sediments)
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performed in a sand column. It has to be emphased that the control of soil saturation
conditions, modelled by a wide range of practically possible values of the degree of sat-
uration, is much easier to be performed and more accurate to be measured, in the case
of small-scale tests than during large-scale laboratory investigations.

Small-scale tests conducted in a sand column are not very much recommended for
the application of a real-shaped progressive surface water wave because models are to
small to avoid the combined influence of the vertical side-wall boundary condition and
the asymmetry of propagating wave loading with respect to the vertical axis of the sand
column model. Nevertheless, these disadvantages can be overcome by introducing as
simple type of water loading as possible, that is the water surface vertically oscillating
movement instead of the wave-shaped horizontally progressive surface water wave mo-
tion above the seabed model. It has to be noticed that the water loading in the form of
water surface vertically oscillating movement can be also very relevant for the coastal
engineering practice where, for instance, long water waves are considered.

In the following, a description of the theoretical, one-dimensional approach to the
governing problem is presented, and illustrated by results of example computations.

4.5.1 Mathematical formulation of the problem

In the theoretical treatment of the governing problem, a vertically one-dimensional sand
column is considered, as shown in Fig. 4.23. The sand column is saturated with water
and placed on an impermeable and stiff base. The height (thickness) of the sand column
is denoted by d, and the oscillating water pressure is assumed to act cyclically on the
upper surface of the sand column.

l Pat
l l nghb
Y

RS 7R RAS74

o.l

} A o, - vertical effective stress
Idz /// // /A 1 |d v, - vertical velocity of flow
SRR v, :

] ] pw - density of water
g l g - g - acceleration due to gravity

hy - head of bottom pressure oscillations
Pat - atmospheric pressure

-+ Sand - - d - height (thickness) of sand column
[ ey e z - vertical coordinate (positive downwards;
TI777777777777777777. depth in sand column)

Impermeable base dz - depth increment

Figure 4.23 Sand column loaded by water surface vertical oscillations [Nago, 1981]



Sec.

4.5 Storage problem — one-dimensional numerical solution 89

Motion of the pore fluid and the soil skeleton in the sand column is analysed by

the same method as for the ground water problems in the elastic aquifer (e.g., Rouse,
1950). The following assumptions had to be made in order to derive the one-dimensional
mathematical model of the governing problem (Nago, 1981):

the porosity of soil is composed of the part of soil porosity filled with water and
the complementary part of soil porosity occupied by air; similarly to the formerly
described two-dimensional model, the terms ‘pore fluid’ and ‘pore pressure’ will be
used in the following, representing the mixture of water and air, and the pressure
in this mixture, respectively.

the soil skeleton and the pore fluid are compressible,

the density of pore fluid, the porosity of soil and the height (thickness) of sand
column are variables,

the horizontal strain of the soil skeleton is negligible,

by the law of mass conservation, the net inward flux must equalize the rate at which
the pore fluid is accumulating within that volume,

it is permissible to consider that the volume of solid material in the total volume re-
mains constant since the compressibility of individual sand grains is small compared
to the compressibility of pore fluid and the change in the porosity of soil,

there is no inertia force acting on the soil skeleton; therefore it is permissible to
consider that the vertical component of the compressive stress and the pore pressure
can be equated to the downward acting force on the plane of contact of the sand,
the volume of air in the sand column changes in accordance to Boyle’s law,

the velocity of pore fluid in the sand column is represented by Darcy’s law.

The fundamental equation for the pore pressure response in the one-dimensional

model of the permeable seabed layer, loaded cyclically by an oscillating water surface
vertical movement, is given by (Nago, 1981):

B+ 10, ) 2 4 (Bny 4+ ) OB _ ke OB (4.40)
Tw P, ) b1 Mw P,) 8t  pg 822 '
in which:
P; = pght + pat = Yht + Pat (4.41)
hi=h+z+h (4.42)
where: [ - compressibility of pure water [m?/kN],

Ny - soil porosity part filled with water [-],

n, - soil porosity part filled with air [-],

P, - absolute total pressure [kPal,

Pat - atmospheric pressure [kPal,

a, - compressibility of soil skeleton in z-direction (e, = 1/E,) [m?/kN],

E, - Young’s modulus of soil in z-direction [kPal,

h' - pore pressure head, induced by cyclic water surface vertical (i.e., in 2-
direction) oscillations, [m],

hy - hydrodynamic bottom pressure head (induced by cyclic water surface ver-
tical oscillations, and acting at the upper surface of the sand column)
[m],
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h: - total (i.e., hydrostatic and oscillation-induced) pore pressure head, acting
at depth z in the sand column, [m],

h - water depth, due to still water level above the upper sand surface, [m],

k. - coeflicient of soil permeability in z-direction [m/s],

p - density of pore fluid [Mg/m?],

g - acceleration due to gravity [m/s?],

4 - unit weight of pore fluid [kN/m?],

z - vertical coordinate (depth in the sand column) [m],

t - time [s].

For the case where the water pressure loading, acting on the upper surface of the
sand column, changes sinusoidally according to:

hy = Hj sin(wt) (4.43)

where: hp - hydrodynamic bottom pressure head [m],
Hy - amplitude of the hydrodynamic bottom pressure head oscillations (ap-
proximately equal to the amplitude of water surface vertical oscillations),

[m],
w - angular frequency of water surface vertical oscillations [s™!],
t - time [s|,

Eq. (4.40) becomes:

f Ry k, 8%h'

& Oh
(,an + % + az) 3 + wH, (ﬂnw + —ﬁt—) cos(wt) = S o (4.44)

In order to obtain the pore pressure solution in the permeable sand column of finite
thickness, Eq. (4.44) must be solved under the following boundary conditions:

R'=0 at # =10 (4.45)
!
?9—’: =0 at z=d (4.46)

where, additionally:
d - height (thickness) of the sand column [m)].

The loading function [see Eq. (4.43)] is already included in the above final equation
of the governing problem. Therefore, the upper boundary condition must be given in
the form of Eq. (4.45). If so, it implies that the pore pressure results are obtained with
respect to the reference lines (HT-line or HC-line; see Fig. 4.1), denoting the hydrostatic
pore pressure profile under the wave trough or wave crest, respectively. The results can
be, of course, simply transformed into the results respective to the reference Hl-line
(see Fig. 4.1), denoting the initial hydrostatic pore pressure distribution with depth in
seabed sediments. The reference HI-line is commonly used in presentation techniques
of wave-induced pore pressure results.

The form of Eq. (4.44) resembles the very similar basic equation from Madsen’s
(1978) theory, described in Section 4.4.1 [see Eq. (4.24c)]. It means that the same partial
differential equation, called the storage equation, is still valid while investigating the
problem of the wave-induced pore pressure cyclic oscillations in seabed sediments with
the boundary conditions expected to happen in small-scale laboratory tests simulated
in one-dimensional mathematical models.
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One can note that Eq. (4.44) can be treated as:

- linear, when the absolute total pressure, P;, is constant and independent of the
oscillation-induced pore pressure, h'(z,t) [see Egs. (4.41) and (4.42)],
- non-linear, when the absolute total pressure, P;, depends on h'(z,t).

It has to be emphased that the sum of the water depth, h, and the atmospheric
pressure head, p,+/7, is much larger than the sum of the oscillation-induced pore pres-
sure head, h', and the computational depth in the sand column, z. This is true for most
cases where both realistic and laboratory-modelled problems in coastal engineering are
considered. Concerning this fact, and comparing Eqs. (4.41) and (4.42), it seems per-
missible to assume the absolute total pressure to be constant and independent of space
and time coordinates, i.e.:

Pt = ‘)/h + Pat (447)

Although it is possible to solve Eq. (4.44) analytically, this time a numerical solution
will be presented in the following.

4.5.2 Numerical solution

The parabolic partial differential equation to be solved can be written in the following
general form (Magda, 1990(°)):

on' oK
5t = 92

where h' is a function of ¢ and 2, and the constant coefficients are equal to:

+ c3 (448)

c1 =Pny + = + o, (4.49a)
P,
k
c; = — 4.49b
2= (4.490)
cs = —wH, (ﬂnw + %) cos(wt) (4.49¢)
t

where: [ - compressibility of pure water [m?/kN],
ny - part of soil porosity filled with water [-],
ng - part of soil porosity filled with air [-],
P, - absolute total pressure [kPal,
h' - pore pressure head, induced by cyclic water surface vertical oscillations,
o),
H, - amplitude of the hydrodynamic bottom pressure head oscillations [m],
compressibility of soil skeleton in z-direction [m?/kN],
angular frequency of water surface vertical oscillations [s %],
- coefficient of soil permeability in z-direction [m/s],
unit weight of pore fluid [kN/m?],
- vertical coordinate (depth in the sand column) [m],
- time [s].
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Equation (4.48), together with Eqgs. (4.49a) to (4.49¢c), has to be solved satisfying
simultaneously the boundary conditions given in Eqs. (4.45) and (4.46). By treating
Eq. (4.48) numerically, the derivatives are replaced by adequate differential quotients
which are refered to nodes of the mesh which is used to cover the governing integration
area (z,t). Such a rectangular mesh is created by two families of lines which have
identical reciprocal distances, and which are parallel to z- and t-axis (Fig. 4.24).

Time, t [s] dz

I e

j | I

dt

T

21 i 22 Depth, z [m)]

Figure 4.24 Rectangular mesh used in Finite Difference Methods [Jankowski, 1983]

A typical integration area for the parabolic partial differential equation is shown
in Fig. 4.25. In principle, it is an infinite area but the results of integration can be
interesting for finite values of {. The edge of the area is limited by semi-lines, denoted by
Ly (boundary condition semi-line) and L; (initial condition semi-line). Initial conditions
exist on the segment (z; < z < 2, for ¢t = 0) of semi-line L;, and the boundary conditions

are assumed on semi-lines Lgl) (z=2z), and ng) (2 =25)
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Figure 4.25 Typical area of integration for parabolic ;artla.l differential equations
[Jankowski, 1983]
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Assuming the rectangular mesh with dimensions (dt) x (dz) (see Fig. 4.24), and
denoting:

zi = zg +1(dz) for 1=0,1,2,..,N (4.50a)
t; =to + j(dt) for §=0,1,2,... (4.500)
dz = 2 ¥ 2L (4.50¢)
h; ; = k' [20 +i(dz), to + j(dt)] (4.50d)
where: z; - spatial coordinate (in z-direction) of nodal point P; ; [m],
dz - spatial-step (in z-direction) [m],
t; - time coordinate of nodal point P; ; [s],

dt - time-step [s],

hg,j - pore pressure head at point P; ;, induced by water surface vertical os-
cillations, [m],

zo,to - spatial and time coordinates of the system origin (normally, zg =ty = 0
is assumed), respectively, [m], [s],

N - number of sub-intervals in main depth-domain < z;, 25 >.

When treating a parabolic partial differential equation, a mixed type of boundary
conditions (i.e. boundary conditions of the third order) is involved in most cases:

- initial-value condition (j = 0,t =t =0; z; < z < 23)

h'(z,1) = k'(2) =0 (4.51a)
- boundary-value condition of the third order
ho,; = hols(dt)] for z=s g =0 (4.51b)
h'N,j = h'N-—l,j for F=2s =i (4.51c¢)
3V,j+1 = ’N—1,j+1 for z2=2zy=d (4.51d)

The six-point difference scheme (see Fig. 4.26) was adapted into the solution pro-
cedure for solving Eq. (4.48) together with the initial condition defined in Eq. (4.51a)
and the boundary conditions given in Egs. (4.51b) and (4.51c). This method implies
the approximation of the first derivative with respect to depth variable, z, as a linear
combination of differential quotients approximating second derivatives with respect to
time variable, ¢, in two adjacent lines of the rectangular mesh. And thus [Jankowski,
1983]:

R .. . —h.. 1
h.H'ldt YW _ (dz)2 [g'd (h2+1,j+1 = 2h;,j+1 + h:ﬁ—l,j+1)

+(1 = 0a) (hiyr,; —2hi; +hiy ;)] (4.52)

It is easy to notice that the solution of the so-formulated problem can be found in
a similar way like in the case of reverse differences; a system of (N — 1) coupled linear
equations for the following lines of the mesh can be solved, or the method of the back
substitution can be applied.

And thus, for the governing problem defined in Eq. (4.48), Eq. (4.52) becomes:

Bl i =Rl 1
J+1 )
o —* dt 2 = ¢ (dz)? [0d (Rig1,j41 — 2R} ja + hio1,i+1)

+(1 = 0a) (hiyr,; — 2hi; +hi_y ;)] +es (4.53)
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Figure 4.26 Six-point scheme for Crank-Nicolson method [Jankowski, 1983]

The Crank-Nicolson method was used in the following numerical computations.
This implies that 04 = 0.5 was assumed. Introducing additionally a new parameter:
C2 dt

== @) (4.54)

and performing some simple mathematical operations, one has for 1 <7 < N — 1:

—Bh;_1 i1+ 21+ 1 —Ohigy j1 = PRy j+2(1 =)k ;+ DRy, +22—:dt (4.55)

The Crank-Nicolson method is stable and convergent for all values of 9.
For ¢ = 1, Eq. (4.55) becomes:

2(1+ D)kl 4y — PR iy = Oy +2(1 —O)hL; + 9 (R + i ipa) + zZ—‘*dt (4.56)
1

Remembering that the upper boundary condition (of the first order) is defined in
Eq. (4.51b), Eq. (4.56) leads to:

2(1 +9)h ;11 —Bhy ;4q = Fhy ; +2(1 = )by ; + 9 [ho(5) + ho(5 +1)] + 2Z—jdt (4.57)

Using the value of the upper boundary condition assumed for the governing problem
see Eq. (4.45)], Eq. (4.57) becomes:
q

21+ )R, 4y — Ohb iy = SRy +2(1 — DR + 22—:dt (4.58)
For i = N — 1, Eq. (4.55) becomes:

C
~Ohy 3,41+ 20+ 9)h 1 41— Fhi i1 = Fhiv g +2(1—Fhy_y +"h'1v,j+2fdt
(4.59)
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Assuming the lower boundary condition as a boundary condition of the second
order [Egs. (4.51c) and (4.51d)], Eq. (4.59) leads to:

—Ohy_p 41+ (2+ )Ny 41 =PFhN o +(2-DF)hy_y; + 22—:‘” (4.60)

For all other values of 7, Eq. (4.55) together with Eq. (4.54) has to be used.
Using the matrix notation, the system of (N — 1) coupled linear equations, incor-
porating the above assumed boundary conditions, can be written as (Magda, 1990(<)):

M]{H} = {K} (4.61)
in which:
r2(14+9) -9 0 0 1

-4 2(149) -9 0 0

0 -9 2(1+9) -9 0 0
M = (4.62a)

0 0 -4 2(1+9) -9 0

0 0 -4 2(1+9) -9

L 0 0 - 2+
[ Piin )
2,j+1
3,j+1
H = : > (4.62b)
h?V—3,j+1
h'N—z,j+1
\ hN—l,j+1 J
c 3
( 2(1 — 9)h} ; + Ok} ; + 2§dt
C3
Fhy ; +2(1 —F)hy ; +dhy ; + zadt
C3
Fhy ; +2(1 — I)hy ; + Fhy ; + 2adt
K =< : ’ (4.62¢)
Shiy_g; +2(1 =)hiy_3; +9hy_, ; + 22—:dt
C3

Fhiy_s ; +2(1 —F)hiy_, ; + IRy _; ; +2—dt

c3
Ohly_g;+ (2= Dhly_y; +2dt

\

where: M - matrix of constant coefficients,
H - matrix of unknowns,
K - matrix of free terms (forces).

For a repeatable and harmonic (e.g., sinusoidal) water loading induced on the top
of the sand column it is necessary to incorporate a computational continuity condition
as illustrated in Fig. 4.27. If this condition is to be fulfilled it must be assumed that all
the pore pressure values computed in all nodes for the last time-point of the period of
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Figure 4.27 Rectangular mesh used in numerical computations with a repeatable
and harmonic water loading induced on the top of one-dimensional sand
column numerical model

harmonic water loading become automatically initial values of the pore pressure for the
begining of the next period of water loading.

Simultaneously, the pore pressure values computed for the last time-step within
one period of water loading oscillations can be used in evaluation of the end-test in the
numerical procedure. If all the differences (i.e., in all nodes of one-dimensional domain)
between pore pressures computed for the last time-points of the two adjacent periods of
water loading oscillations are less than a certain required computational accuracy, the
end-test is fulfilled and the whole computational procedure can be terminated. If re-
quired, all pore pressure values computed within one period of water loading oscillations,
and not only for the last time-point, can be used for the end-test comparison.

4.5.3 Results of example calculations

Numerical computations, based on the above described solution procedure for the
parabolic partial differential equation [Eq. (4.48) with Egs. (4.49a) to (4.49c)], were
used to examine the one-dimensional storage model of the pore pressure response in
the permeable seabed layer due to oscillating water surfce vertical movements (Magda,
1990(")). The numerical computations were based on the following input data:

- height of sand column d =08m
- porosity of water part of soil ny =04
- porosity of air part of soil ng, = 0.0—-0.020

- coefficient of soil permeability k, =1.5x10"*m/s
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- Poisson’s ratio of soil v =03

- compressibility of soil a, =1075,10""m?/kN
- compressibility of pure water B =4.2x10""m?/kN
- atmospheric pressure Pat = 101.325kPa

- wave period T =1s

- water depth h =1.0m

Similar to the formerly described two-dimensional storage model, the pore pressure
in the one-dimensional storage model is presented, for simplicity and convenience of
illustration, using the following relative and dimensionless parameters:

Y

h= 2 (4.62a)
0

_ g

H= - (4.620)
0

where: h

relative pore pressure head, induced within the sand column by water

surface vertical oscillations, [-],

H - relative amplitude of the pore pressure head, induced within the sand
column by water surface vertical oscillations, [-],

h' - pore pressure head, induced within the sand column by water surface
vertical oscillations, [m)],

H' - amplitude of the pore pressure head, induced within the sand column by
water surface vertical oscillations, [m],

H, - amplitude of the hydrodynamic bottom pressure head, induced at the sand

column surface by water surface vertical oscillations, [m].

Figure 4.28 shows the distribution of the relative pore pressure head, k, with depth
z in the sand column. Eight lines correspond to eight different phases of the oscillating
water loading on the top of the sand column. Only one half of the full period of
oscillations is considered [i.e., up to tmqer = (8/16)T with a time step of dt = (1/16)T,
where T is the period of water loading oscillations]. Because of a regular character of
water loading, the results from the second half of the period can be easily obtained as
a mirror image of the results from the first half.

Figures 4.29 and 4.30 show the distributions of the amplitude of the relative
pore pressure head, H, and the phase lag, §, in the pore pressure oscillations with
depth z in the sand column. The soil sediment is assumed to be near-incompressible
(a; = 107" m?/kN). Different soil saturation conditions are introduced, namely: fully
saturated soil conditions (n, = 0), and five cases of partly saturated soil conditions
(ng = 0.004 to 0.020, with a step of 0.004). It has to be noted, for example, that
according to Eq. (3.8), the values of soil porosity part occupied by air, n, = 0.004
and n, = 0.020, correspond with the degree of saturation S = 0.99 and S = 0.95,
respectively, if the soil porosity is assumed to be n = 0.4. The results indicate dra-
matic differences in the calculated amplitudes and phase lags of the pore pressure head
oscillations, which can only be a good confirmation of a very large sensitivity of the
magnitude of pore pressure oscillations on soil saturation conditions.

Up to a depth of about 0.6m (i.e., 75% of the height of the sand column), a
linear increase of the phase lag can be observed. Going deeper, the increase of the
phase lag developes further but it has a non-linear character due to the impermeable
condition assumed at the rigid base of the permeable seabed layer. Through the whole



98 Pore pressure distribution in a seabed layer of finite thickness Chap. 4

0 K & 50
04
0.2
Phase of loading:
g N8 F ==t = (1/16)T
;, 6d L —E- t = (2/16)+T
*é %t = (3/16)+T
A 05 —— t = (4/16)*T
At = (5/16)+T
08 T ~%— t = (6/16)T
07 L —t= t = (7/16)+T
—— t=(8/16)*T
0.8 ¥ - ' ' ' '

- :
-0.3-0.2-0.1 0 0.1 0.2 03 04 05 06 0.7 08 09 1
Pore pressure head, h = h'/Hy [-]

Figure 4.28 Pore pressure head distribution with depth, at different phases of water
surface loading cycle, for near-incompressible soil (c; = 10~" m?/kN)
and partly saturated soil conditions (n, = 0); 1-D storage model

height (d = 0.8 m) of the sand column assumed for computations, practically there is
no phase lag observed in the case of fully saturated soil conditions (n, = 0) whereas
partly saturated sediments create the phase lag which can be even larger than one half
of the period of water surface oscillations, reaching approximately 270° for n, = 0.020
(S =0.95) at the impermeable base.

Analogous to Figs. 4.29 and 4.30 are Figs. 4.31 and 4.32, respectively. However,
this time, the soil sediment is assumed to be compressible (a, = 107° m?/kN). The
imposition of compressibility properties to the second phase (i.e., soil skeleton) of the
two-phase seabed medium enables an easier transmission of the wave-induced pore pres-
sure through the soil. This is clearly certified by the pore pressure results where smaller
pore pressure damping effects are identified by higher values of the pore pressure ampli-
tude (Fig. 4.31) and lower values of the pore pressure phase-lag (Fig. 4.32), compared
to the previous case of the near-incompressible soil skeleton.

The appearance of smaller values of the pore pressure phase-lag in the more com-
pressible soil skeleton has enabled an obervation of an additional element which is a
maximum of the pore pressure phase-lag distribution with depth. In the upper part
of the sand column, the phase lag increases gradually until its maximum is reached at
a certain depth (z = 0.15m). Going deeper, the phase lag decreases and disappears
practically at a depth equal to approximately one half of the height of the sand column.

The illustrative computations have shown that the potential model and the diffusion
model create the upper and lower limits, respectively, of the pore pressure amplitude,
and the lower and upper limits, respectively, of the pore pressure phase-lag, obtained for
the storage model of the oscillation-induced pore pressure response in seabed sediments.
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4.6 Conclusions

The problem of pore pressure oscillations in seabed sediments loaded by progressive
surface water waves (in two-dimensional storage model) and water surface vertical oscil-
lations (in one-dimensional storage model) has been solved analytically and numerically,
respectively, for the ‘finite-thickness layer’ boundary condition.

Any analytical solution of the dynamic phenomenon in a multi-phase medium is a
complex task and it implies a large number of mathematical operations which normally
have to be supported at the end by numerical procedures (Massel, 1985). This was also
the case in the present work while deriving the two-dimensional pore pressure solution,
especially elaborated for further analyses of pore pressure data recorded from large-scale
laboratory models. The governing problem requires the solution of 6 (or 12) coupled
linear complex-valued (or real-valued) equations where 6 x 6 = 36 (or 12 x 12 = 144)
constant coeflicients, given in rather lengthy forms, have to be considered.

The derived analytical and numerical solutions are based on the storage equation
for the pore fluid flow through permeable media (Verruijt, 1969; Madsen, 1978). This
gives an opportunity to take very important soil skeleton and pore fluid compressibilities
into account. The results of the pore fluid pressure response in sandy seabed sediments
are presented in terms of the pore pressure amplitude and the pore pressure phase-lag
with respect to the phase of inducing hydrodynamic bottom pressure oscillations.

The input data for the presented solutions contain all meaningful parameters (e.g.:
the degree of saturation, Young’s modulus or compressibility of soil, the coeflicient of
permeability, and the wave period) influencing a course of the pore pressure fluctua-
tions in seabed sediments. It has to be stressed that the satisfactory solution could
not be successfully obtained when the governing problem would be described by the
Laplace equation (i.e., potential problem, in which only the geometry of the problem
can be reflected). An application of the more advanced diffusion equation creates a
better possibility of obtaining a more realistic pore pressure picture, because a natural
compressibility of the pore fluid is taken into account. A further complication of the
wave-induced pore pressure problem, by introducing the storage model, in which the
soil skeleton compressibility can be additionally considered, has indicated the additional
influences on the wave-induced pore pressure oscillations in seabed sediments.

The results of example calculations obtained from both the one- and the two-
dimensional storage models present, among others, a high sensitivity of the pore pressure
solution on the pore fluid compressibility (indirectly on the degree of saturation) and
soil permeability. Different values of Young’s modulus (or soil compressibility) assumed
with respect to different states of soil densification (i.e., dense or loose) can also influence
the pore pressure solution significantly.

The pore pressure damping effects (recognized by changes in the amplitude and the
phase lag distributions with depth in the permeable seabed layer), influenced by com-
pressibility properties of the two-phase seabed medium and soil saturation conditions,
are — in general — qualitatively the same regardless the model considered (i.e., one- or
two-dimensional storage model). The existing differences in shapes of the amplitude
and phase-lag distribution curves result obviously from different periods and types of
water loading applied in the calculation examples for the mentioned two models. The
1-D storage model enables only a vertical (i.e., unidirectional) flow of the pore fluid,
induced by cyclic and vertical water surface oscillations, whereas the 2-D storage model
gives a possibility of a multidirectional filtration of the pore fluid, induced by progressive
and harmonic surface water waves.
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The relative compressibility of the two-phase seabed medium has undoubtedly a
very meaningful bearing on the wave-induced pore pressure response in seabed sedi-
ments. However, it has to be strongly emphased that the influence of the compressibility
of the singular phase (i.e., pore fluid or soil skeleton) is qualitatively different. The impo-
sition of compressibility properties to the pore fluid (i.e., the medium flowing through
the soil skeleton) enlarges simply the pore pressure damping effects, where the pore
pressure amplitude becomes smaller, and the pore pressure phase-lag increases simul-
taneously. The additional introduction of compressibility properties to the soil skeleton
does not contribulte to the further increase of the pore pressure damping effects. If the
medium, in which the pore fluid is flowing through, is treated to be compressible, this
enables an easier transmission (i.e., smaller damping effects) of the wave-induced pore
pressure through the soil, which can be recognized by higher values of the pore pressure
amplitude and, simultaneously, lower values of the pore pressure phase-lag, compared to
the case where only the pore fluid is assumed to be compressible. The compressible soil
skeleton bahaves as a sponge and takes an additional part in the propagation process
of the pore pressure through seabed sediments.

The potential model and the diffusion model create the upper and lower limits, re-
spectively, of the pore pressure amplitude, and the lower and upper limits, respectively,
of the pore pressure phase-lag, obtained for the storage model of the oscillation-induced
pore pressure response in seabed sediments. This observation stays in accordance with
the above given explanation concerning the influence of the compressibility of the sin-
gular phases distinguished in the two-phase seabed medium.

The studies of the two-dimensional storage model, where the case of more com-
pressible sediments was considered, have indicated that the pore pressure amplitude
can — under certain conditions — experience a further decrease, instead of the antici-
pated increase of its value. In this case, the diffusion solution cannot be treated as the
lower limit of the storage solution any more, and becomes the upper limit thereof. This
discrepancy seems to be caused only by the imposition of the ‘finite-thickness layer’
boundary condition, and a very special value of the relative thickness, d/L, of the per-
meable seabed layer. For certain fixed values of parameters, characterizing the pore
fluid and soil skeleton physical properties, and for a certain computational depth in
the seabed, an optimum value of the relative thickness, (d/L)opt, exists. If the relative
thickness is greater than its optimum value, the pore pressure amplitude behaves as for
the ‘infinite-thickness layer’ storage solution, increasing its value with respect to the
diffusion solution. If, on the other hand, the relative thickness of the seabed layer is
smaller than its optimum value (this was certainly the case in the presented computa-
tional example; see Fig. 4.17), the pore pressure amplitude undergoes a further decrease,
compared to the case of near-incompressible soil skeleton, and therefore the diffusion
solution becomes the upper limit of the storage solution. This problem needs certainly
further studies.

The values of the finite thickness of the permeable seabed layer (d = 0.5m in the
2-D model, and d = 0.8 m in the 1-D model), used in the example computations, were
adjusted with respect to laboratory modelling foreseen as a verification of the ‘finite-
thickness layer’ solution to the storage model of the two-phase seabed medium.

All the calculations performed have an illustrative character only, and the next
Chapter 5 will bring a wide comparison of theoretically computed values with results
obtained from large- and small-scale laboratory modelling.
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Chapter 5

Experimental verification of the
‘finite-thickness layer’ solution

This Chapter presents results from experimental investigations, the main goal of which
was to verify the ‘finite-thickness layer’ solution to the wave-induced pore pressure dis-
tribution with depth, analytically derived (2-D model) and numerically obtained (1-D
model) in Chapter 4. The following brings a description of laboratory modelling proce-
dures, explains test instrumentation, and presents a verification of experimental results
using theoretically computed values of pore pressure oscillations in sandy sediments.
Large-scale laboratory modelling, thought as a tool for qualitative evaluation of the
governing problem, were followed by small-scale tests where individual influences of
some leading and decesive parameters of the two-phase (i.e., soil skeleton and pore
fluid) system were possible to be checked precisely with a relatively high accuracy.

5.1 Large-scale model tests

As a verification of the analytical ‘finite-thickness layer’ solution, derived in Chapter 4,
series of laboratory tests were conducted in the large wave flume ‘Grosser Wellenkanal’
(GWK), at the University of Hannover, Germany (Magda, 1990(¢)). Huge dimensions
(i.e., 5m wide, 7Tm deep, and 324 m long) of the flume (Fig. 5.1) create a very unique
laboratory facilitity, in which modelling in a near-natural scale becomes feasible.

5.1.1 Test facilities and instrumentation

5.1.1.1 Sand

The sand, called the ‘Norderney Sand’ and used in the laboratory experiments in the
large wave flume, was taken from its natural source which is the western coast of Norder-
ney Island (Germany). It is a quartz type of sand and the specific gravity of the solid
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Figure 5.1 Cross-section of the large wave flume (GWK)

soil particles is equal p; = 2.65. The particle size distribution of the sand is presented
on a semi-logarythmic plot (Fig. 5.2). Estimated as medium, the ‘Norderney Sand’ has
the following characteristic parameters:

- specified particle size dsp = 0.23mm

- coefficient of uniformity Cvy =1.61

- coeflicient of curvature Ccoc =1.03

- minimum porosity Tyin = 0.321

- maximum porosity Nomaz = 0.427

- coefficient of permeability k& =13x10"*m/s

5.1.1.2 Data acquisition system

The data acquisition system consists mainly of a set of pore pressure transducers, signal
processing unit, and data recording system (Fig. 5.3).

The pore pressure transducers are connected to the signal processing unit by means
of water-tight cables. An electrical signal coming out from transducers is, first of all,
amplified. The second function of the signal processing unit is to convert analog input
signals (from transducers) to digital output signals which are, in the next step, recorded
by PC-AT computer using a BASIC control program. The data recording system is
also equipped with three terminals, namely: monitor, plotter, and multi-pen recorder,
in order to visualize pore pressure signals immediately during their recording.

Pore pressure sensor KS 2150 (Fig. 5.4), made by ‘Philips’, is designed to convert
an input pressure of the span ranging from 0 to 150 kPa, into an output electrical signal
of value up to 50mV + 2 %.

The transducer must be supplied with 10V d.c. (i.e., different current possible),
and is predestinated to work properly in different fluid media, like: gases and liquids.
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Pressure sensor KS 2150 is equipped with a miniature silicon-semiconductor element of
high sensitivity and minimum displacement volume. The semiconductor, in the form of
a silicon membrane, is placed behind a separating and protecting diaphragm made of
high-quality alloy steel, and homed in a small stainless steel cavity filled with a silicon
oil.
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The characteristic of the sensor’s work is linear where the linearity error is less
than 0.5 % of the span. Allowable environmental conditions are described by the ambient
temperature limits which are —30 and +80 °C. Thanks to a high free vibration (natural)
frequency of the membrane, the setting time is very short (i.e., less than 1.5 ms).

All the above technical specifications suit the testing conditions in the large wave
flume (GWK) very well. The only problem which had to be solved was how to separate
simultaneous actions of pore pressure and soil pressure on the sensor’s steel diaphragm.
The problem has been solved by adding a specially constructed filter on the top of the
transducer (see Fig. 5.4).

The glass-filter, built into a PVC tubular cap, serves as an isolation of an active
area of the transducer from the soil matrix, giving possibility to flow the pore fluid
through and to measure its actual pressure.

The sandy bed layer, 0.5 m thick, was equipped all together with 10 pore pressure
transducers. A sketch of the test facilities is shown in Fig. 5.5. The pore pressure
transducers were installed both in the centre (5 transducers) and on the side-wall (5
transducers) of the same cross-section of the wave flume, about 200 m from the wave
generating machine to assure that the waves rolling over the sandy are already well-
formed. The main purpose of division of the pore pressure transducers into two groups
was to study the effect of the side-wall boundary influence on the pore pressure cyclic
oscillations induced in sandy sediments. Each transducer was fixed to a flexible PVC
rod (in the centre profile) or to the wall of the wave flume (in the side-wall profile) to
preserve its unchanged position during the whole testing period.

Before the final installation, the PVC cap containing the glass-filter was screwed
tightly to each from 10 pore pressure transcucers. This operation was done underwa-
ter in a special container to assure that the free space in the PVC cap, between the
glass-filter and the transducer active area, is filled totally with water. This was very
meaningful for the final success of the measuring campaign; any intrusion of even small
amount of air into the hollow space of the transducer might have been caused unwanted
damping effects for measured pore pressure oscillations, destroying thereby a real picture
of the soil-water interaction.

It was also necessary to have at least one wave gauge, in the cross-section where
all transducers were installed, in order to provide a continueous correlation between
wave characteristics (i.e., actual water elevation) and the wave-induced pore pressure
measured in two profiles in sandy sediments.
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Figure 5.5 Layout of test instrumentation in the large wave flume (GWK)

The wave flume was filled with sand, creating a seabed layer of thickness d = 0.5 m.
After the transducers had been installed, saturation of the sand layer was performed.
A slow water inflow into the wave flume was associated with vibrating of the sand layer
(using 5 vibrating needles, each 0.5 m long). This procedure helped to achieve both soil
saturation conditions and density as high and homogeneous as possible. The filling of
the wave flume with water was continued up to A = 4.5m water depth above the sand

surface.

5.1.2 Test procedure

To get a better and clear insight into the question of pore pressure cyclic oscillations
induced in sandy seabed sediments, all test series were performed with regular waves
only, where different wave conditions were modelled by the wave height and the wave
period. And thus, the applied wave height was between H = 0.25 and 1.0m, and the
applied wave period was between 7' = 3 and 10s. Taking the above values into account,
together with a water depth of h = 4.5m kept constant in all tests, it is possible to
define a type of the wave generated in the wave flume. Figure 5.6 presents the range
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(middle area marked by a dashed polygon) of waves applied during test performances in
the wave flume, comparing with well-known regions of validity for various wave theories.

Because of a relatively small water depth (transitional water) and high wave hights,
most of the waves generated in the wave flume can be theoretically described by Stokes’
27d order wave theory, being sometimes very close to Stokes’ 3*¢ order wave theory or
even the cnoidal wave theory.

The wave parameters (i.e., wave period, T, and wave height, H), applied in the
pore pressure experiments in the large wave flume, were grouped into two sets, as listed
below:

e Set I (constant wave height: H = 1.0m)
wave period: T'= 3, 5, 6, 8, 10s

e Set II (constant wave period: T = 6s)
wave height: H = 0.25, 0.5, 0.75, 1.0m

The duration of execution of each test was long enough to obtain stable wave
conditions over the testing section in the wave flume; only a few first waves were always
sufficient to have the following waves already well-formed.

All pore pressure data recorded by the data acquisition system were sampled with
a sampling frequency of fs = 25Hz (i.e., with a time-interval of dt, = 0.04s).
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5.1.3 Results of measurements and comparison with the
‘finite-thickness layer’ solution

5.1.3.1 Hydrodynamic bottom pressure

The hydrodynamic part of the wave-induced pressure at the sea floor can be given by
the following equation derived from Stokes’ 2°¢ order wave theory [Shore Protection
Manual, 1984]:

Ny S S
Ph ="y cosh(ah)
3 mH? tanh(ah) [ 1 1

t g sinh?(ah) | sinh®(ak) - 5] cos[2(az — wt)| (5.1)

cos(az — wt)

- bottom pressure [kPal,

- unit weight of water [kN/m?|,

- wave height [m],

wave number (¢ = 27/L) [m™?],

wavelength [m)],

water depth [m],

wave angular frequency (w = 27 /T') [s7!],

wave period [s],

time [s],

- horizontal coordinate of the Cartesian coordinates system [m].

e TNe R

The first term of the above equation is linear with respect to the wave height, and
therefore reflects the bottom pressure equation described by Airy’s linear theory for
waves of small amplitude. The second term in Eq. (5.1), resulting from the Stokes’s 2"¢
order wave theory, is responsible for the non-linear influence of the wave height on the
hydrodynamic bottom pressure.

The measured values of the bottom pressure are compared with values computed
theoretically using Eq. (5.1). Taking, for example, a constant wave period of T' =
6s, and different wave heights ranging from H = 0.25 to 1.0 m, Figure 5.7 illustrates
the hydrodynamic bottom pressure under the wave crest and the wave trough. Both
the linear (Airy’s wave theory) and the non-linear (Stokes’ 2"¢ order wave theory)
theoretical solutions are indicated.

Generally, Fig. 5.7 shows larger values of the bottom pressure measured under the
wave crest than under the wave trough. This only confirms a non-linear character of
waves generated in the large wave flume; the height of the wave crest is always higher
than the depth of the wave trough when non-linear (z.e., of higher order) wave theories
are applied.

For the intermediate water depth condition (i.e., H = 0.25m and h = 4.5m,
H/h = 0.056), the both wave theories considered in the comparison analysis give very
similar values of the hydrodynamic bottom pressure, which are simultaneously almost
the same as the measured values. The both theories overestimate the values measured
under the wave crest and the wave trough; the highest difference between the theoretical
and experimental values was observed for the highest applied wave hight, H# = 1.0m
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(H/h = 0.22), and is about 3% (crest) and 27 % (trough) of the measured value (for
the linear wave theory), and 12 % (crest) and 16 % (trough) of the measured value (for
Stokes’ 2"¢ order wave theory).

The linear wave theory gives a better approximation of the measure values of the
hydrodynamic bottom pressure in the case of wave crest, whereas Stokes’ 2*¢ order wave
theory seems to be more appropriate as far as the wave trough is concerned.

5.1.3.2 Pore pressure distribution with depth

An example of the recorded signals from a short time interval, adequate to one period
of oscillations, is shown in Fig. 5.8. This multi-plot compares qualitatively transient
values of the pore pressure, recorded by the transducers situated in the centre profile of
the large wave flume, with respect to the water wave profile recorded simultaneously in
the same cross-section of the wave flume.

Two main phenomena, expected from the theoretical solution, can be easily recog-
nized, namely: the attenuation of pore pressure with depth, and the increase of pore
pressure phase lag with depth.

The data recorded from the tests performed for the constant wave height H = 1.0m
(T = 3 to 10s) and for the constant wave period T' = 6s (H = 0.25 to 1.0 m) was chosen
to illustrate the above mentioned effects. Applying the Fast Fourier Transform (FFT)
method into the data analysis procedure (Ramirez, 1985), it was possible to compute
precisely the characteristic parameters (i.e., amplitude and phase lag) of the recorded
oscillations of pore pressure in sandy sediments. An example of a graphical presentation
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of the signals, recorded in Test No. GWK-23 (H = 1.0m, T = 6s, h = 4.5m), and their
FFT-analysis, is shown in Fig. 5.8.

Measuring profile - CENTRE Channel No.: 2,6,5,4, 3,1

3.00

2.50

2.00

1.50

(m) or (kPa)

1.00

0.50

Amplitude spectrum

0.00

IS ol
-]
I
o
w)
|
=%,
S S

n O

180
150
120
90
. . | |
0 ] . I il I

30 LLL! HELEEREREA I I |
-60
-90
-120
-150
-180

Phase-1ag spectrum’
(deg)

Fast Fourier Transform - Analysis

Measuring profile - CENTRE Channel No.

. 00 T I T I I T T I I T T T T T
50 Pore pressure: 5 -
U

.00 Channel No. 6: z =0.0m ;’ f,/"‘“
_

6
.50 Channel No. 5: z =0.1m AN/
00 Channel No. 4: 2 =0.2m //
50 Channel No. 3: z=10.3m /1
Channel No. 1: z=0.4m /]

(S

_ Wb O

N

f\’

{
A/

Y

A VS
/

.50
.00

(kPa)

s
bR
NN N
\f =

\

- B 7)
JA TN

B
N M %di

-1.00
.50
-2.00 \
-2 50 ~ = i Surface water wave E
-3.00 = Channel No. 2

-3.50
-4.00

(m)

/
{

¢
f
hUA

Water elevation / Pore pressure

621 kPa dt_fft =0.023s

Wave A (max) 3L
) -2.970kPa N_fft = 256

630m  Press p(max=6) =
Wave A(min 6) =

= 0, f =
=-0.353m  Press p(min= f =

_fft = 0.167Hz
_Nyq =21.333Hz

Figure 5.8 Example of graphical presentation of GWK-data analysis (FFT-analysis
and plot of recorded signals; Test No. GWK-23, H = 1.0m, T' = 65,
h =4.5m)




112 Experimental verification of the ‘finite-thickness layer’ solution Chap. 5

In the lower part of Fig. 5.8, a plot of the windowed and sampled wave-like signals
(one channel for the surface water wave elevation, and five channels for pore pressure
oscillations at five different depths in the central vertical profile of the wave flume) is
presented. The signals are windowed by virtue of deciding to plot the waveform over a
finite time interval. The time span of the integer number of cycles is usually determined
in order to reduce discontinuities at the window edges, and thus reduce leakage to
a tolerable level; in the present case, the window has a length of exactly one period
(T = 65s) of surface water wave oscillations applied in the experiment. The signals are
sampled by virtue of the decision to find and show its actual values at only a certain
number, N, of discrete points. The measurements were conducted with a sampling
frequency fs = 25Hz (i.e., with a sampling time-interval dt, = 0.04s). It means that
the windowed data consist of Ny =T x f; = 150 samples for each of six channels.

A spectral analysis of the data recorded was based on the Fast Fourier Transform
(FFT). Most of FFT algorithms are for operating on Nr samples, where N is equal to 2
raised to an integer power (i.e., 2, 4, 8, 16,...). The Nr = 27 (j is an integer) algorithms,
also known as power-of-two algorithms, are more straightforward and relatively faster to
execute than the more general algorithms. A power-of-two algorithm can only transform
records of 2, 4, 8, 16,..., 2/ samples. So a 150-point FFT cannot be done with a power-
of-two-algorithm. Therefore, for the purpose of the FFT-analysis applied in the present
work, it was decided to take such a number of samples, Nr, which is the next to the
number of input samples, N;. And thus, Nr = 256 was assumed, implying new values
of the sampling frequency, fr = Np/T = 42.667 Hz, and the sampling time-interval,
dtp =1/fr = 0.023 s, required by the power-of-two algorithm.

Usually, the computed new sample locations will not match the locations where the
waveform samples were actually taken. So the next step was to use the actual sample
values and locations to interpolate what the sample values should be for the new sample
locations. In such a situation, a linear interpolation is the simplest way to overcome this
problem, but other methods of interpolation may prove more accurate. In the present
analysis, a trygonometric interpolation [Discrete Fourier Transform (DFT)| was used.

The lower plot of Fig. 5.8, where the interpolated samples are shown in Ng = 256
discrete points, connected by line segments, indicates clearly the pore pressure damping
effects (i.e., decreasing amplitudes and increasing phase lags with depth). The surface
water wave record has a cnoidal shape, characterized by higher crests (A(®) = 0.630 m)
and smaller troughs (A(t) = —0.353m), which makes the wave shape asymmetrical with
respect to the still water level. The cnoidal character of surface water wave propagating
oscillations, due to a small value of the relative water depth, has its direct influence
on also asymmetrical values of the hydrodynamic bottom pressure and pore pressure
oscillations in the seabed. For example, the hydrodynamic bottom pressure, recorded in
Channel No. 2, shows a higher crest value (Péc) = 3.621kPa) with respect to a trough
value (Pét) = —2.970kPa).

The upper part of Fig. 5.8 illustrates the results of a spectral analysis of the six sig-
nals recorded during the run of Test No. GWK-23, in terms of the amplitude spectrum
and the phase-lag spectrum. The diagram is divided into eight vertical sectors, denot-
ing eight waveform components (so-called harmonic components), contributing to the
initial waveform (see the lower part of Fig. 4.8) taken for the spectral analysis. The next
harmonic components, have frequencies which are multiples of the frequency interval,
given by dfp = 1/(Np dtr) = 0.167 Hz. Knowing the frequency of a certain harmonic
component, the period of oscillations, T, can be easily computed. And thus, the first

harmonic has a period of T}(,f) = 6s which is exactly equal to the period of the initial
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waveform. The next harmonics are characterized by higher frequencies (i.e., smaller
periods) of oscillations. The highest frequency that can be defined at a given sampling
rate is called the Nyquist frequency. For equally spaced samples (dtp = const), the
Nyquist frequency is fy = 1/(2dtr), and was found to be equal to fy = 21.333Hz in
the considered example.

In each of the eight vertical sectors, ‘bar’ diagrams show the spectral results ob-
tained for each of the six signals taken for the FFT-analysis. The first bar indicates the
results obtained for the surface water wave oscillations (Channel No. 2), and the resting
five bars indicate the results for the pore pressure oscillations, recorded by respective
Channels No. 6, 5, 4, 3, and 1. In the case of a purely sinusoidal waveform, only the
first harmonic would be relevant, and the others would have negligible values due to a
digital noise and can be considered to be zero compared to the major value. However,
as it was mentioned before, the waveforms of the signals recorded differ slightly from the
sinusoidal shape, which is visibly indicated by the presence of non-zero results obtained
for the higher-order harmonics. The spectral diagrams have also indicated very clearly
the pore pressure damping effects existing in the seabed layer.

Based on the results of the FFT-analyses performed for other test runs, Figs. 5.9
and 5.10 show the pore pressure amplitude and the phase lag distributions with depth,
respectively, under the condition of a constant wave height, H = 1.0m, and different
wave periods ranging from 7' = 3s to 7' = 10s. As it was the case in the theoretical
considerations in Chapter 4, the pore pressure amplitude, P, is represented by the
relative (and dimensionless) pore pressure amplitude parameter, P [see Eq. (2.16b)],
calculated with respect to the hydrodynamic bottom pressure amplitude, Py. The
pore pressure phase-lag distribution with depths in seabed sediments is computed with
respect to the phase of surface water wave oscillations.

The influence of different wave periods on the pore pressure damping in the seabed
is clearly seen, and this relationship has a constant tendency, namely: the longer wave
period is (i.e., longer wavelength), the smaller damping rate is. This is certified by
larger amplitudes (Fig. 5.9) and smaller phase lags (Fig. 5.10), when the wave period
increases. The pore pressure amplitude at the lower part of the sand layer (z = 0.4m)
is, for example of a wave period of T' = 3, as much as 5 times smaller than for a wave
period of 7' = 10s. Simultaneously, a wave period of 7' = 10s induces the phase lag
which is about 70 % of that occured for a wave period of T' = 3s.

An analogous situation, but this time for a constant wave period of T' = 6s and
different wave heights ranging from H = 0.25 to H = 1.0m, is illustrated in Figs. 5.11
(pore pressure amplitude) and Fig. 5.12 (pore pressure phase-lag). The use of the for-
merly introduced relative pore pressure amplitude, P, is now particularly helpful for
comparison purposes. It allows a simultaneous comparison of shapes of pore pressure
amplitude distribution curves belonging to the same family of tests conducted for a
constant wave period and different wave heights. This way of presentation makes the
pore pressure amplitude distribution with depth independent of the hydrodynamic bot-
tom pressure amplitude, Py, linearly proportional to the wave height. Therefore, all the
curves shown in Fig. 5.11 should be theoretically the same. And this is the case in the
discussed example. The results shown in Fig. 4.12 have indicated that the pore pressure
phase-lag is independent of the height of water wave loading oscillations.

Soil saturation conditions play a very important role in the process of wave-induced
pore pressure oscillations within sandy seabed sediments. The theoretical analysis per-
formed in Chapter 4 demonstrated a great sensitivity of the pore pressure solution on
soil saturation conditions represented by the degree of saturation. During the measur-
ing campaigne in the large wave flume it was also possibile to take some sand samples
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from the upper part of the sand bed layer in order to define existing, real soil saturation
conditions. The mean value of the degree of saturation, obtained from 25 samples, was
found to be S = 0.98.

Because of the existence of a certain measuring error (a real value of S cannot be
higher than 1), the obtained mean value of the degree of saturation cannot be treated
as representative and, therefore, should not be used in calculations of the pore pressure
response. However, as it was shown in Chapter 3, there exists another powerful method
to evaluate a mean value of the degree of saturation properly and more precisely. Thanks
to the statistical analysis performed in Chapter 3 for the case of the ‘Norderney Sand’
(i.e., assuming the variabilities from the seabed sampling on Norderney Island to be
the same as in the sand sampling performed in the large wave flume) it was possible to
determine soil saturation conditions typical for the tests performed in the large wave
flume. It has to be noted that 3 from 25 sand samples had calculated values of the
degree of saturation exceeded 1. It means that 12% of all the values will be plotted
above so-called ZAVL (Zero-Air-Void-Line). By entering Fig. 3.16, an approximate
value of the real degree of saturation was found to be S = 0.95. Using this value, some
comparisons were made between the results obtained from the analytically derived two-
dimensional ‘finite-thickness layer’ solution, and those recorded during the pore pressure
measurements in the large wave flume.

A comparison of the measuremed values with the theoretical ‘finite-thickness layer’
solution, derived in Chapter 4, is presented in Figs. 5.13 and 5.14. As an example,
the surface wave loading, specified by a wave period of 7' = 6s and a wave height of
H = 1.0m, was chosen. Other soil parameter input data used in the calculations are as

follows:
- thickness od seabed layer d =05m
- porosity of soil n =04
- coefficient of soil permeability k& =1.3x10"*m/s
- Poisson’s ratio of soil v =03
- Young’s modulus of soil E =10% 10°kPa
- compressibility of pure water B =4.2x10""m?/kN
- degree of saturation S =095
- atmospheric pressure Pat = 101.325kPa
- water depth h =45m

Figures 5.13 and 5.14 illustrate the comparison of the pore pressure amplitude, P,
and the pore pressure phase-lag, §, distributions with depth, z, respectively. Two thiner
lines indicate the theoretical solutions, based on the 2-D storage model, obtained for
two different values of Young’s modulus of soil, i.e.: E = 10*kPa and E = 10° kPa,
simulating thereby different density states of the sand model.

It is very characteristic that in the upper part (up to approximately z = 0.2m)
of the sand bed model, a better agreement between the measured and the theoretical
values is reached for the lower compressibility of the soil (i.e., E = 10*kPa). This is
very evident, especially when the pore pressure phase-lag is examined. Such behaviour
of the pore pressure response can be explained by the existence of looser sediments in
the upper part of the layer, due to stronger movements of water particles in the vicinity
of the upper surface of the seabed model loaded by surface water waves.

In the deeper parts of the sandy layer, the discrepancy between the experimental
and theoretical solutions increases with depth. Here, the theoretical solution obtained
for more dense sediments (i.e., E = 10° kPa) seems to fit the experimental values better
than in the case of loose sandy sediments, although the agreement can be estimated
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as rather poor. The very probable reason of the obtained picture can be the fact that
the soil, in the vicinity of the impermeable and stiff base of the large wave flume, is
not so well-saturated as it was the case in the upper region of the sand layer. Unfortu-
nately, inhomogeneous saturation conditions were probably reached during the satura-
tion process where large parts of the sand model were saturated from the sand surface
downwards. Even a long-term additional work of the vibrators did not bring too much
help in achieving, at least, homogeneous soil saturation. However, the correctness of
this explanation could be checked only when performing some additional computations
based on: (1) theoretical pore pressure solution, derived for inhomogeneous soil, or (2)
numerical analysis, where introduction of inhomogeneous soil paramerers is a normal
procedure. In both cases, values of the degree of saturation representative for deeper
parts of the sand layer have to be known. And this was unfortunately not possible to
obtain in the present work.

The pore pressure measurements were, in fact, performed in two vertical profiles of
the same cross-section of the large wave flume. One of them was located in the middle
point and the second one in the wall-side of the cross-section. The pore pressure values
measured in the wall-side profile have shown almost the same pore pressure distributions
with depth as those of recorded in the central profile, indicating thereby no visible influ-
ence of the side-wall boundary condition on the course of the investigated phenomenon.
This observation was a good confirmation for the two-dimensional theoretical treatment
of the governing problem as a verification of the pore pressure measurements conducted
in the large wave flume.

5.2 Small-scale model tests

Large-scale laboratory tests serve mainly as a qualitative investigation of a governing
phenomenon. Practically, it is almost impossible to define important soil parameters
with an accuracy required for mathematical and numerical modelling of the governing
problem. Because homogenity of a tested seabed material can be hardly reached, soil
parameters used to describe the state of the soil medium are in most cases represented by
mean values computed from a wide range of values that can be found through a random
sampling in different regions of the soil used for the seabed modelling. Moreover, an
application of desired variations of certain soil parameters in large-scale modelling brings
usually costs of laboratory investigations on a relatively very high level.

Therefore, laboratory modelling performed in a large scale, which is very convenient
and favourable with respect to natural-like environmental conditions, needs usually sup-
plementary small-scale laboratory experiments where the application of a wider range
of governing paramerers and the control of them presents, in general, no difficulties and
is not so much time- and cost-demanding.

Taking the above into account, the need of further investigations in order to verify
the theoretical solutions is obvious. Below, a setup of small-scale laboratory experiments
is presented and followed by a discussion of the results obtained from the tests (Magda,
1990(4)).



Sec. 5.2 Small-scale model tests 119

5.2.1 Test facilities and instrumentation

For the small-scale experiment, a vertical cylinder shown in Fig. 5.15 was used. The
cylinder is made of transparent plexiglass and has the inside diameter D, = 0.2m and
the height H. = 0.9 m.

A set of 16 pore-pressure transducers was mounted into the cylinder wall in its
vertical profile. The type of transducers is exactly the same (z.e., KS 2150 from ‘Philips’)
like in the large-scale experiments, described in Section 5.1.1.2. The only difference
consists in the design of the PVC tubular cap installed on the top of each pore pressure
transducer. This time, because of the very important functional reason, the glass-filter
element (used in the large-scale experiments) is replaced by a steel connector with 0.15m
long needle on the top (Fig. 5.16).
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Figure 5.15 Sand-column test facilities

The needle was long enough to reach a centre point of the cylinder inside. By
inserting the needle into the inside of the cylinder through a small opening furnished
with a rubber tight membrane, it was possible to transmit the oscillating pore pressure
through the needle to an active area of the transducer and to measure it precisely,
keeping the transducer all the time outside the cylinder. An eventual installation of the
transducers inside the cylinder could influence the pore pressure patern within the sand
column and destroy a real picture of the soil-water interaction.

A data acquisition system (Fig. 5.17) does not differ significantly from that one used
in the previously described large-scale laboratory tests. A periodically oscillating water
pressure loading acts through the top of the cylinder onto the sand column surface.
These pressure variations are hydraulically induced in a separate container by changing
its inside volume induced by an oscillating movement of a piston. The piston is combined
with an electromagnetic lifting device. The movement of the electomagnetic piston
system is computer controlled, using the back coupling (feedback) principle.
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An installation of one more device was necessary for a proper test execution: this
was, namely, an electronic ballance for precise measuring of the water amount (from a
water supply tank) used for saturation of the sand column.

5.2.2 Sand specimen preparation

Laboratory tests, where the soil is one of the main considered medium, need special
techniques of soil preparation. A type of chosen technique depends on a character of
soil, soil parameters to be modelled, and a scale of tests to be performed. In most cases,
a homogeneous (uniform) state of the soil is required. Performing representative series
of tests, it is also necessary to assure repeatable soil conditions for all tests. Because of
this fact, a reconstitution of soil specimens is estimated to be the best way in achieving
test results which are going to be representative for a certain group of tests. In the case
of cohesive (clayey) soils, a preparation procedure seems to be easier compared with
procedures used for sandy specimens. Uniform and repeatable clayey specimens can be
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obtained simply by trimming it from a natural consolidated material. However, having
a cohesionless material like sand, it is impossible to follow this idea and each specimen
has to be prepared individually from the sandy material in its loose state.

A scale of tests influences strongly the way of sand model preparation. Investiga-
tions performed in a small-scale (e.g., triaxial tests or tests in a small container) make
it possible to produce necessary densities already during sand placing into the model
(Jgrgensen & Steensen-Bach, 1988) (Fig. 5.18a). A huge mass of sand, used in some
large-scale laboratory experiments [for instance, in a large big wave-flume (Fig. 5.18b)],
can be deposited without such a great attention. However, in such case, the whole
procedure would usually require additional activities in the form of compaction or even
fluidization in order to assure sand uniformity and desired density (Lindenberg et al.,
1982).
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Figure 5.18 Techniques providing uniformity and certain density of sand model; (a)
[Jgrgensen et al., 1988], (b) [Lindenberg et al., 1982]

It is desired to produce homogeneous (uniform) sand samples during their artificial
preparation (reconstitution) before each test run. Repeatability of an initial soil sample
state can assure that results of measurements from a certain test series belong to one and
the same group and can be used in averaging of results. On another hand, uniformity
of sand sample is very helpful for data interpretation and comparison with theoretical
approaches which are usually possible to be derived only under the assumption that the
main physical parameters involved are constant and representative for the entire soil
specimen.

Small-scale laboratory tests, performed in a sand column, on the pore pressure
response to oscillating water loading require very careful sand specimen preparation
with respect to: (1) uniformity, (2) density, and (3) saturation conditions. The way of
fulfilling all of these requirements is described in the following.
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5.2.2.1 Sand pouring

Uniformity of a sand sample requires not only a well-graded soil but also the sand
sample preparation has to be able to create the same density within the entire sand
sample. This condition can be fulfilled when applying a proper technique. A need to
form an uniform sand specimen induces necessity of continuous control of sand grain
package factor during the whole process of the sand model preparation. Reconstitution
by pouring is the most promising technique for obtaining uniform sand samples under
laboratory conditions. Sand specimens prepared by pouring, which can take place in
water or in air, tend to be uniform (Vaid and Negussey, 1988).

The pouring height (i.e., the height, from which the sand is dropped during pouring
in air) is the main factor for obtaining samples of controlled densities. Sand pouring
technique in water cannot be useful to produce different densities of sand sample but can
be treated as a good tool for preparing a sand sample of a very uniform and relatively
loose state regardless of the drop height.

 The density of the sand specimen is controlled by the kinetic energy of sand particles
at the instant of impact at deposition. It means that the impact velocity influences
directly the sand specimen density. The sand grain velocity, starting from zero, can
grow up to a certain limit which is called the terminal velocity. As a consequence, for
the same test conditions, a certain optimum drop height exists, at which the terminal
velocity is reached. Further increasing drop height will not enlarge the kinetic energy.

Apart applying a certain variation in the drop height, there is a second possibility
to influence the relative density of the sand sample, namely, by controlling the sand
mass flow during sand pouring.

Taking the above into account, a preliminary test programme was established in
order to get a better insight into the process of modelling of sand specimen density. The
influence of both different pouring heights and mass flows was investigated.

The ‘Norderney Sand’, taken to be investigated, has been already described in
Section 5.1.1.1. Using plexiglass cylinders of different heights, it was possible to apply
10 different drop heights, from 0.2 m up to 2.0 m with a step of 0.2 m. The uniform sand
particle distribution in the cross-section area of the sand sample was assured by using
special PVC-sieves which also controlled the sand mass flow and kept it constant during
the whole time of sand pouring. Two PVC-sieve plates of different paterns of openings
layout were used. In the first sieve, 69 openings were formed, each 4 mm in diameter;
in the second one, each of 69 openings had a diameter of 2.5 mm.

The results of the density tests are illustrated in Fig. 5.19. The largest difference
in porosity achieved for a constant height of sand pouring and changing sand mass flow
rate equals to about 0.02 with almost no respect to the method of the sand mass flow
rate control. Taking into account the method of the sand mass-flow rate control, it is
clear that the change in the sample porosity can be much more larger when the drop
height of sand pouring varies. And thus, changing the drop height from 0.20m to 0.80 m,
the porosity decreases from 0.429 (sieve 69/4 mm) and 0.420 (sieve 69/2.5 mm) to 0.352
and 0.343, respectively. It means that the maximum difference in the porosity, obtained
during the density tests, was equal to 0.077. Transforming this result into another soil
parameter, it was found that the maximum relative density was about D, = 80 %.

Finally, in order to reproduce a relatively dense state of the sand specimen, the sand
pouring height of H, = 0.8 m was chosen. As shown in the theoretical consideration
(see Section 4.6.3), the solution for the pore pressure is not so much dependent on
the compressibility of the soil skeleton in the case of dense and very dense states of the
soil. Nevertheless, the assumption of high densities enables to make another assumption
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Figure 5.19 Influence of the drop height on sand specimen porosity

concerning a relatively low and constant value of the soil skeleton compressibility for all
types of sand.

Four different types of sand were used to form the soil specimen. The characteristic
parameters of each sand are put together in Tab. 5.1.

Table 5.1
Soil parameters of different types of sand used in small-scale experiments

Soil parameter Type of sand

‘Norderney’ G30T S40
g [mm) 0.23 0.42 0.70
Cu [] 1.61 2.00 1.67
Co [] 1.03 1.10 1.07
Nimin [-] 0.32 0.32 0.32
Tmaz [] 0.43 0.42 0.41
k [m/s] 1.3x107% | 3.2x107* | 6.2 x 10~*

The parameters included in Tab. 5.1 have the following meaning:

dso  — specified particle size [mm],
Cy - coefficient of uniformity [-],
Cc - coefficient of curvature [-],

Nmin — Minimum porosity [-],
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Nmaez — Maximum porosity [-],
k — coefficient of permeability [m/s].

The permeability coefficient was measured under the dense state conditions of the
soil.

5.2.2.2 Saturation

Jacobsen & Magda (1988) and Magda (1989(Y)) made some observations of the effective-
ness of certain saturation techniques used in small-scale laboratory tests pertained to
the problem of the sea bottom erosion potential influenced by the pore pressure vertical
gradient and the sea current action. Three main methods of soil saturation were tested
in order to obtain the degree of saturation as high as possible, and the effects of their
application were discussed.

Searching for the most effective method of saturation, the following three techniques
can be distinguish, namely:

- vacuum saturation,
- gravitational saturation,
- capillary saturation.

The common feature of all of these types of saturation was the same direction, in
which the saturation took place. Saturation of the sand model was carried out always
from the model bottom upwards. This condition enabled an easier monitoring of the
rate, at which saturation occured to be fairly uniform in the whole horizontal cross-
section of the sand specimen. Pore water pulled down gravitationally and randomly
would form large spatial areas (air traps). In the case of smaller volumes, the air traps
would remain entrapped in sand pores, decreasing thereby the degree of saturation
significantly, whereas — in the case of larger volumes — the air traps would damage the
carefully prepared structure of the soil specimen because they would tend to be released
out from the soil model.

The principle of operation of the vacuum saturation system requires a continuous
vacuum condition in the whole volume of the soil model (a vacuum-pump is connected
to the top of the model) when supplying water from the bottom of the sand model.

Omitting the element of the vacuum suction force, the first system can be easily
converted into the gravitational saturation system. The rate of saturation process can
be controlled by applying a proper water pressure gradient. Magda (1989(b)) showed
that both very slow and very fast rate of saturation resulted in lower values of the degree
of saturation compared with the results from saturation performed at a medium rate.
Moreover, the fast rate of saturation enables easily trapping of air bubbles in the soil
pores which was indicated by air bubbles self-releasing from the inside of saturated soil
onto the sandy model surface.

The third technique, i.e. capillary saturation, is based on the principle of the
capillary force suction. Applying this method, however, relatively low values of the
degree of saturation were obtained. This was not very surprising since the capillary
saturation method is only slightly different from the gravitational saturation at a slow
rate. The trapping effect for air bubbles in the soil skeleton pores may be explained
as follows. The capillary forces help to moisten surfaces of soil grains just above the
bottom of the capillary water meniscus. Then, a certain moment can occur when the
surfaces of all soil grains grouped around a single pore are already moistened but still
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there is a meniscus in the soil pore. In this way a trap for the air above the pore water
meniscus is formed.

The gravitational saturation at slow rate gave results comparable with the gravita-
tional saturation at fast rate. However, the obtained values were worse than in the case
of the gravitational saturation at medium rate where the highest value of the degree of
saturation was about S = 0.95. It means that the optimum rate of saturation exists.
The worst results (S = 0.85) came from the capillary saturation [Magda (1989(%))].

Modelling of different soil saturation conditions was concentrated on preparation
of three qualitatively different saturation conditions of the sand model, namely: fully
saturated (S = 1), and partly saturated (S < 1) with relatively high and low values
of the degree of saturation. Near-fully saturated soil conditions were possible to create
using sand pouring in water together with additional manual stiring and vibrating. Such
procedure resulted in extremely high value of the degree of saturation (S = 1.0). Using
sand pouring in air (drop height of H; = 0.8 m was applied) followed by the gravitational
saturation from the model bottom upwards, saturation conditions were obtained in the
range of S = 0.96 — 0.99. Additionally, very poor saturation conditions were artificially
forced by means of dewatering of already saturated sand model (ground water level was
lowered) and saturating it again. Considering the effects of water flow through a wet
soil (see Section 3.1.2), relatively small values of the degree of saturation were expected.
In fact, the measured degree of saturation was equal to § = 0.83, which was enough
to distinguish a clear difference in soil saturation conditions from the above mentioned
first two representative states. It has to be stressed that the obtained low values of the
degree of saturation were still in the range of application of the assumed relationship
[see Eq. (3.39)] between the degree of saturation and the compressibility of pore fluid.

5.2.3 Test procedure

Before each test the sand was dried and weighted. During the sand pouring process,
a very dense state of the soil specimen was achieved in all tests (i.e., relative density
D, = 0.8, or porosity n = n.m,i,). Water used for saturation was boiled beforehand.
Deaerating frees off to a large extent the water from air particles, normally contained
in it. Saturation of the model was carried out from the bottom upwards. This ensured
easier monitoring of the rate at which saturation occured to be fairly uniform in the
whole horizontal cross-section of the model. In the case of an opposite direction of
saturation, this would be practically impossible; pore water pulled down gravitionally
and randomly would form air spaces which, in the case of smaller volumes, would remain
trapped in the soil skeleton, lowering significantly the degree of saturation. Larger
volumes of air could additionally damage carefully prepared soil body because they
would tend to go out from the saturated model.

The free gravitational saturation was used to saturate the model. A constant
medium rate of upward saturation was controlled by a positive water pressure gradient,
which value was kept constant and equal to 0.2 m of water height. The intention was to
obtain the degree of saturation as high as possible. Magda (1989(%)) showed that both
very slow (e.g., free capillary saturation) and very fast saturation result in lower values
of the degree of saturation when comparing it with saturation conducted at a medium
rate.

Knowing the amount of water, used for the sand-column model saturation, and
the density of soil skeleton, it was possible to compute the degree of saturation. The
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relative small height of the sand-column model (H. = 0.8 m), together with a careful
and very precise performance of preparation and saturation of the sand model, allowed
to believe to obtain homogeneous soil saturation conditions, which was not the case in
the large-scale laboratory experiments described in Section 5.1.

Two different periods of water pressure oscillation were applied, namely: 7' = 1 and
2s. The head of hydrostatic water pressure above the sand surface was kept constant
h = 1.2m, and the amplitude of the bottom water pressure head oscillations was equaled
to HO = 0.4 m.

5.2.4 Results of measurements and comparison with the
‘finite-thickness-layer’ solution

The results of measurements, performed in the sand column model (Magda, 1990(d)),
are presented in a graphical form in Figs. 5.20 to 5.29. Besides of the presentation of the
data measured, each figure contains the results of numerical computations according to
the one-dimensional pore pressure storage solution described in Section 4.6. As input
data for calculations, the values of the coefficient of soil permeability for the three
different types of sand (Tab. 5.1), tested in the small-scale laboratory experiments,
were taken. Other geometric and physical parameters, required by the computational
procedure, were assumed to have the following values:

- height of sand column d =05m (d = H,)
- porosity of soil filled with water n, = 0.35
- Poisson’s ratio of soil v =03

- compressibility of soil
- compressibility of pure water
- atmospheric pressure

a, =10"5m?/kN
B =4.2x10""m?/kN
pat = 101.325kPa

- wave period I =1;2s
- water depth h =12m
- amplitude of bottom pressure Hy =04m

Similar to the analysis of the data recorded in the large-scale modelling of the
governing problem, the pore pressure signals measured in the sand column tests were
analysed using the Fast Fourier Transform (FFT). The main results of the analysis are
given in terms of the relative amplitude, H, and the phase lag, §, of pore pressure head
oscillations in the sand column.

The first group of results is related to the tests performed on the ‘Norderney Sand’.
Figures 5.20 and 5.21 present results for the pore pressure amplitude and the phase
lag, respectively, from the test where the degree of saturation was measured to be
S = 0.989, which is — according to Eq. (3.8) — adequate to the soil porosity part occupied
by air n, = 0.00385. Next two respective illustrations, Figs. 5.22 and 5.23, show a
situation where the same type of sand had worse saturation conditions, z.e. S = 0.969
(ne = 0.01085), compared with the former test. A two-percent-difference in the degree
of saturation creates very well-distinguished differences in the pore pressure response in
sandy sediments. These differences are in a good accordance with the values predicted
by the 1-D numerical solution to the storage model of the pore pressure response in
sandy sediments.

Next four illustrations, Figs. 5.24 to 5.27, present the results of tests performed on
the sand S40, and they are used to present mainly the following two effects in the pore
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pressure distribution, namely: the difference between partly saturated and near-fully
saturated soil, and the difference influenced by changes in soil permeability. Figures 5.24
and 5.25 identify results for near-fully saturated soil, S = 0.994 (n, = 0.00210). This
very high value of the degree of saturation (i.e., S = 0.994) was possible to be obtained
through applying a very careful sand pouring in water with a simultaneously executed
manual vibration of the sand model. Figures 5.26 and 5.27 pertain to partly saturated
soil, S = 0.960 (n, = 0.01400). A good agreement between the 1-D numerical storage
solution and the experimental measurements has been obtained here, too. Secondly,
a comparison of Figs. 5.24 to 5.27 with Figs. 5.20 to 5.23, respectively, confirms the
anticipated behaviour in the pore pressure damping effects, although — under almost
the same soil saturation conditions — the difference in soil permeability of the two soil
specimens was quite meaningful and had a factor of 5. The smaller permeability the
soil has, the higher pore pressure damping effects in the soil are observed.

Finally, a special situation was arranged where soil saturation conditions were very
poor, i.e. S = 0.830 (n, = 0.05950). Performing tests on the sand G30T, this low value
of the degree of saturation was achieved by dewatering already saturated specimen
followed by a repeated saturation procedur. The both numerical and experimental
results, presented in Figs. 4.28 and 4.29, show a similar tendency to that observed in the
former test, however, they are not so much coherent to each other as it was in the tests
higher values of the degree of saturation. Probably, a real value of the compressibility
of such a system does not stay in accordance with that one predicted theoretically. It
has to be remembered that, for partly saturated soils, the compressibility relationship
used in the theoretical /numerical considerations is limited by the degree of saturation
equal to S = 0.85 (Verruijt, 1969).

Higher periods (e.g., T = 2s versus T' = 1s) of water surface vertical oscillations, or
hydrodynamic bottom pressure oscillations, cause higher rates of pore pressure damping
effects which is clearly seen in smaller values of the pore pressure amplitude accompanied
by larger values of the pore pressure phase-lag.

No influence of application of different values of the amplitude of water surface ver-
tical oscillations (hydrodynamic bottom pressure head oscillations) on the pore pressure
distribution with depth in the sand column was observed. As far as the amplitude of
pore pressure head oscillations is concerned, there is a linear dependency between the
magnitude of the inducing water pressure, acting on the top surface of the sand column,
and the magnitude of pore pressure head oscillations in the soil. Presenting this rela-
tionship in the relative and dimensionless form, H [see Eq. (4.62b)], with respect to the
amplitude of the hydrodynamic bottom pressure head, H}, this linear dependency dis-
appears and all the distribution curves obtained for different values of the amplitude of
the hydrodynamic bottom pressure head — keeping all other pore fluid and soil skeleton
parameters the same — are described only by one and the same curve.

5.3 Conclusions

The large-scale tests performed in the large wave flume, and the small-scale laboratory
experiments conducted in the sand column, have indicated the following:

e the pore pressure damping effects in sandy seabed sediments:
- the pore pressure amplitude attenuation with depth,
- the increase of the pore pressure phase-lag with depth,
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e the dependency of the pore pressure damping effects in sandy seabed sediments on:
- soil saturation conditions (defined by the degree of saturation),
- compressibility of soil skeleton (defined by Young’s modulus),
- soil filtration conditions (defined by the coefficient of filtration),
- frequency (or period) of water loading oscillations, induced either by surface
water waves propagating over the seabed, or by water surface vertical cyclic
fluctuations,

e a good agreement between the experimental and theoretical (Airy’s linear wave
theory) results of the hydrodynamic bottom pressure induced at the seabed floor,

e a good agreement between the results obtained from the measurements and the
analytical (2-D model) and numerical (1-D model) ‘finite-thickness layer’ storage
solutions for the pore pressure oscillations in sandy seabed sediments,

e no influence of the wave-flume sidewall, as a natural boundary condition, on the
pore pressure oscillations, compared to the pore pressure values recorded in the
central-positioned measuring profile.

The large-scale modelling of the pore pressure response in sandy seabed sediments
have shown that the calculated values overestimate the measured pore pressure damping
effects, showing smaller amplitudes and larger phase lags in the upper region of the
seabed models, whereas the oposite relation was found in the lower part of the seabed
model. This fact has been also found in the sand column test, when the same type of
sand (i.e., ‘Norderney Sand’) was used. The observed phenomenon can be probably
explained by the existance of inhomogeneous conditions of the seabed model, with
respect mainly to:

- compressibility of the soil skeleton,
- compressibility of the pore fluid,
- coefficient of filtration.

Lower densities in the upper part of the seabed sediment, compared with deeper
regions, were caused mainly due to water particle motions induced by surface water
wave propagating oscillations (large-scale modelling) or water surface vertical oscilla-
tions (small-scale sand column test). A lower density, which means a looser state of the
soil, implies certainly higher values of compressibility of the soil skeleton. Therefore, the
soil skeleton, reacting like a sponge, contributes to easier transmission of pore pressure
oscillations in seabed sediments. On the other hand, logically, lower parts of the seabed
layer were characterized by higher densities, having thereby more restrictive influences
on the pore pressure damping effects. This conclusion is based on the observation, indi-
cating smaller values of the measured pore pressure damping effects in the upper part
than in the lower part, compared to the analytical storage solution.

Because of a very difficult procedure of preparation and saturation of the seabed
model in the large wave flume, a certain doubt exists concerning the homogenity of
soil saturation, too. It was very probable that the lower parts of the sand layer had
poor saturation conditions compared with the upper regions. This was certified by even
stronger rate of the pore pressure damping in the vicinity of impermeable base of the
wave flume than closer to the seabed floor.

The pore pressure storage solution, derived analytically in Section 4.4, is capable
to treat the soil skeleton and the pore fluid as media, which are, among others, homo-
geneous from the compressibility point of view. This is a small disadventageous feature
of the analytical solution when applying it to the problems where the relative compres-
sibility of the two-phase seabed medium is certainly a function of depth in the seabed.
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This problem can be easily overcome by adapting the derived analytical solution into a
multi-layered system, introducing additional interface boundary conditions. However,
a number of mathematical operations will increase substantially with respect to the
solution derived and analysed in the present work.

The comparison analysis, performed for the sand column modelling, has indicated
a good agreement between the numerically computed and experimentally measured val-
ues of both the pore pressure amplitude and the pore pressure phase-lag. The use of
relatively more precise measurements of the degree of saturation has proved the correct-
ness of the theoretical /numerical formulation of the governing problem, as long as soil
saturation conditions stay in accordance with Verruijt’s (1969) range of application of
the formula describing the pore fluid compressibility. Not only soil saturation conditions
precisely defined, but also high densities carefully modelled during the sand column test
preparation have helped to achieve possibly uniform saturation/copressibility conditions
in the total height of the sand column model. This was a very crucial point for having
more satisfactory comparison between the experimental and numerical pore pressure
results, compared with the large-scale modelling.
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Chapter 6

Wave-induced uplift force on a sub-
marine buried plpellne — example ap-

plication of the pore pressure storage
model

Submarine pipelines buried in seabed sediments are engineering means of transport
for crude oil and natural gas from offshore oil fields onto a land. Generally, problems
associated with a design of submarine pipelines buried in seabed sediments depend
strongly on soil-water/wave conditions. A wave climate plays a very important role and
can influence the interaction between a submarine buried pipeline and the surrounding
soil significantly. In practice, pipelines located in water depths up to 60 m are buried,
whilst the cover must have a thickness ranging from 0.5 to 1.0 m, depending upon the
water depth and the covering material (Dursthoff & Mazurkiewicz, 1985).

Among all considered environmental loads usually taken into account in the design
procedure, the most critical problem in determining the stability of a pipeline buried in
permeable soils under surface water wave loading is the prediction of the wave-induced
pore pressure response of the soil in the vicinity of a submarine pipeline. The main
object of Chapter 6 is to present a study of the distribution patern of the wave-induced
pore pressure acting on a submarine pipeline, and to calculate the seepage force, the
hydrodynamic uplift force particularly, affecting the pipeline under the assumption of
the storage seabed model (i.e., compressible pore fluid and soil skeleton), for the case
of an arbitrary thickness of a permeable seabed layer.

Wind waves are accompanied by the movement of water particles within the whole
mass of water. In spite of the permanently existing hydrostatic pressure, a value of which
depends only on the water depth, this phenomenon generates additionally an oscillating
water pressure on the seabed floor. This pressure, because of its character and the place
of existence, is called the wave-induced bottom pressure or the hydrodynamic bottom
pressure.

A character of the bottom pressure depends on the type of waves assumed for
the analysis. If the waves are regular, the wave-induced bottom pressure fluctuations
follow the cyclic surface water wave oscillations, having a frequency equal to the wave
frequency. If the waves considered in the analysis are irregular then the bottom pressure
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changes will be characterized by the stochastic process. Usually, when a certain problem
is going to be solved analytically, a regular (sinusoidal in most cases) type of surface
water waves is chosen for the convenience of required mathematical operations. If
random (i.e., irregular) surface water waves are considered, the use of the Fast Fourier
Transform (FFT) makes it also possible to adapt a solution to a particular problem
derived for sinusoidal water waves loading. It is also the case in the present analysis
where the wave-induced uplift force acting on a submarine pipeline buried in seabed
sediments is studied under the assumption of sinusoidal surface water waves propagating
over the permeable seabed.

The hydrodynamic bottom pressure, pp, and its amplitude, Py, can be computed
directly from Eq. (2.6) and Eq. (2.7), respectively, for the subsurface pressure under a
progressive wave, derived from Airy’s linear theory for waves of small amplitudes. The
comparison with values obtained from the laboratory measurements (see Section 5.1)
has shown that this theory is capable to predict the bottom pressure reasonably good.

Considering a porous permeable seabed (e.g., consisted of sandy sediments), the
bottom pressure fluctuations will have direct and continuous influence on changes in
pore pressure within the seabed medium (Fig. 6.1). An overpressure (with respect to
the initial hydrostatic pressure distribution defined by the still water level) generated
in the soil due to a passage of a wave crest, creates seepage forces acting downwards.
Contrary to that, an underpressure induced by a passage of a wave trough is responsible
for seepage forces directed upwards.
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Figure 6.1 Wave-induced pore pressure distributions under two characteristic phases
(i.e., wave crest and wave trough) of surface water wave oscillations, and
vertical forces acting on a submarine pipeline buried in sandy seabed sed-
iments
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6.1 Hydrodynamic uplift force

Should one assume an existence of a submarine pipeline buried in a seabed, this pipeline
will be exposed to the seepage forces induced in seabed sediments due to a passage of
surface water waves. The resultant force, being the effect of all seepage forces acting on
a submarine pipeline, has a magnitude and a direction alternating cyclically with the
same frequency as the frequency of surface water wave oscillations. In each moment
of wave oscillations it is possible to compute a vertical component of the resultant
hydrodynamic force, and to distinguish two special cases thereof, namely: a vertical
force acting downwards, trying to suck the pipeline out of the seabed, and a vertical
force acting upwards, pressing the pipeline down (see Fig. 6.1).

The second case can only be dangerous in a situation when oscillations of the
instantaneous wave-induced pore pressure cause a pore pressure gradient to be critical,
leading thereby to the seabed instability. In such a case, the seabed is loosing its bearing
capacity due to a liquefaction phenomenon. Usually, the bearing capacity of the soil
supporting the pipeline is sufficient with no respect to the depth of burial, and cannot
be a reason of a dangerous pipeline instability. As far as the first case of loading is
concerned, the resultant force acting on a pipeline is called the wave-induced uplift force
or hydrodynamic uplift force. Only uplift forces, comparing to the confining (resisting)
forces, play a very important role and have to be taken into consideration in the vertical
stability analysis. When the hydrodynamic uplift force exceeds the pipeline effective
(i.e., with respect to the buoyancy of water) gravity force, the stability condition is not
satisfied. This can lead to large displacements of the pipeline onto the seabed floor, even
to the pipelne floatation up to the sea level, and sometimes breakout which normally
results in a serious failure of the pipeline and severe environmental catastrophe.

The hydrodynamic uplift force on a unit length of the pipeline, F,, can be obtained
by integrating the wave-induced pore pressure along the pipeline circumference:

2T

= /prpcos¢ dy (6.1)

0

where: F, - hydrodynamic uplift force (defined to be negative upwards) [kN/m)],
p - wave-induced pore pressure [kPal,
- outside radius of the pipeline [m],
- angular coordinate of the polar coordinates system (with the origin placed
in the centre of the pipeline cross-section) [rad].

Only in the very special case where the wave-induced pore pressure distribution
around the pipeline is symmetrical with respect to z-axis, Eq. (6.1) can be simplified:

™

F, = Z/prp cos ¢ dip (6.2)

0

If the pore pressure function, p, is given in the complex form (which happens
very often when an advanced pore pressure theory is considered), the real part of the
hydrodynamic uplift force solution is of a physical meaning and has to be considered.
It means that Eq. (6.1) can be rewritten as:
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2w 2T
F=5% prpcostpdip 3 = [ R{p}r,cosp dip (6.3)
/ /

where, additionally:
P - wave-induced pore pressure (complex-valued) [kPal,

R{ } - denotes a real part of { }.

For further analysis and comparison purposes it is convenient to introduce the rel-
ative wave-induced pore pressure, p (see Eq. 2.16a), and also the relative hydrodynamic
uplift force, F,, because it will make the uplift force independent of the wave height
(z.e., the shape of the distribution of the relative wave-induced pore pressure with depth
in the seabed is not influenced by the wave height). Therefore, by dividing both sides
of Eq. (6.3) by the amplitude of hydrodynamic bottom pressure, Py, the hydrodynamic
uplift force can be presented in its relative form:

2w
_F,
F,=—= /ﬁrp cos ¥ dip (6.4)
Py
0
where, additionally:
F, - relative hydrodynamic uplift force [kN/m/kPal,

p - relative wave-induced pore pressure [-].

Of course, the solution to the hydrodynamic uplift force [Eq. (6.4)] can be found
using one of numerical integration methods. In many cases, however, a performance of
simple algebraic summation of the component forces acting along the pipeline circum-
ference can be very helpful. These can be of a particular interest, especially when the
wave-induced pore pressure function is decribed by an expression which is mathemat-
ically complicated, as it is the case in the diffusion model or the storage model of the
seabed two-phase medium (see Sections 5.2 and 5.3). The summation algorithm is very
simple and can be illustrated in Fig. 6.2.

(Pj), = Pj cosp;

| -

Figure 6.2 Discretization of pipeline circumference, used in computations of the hy-
drodynamic uplift force by means of a simple algebraic summation of
vertical components of seepage forces
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Adequately to Eq. (6.4), the summation formula for the hydrodynamic uplift force
is as follows:

F, = Zﬁj dlj costp; = Zﬁj Tp dip; cos (0 <9, <2m) (6.5)
j=1

j=1

where: F, - relative hydrodynamic uplift force [kN/m/kPa],

ns - number of sectors distinguished by discretizing the pipeline circumference
[']7

p; - relative wave-induced pore pressure, acting on j-th sector arc of the
pipeline circumference, and assumed to be constant on the entire j-th
sector arc [-],

dl; - length of j-th sector arc [m)],

%; - angular coordinate of the bisector of j-th sector [rad],

di; - angular width of j-th sector [rad],

rp, - outside radius of the pipeline [m].

6.2 Review of existing computational algorithms

When a submarine pipeline is buried in a porous seabed, the problem of solving the
wave-induced pore pressure oscillations becomes very complicated. In order to simplify
this problem some researches assumed that the porous medium is incompressible and
the wave-induced pore pressure oscillations are governed by the potential model. Under
this assumption Lai et al. (1974), Liu & O’Donnell (1979), Lennon (1983, 1985) and
Spierenburg (1985, 1986, 1987) investigated this problem using a numerical analysis.
Liu & O’Donnell (1979) considered two different types of waves acting on the seabed,
namely, monochromatic and solitary, and introduced the integral equation method to
solve the resulting integral equation. In a numerical solution procedure developed by
Lennon (1983, 1985), the pressure distribution on the pipeline was calculated using also
the boundary integral equation method (BIEM). MacPherson (1978) and McDougal et
al. (1988) presented analytical solutions for the case of infinite depth of the seabed,
whereas Monkmeyer et al. (1983), using the method of image pipes, found a similar
solution, the advantage of which is that it can also be applicable for the case of finite
depth of the permeable seabed layer. The common feature of all the studies mentioned
above is that the effect of compressibility of both the pore fluid and the porous medium
was neglected. Using Biot’s equation and continuity equation for the pore fluid flow
in a permeable medium, Kokkinowrachos (1985) considered the effect of the pore fluid
and porous medium compressibility and calculated the pore pressure around a semi-
embedded pipeline by means of the microelement approach. However, his solution
concerns a very special geometrical position of the pipeline and therefore has not any
strong practical meaning. The vertical stability of a submarine pipeline buried or half-
buried in the seabed under wave action was studied by Magda (1987), Foda (1985) and
Spierenburg (1985, 1986, 1987).

In the following, a short review of some of computational methods for the calcu-
lation of the wave-induced pore pressure around the pipeline is introduced. Finally, a
comparison between simplified methods and the more general method developed in the
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present work will be shown together with a discussion about the importance of exist-
ence of the soil-water mixture parameters in the solution for the uplift force acting on
a submarine pipeline buried in seabed sediments.

6.2.1 A simplified method with no pipeline in the seabed

One of the first approximations of the uplift force acting on a submarine buried pipeline
consists in a separate treatment of the wave-induced pore pressure oscillations phenom-
ena and the existence of the pipeline in seabed sediments. In other words, it is assumed
that the pipeline has not any disturbing influence on the wave-induced pore pressure
oscillations in the soil. However, under real natural conditions, an impermeable and rel-
atively stiff body of the pipeline acts like a barrier and changes the pattern of the pore
pressure field around. The pore pressure difference, in the situations with and without
a pipeline inserted into the seabed, can be reffered to as the perturbation pressure. For
the first estimation of the hydrodynamic uplift force, the perturbation pressure is simply
assumed to be zero.

An example of such analysis is shown in Fig. 6.3. In order to carry out this type
of calculation, the knowledge of two elements is required, namely: a geometry of the
system and an analytical description of the wave-induced pore pressure distribution
with depth in the permeable seabed layer.

p' = — Py exp(—az)

|

Figure 6.3 Wave-induced pore pressure distribution with depth (potential solution),
acting on a submarine buried pipeline located just under the wave trough
[i.e., (az — wt) = 7]

Biot’s consolidation theory, for most applications, appears to represent the small
amplitude dynamic response of soil quite adequately for a variety of wave-soil interaction
phenomena. However, it has been suggested for sands and very dense silts that the
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full Biot’s equations are not required to determine the dynamic pressure and that the
potential pressure model is adequate for these materials (Madsen, 1978; Sleath, 1970).
For these permeable and relatively stiff materials, the soil deformations are small and
do not seem to influence the pore pressure significantly. Therefore, many researchers
decoupled the pore pressure from the displacements of the soil skeleton. For this reason,
and mostly due to the complex geometry of the problem, all studies related to submarine
buried pipelines were based on the potential pressure model, derived under the condition
of incompressibility of both the pore fluid and the soil skeleton. The potential pore
pressure solution, initially given by Putnam (1949) and Ried & Kajiura (1957), was
already presented in Section 4.2 [Egs. (4.7) and (4.8) — in the complex-form notation,
and Egs. (4.9) and (4.10) — in the real-form notation|. Taking the potential solution to
the wave-induced pore pressure oscillations in the seabed layer of infinite thickness [see
Eq. (4.9)], Eq. (6.4) leads to:

27
By = /exp(—az) cos(az — wt)rp cost dip (6.6)
0
where: F, - relative hydrodynamic uplift force [kN/m/kPa],
a - wave number (a = 2w/L) [m™!],
L - wavelength [m],
w - wave angular frequency (w = 27 /T) [s7!],
T - wave period [s],
z,z - horizontal and vertical coordinates of the Cartesian coordinates system,
respectively, [m],
t - time [s],
rp - outside radius of the pipeline [m],
® - angular coordinate of the polar coordinates system [rad].

It is obvious that the horizontal and vertical coordinates of the Cartesian coordi-
nates system are related to the angular coordinate of the polar coordinates system. As-
suming that the vertical axes of the both coordinates systems are coaxial (see Fig. 6.3),
these corelations can be expressed in the following functions:

z=">b+ry(1 —cosp) (6.7a)
T = rpsiny (6.7b)

where, additionally:
b - depth of burial of the pipeline (measured from the seabed floor to the top
of the pipeline) [m].

Assuming the most inconvenient situation for the potential solution, in which the
pipeline is located directly under the wave trough; this happens when the phase of
wave-induced pore pressure oscillations is equal to its optimum value [i.e., (az — wt) =
O,pt = m; see Fig. 6.3|, the relative hydrodynamic uplift force reaches its maximum
value (a negative sign of this value is only due to the definition of the hydrodynamic
uplift force), and can be defined in the following expression:

27
(Fz)mu,@ =— /exp{—a [b+ 7p(1 — cosp)]} cos (arp sinvp) 7, cos 3 dyp (6.8)
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where, additionally:
(F Z)mu‘@ - maximum relative hydrodynamic uplift force, obtained for the op-
timum phase of water wave loading oscillations, for which the pore
pressure gradient (acting on a pipeline) is maximal [kN/m/kPa).

The solution to the integral given in Eq. (6.8) is surprisingly simple:

(Fz)mu’@ = —mar’ exp[—a(b+rp)] (6.9)

As an example, used for the comparison purposes in the hydrodynamic uplift force
analysis, the following values of the required parameters were used as input data:

- depth of burial of the pipeline b =0.5m
- outside diameter of the pipeline D, =1.0m
- wavelength L =10.0m

Using these input data, Eq. (6.9) gives the following value of the relative hydro-
dynamic relative uplift force, which does not take the pipeline perturbation effect into
account:

(F) mane = (F<9) , = —0263kN/m/kPa

maz,®

where: (F ;Sa)> o relative simplified hydrodynamic uplift force (based on the un-

disturbed pore pressure field), maximum with respect to the
phase of water wave loading oscillations [kN/m/kPa].

6.2.2 Pipeline-perturbation methods

Assuming that a submarine pipeline is an impermeable (not porous) submerged body,
and is buried parallel to wave fronts (i.e., wave crests), the governing problem can be
expressed in the form of Egs. (4.6a) and (4.6b), together with Eq. (4.6¢) or Eq. (4.6d),
and additionally by the pipeline impermeable surface condition in the form:

0
B_'Ir) =0 for r="ry (6.10)

where: p - wave-induced pore pressure [kPal,
r - linear coordinate (normal to the pipeline surface) of the polar coordinates
system [m],
rp - outside radius of the pipeline [m].

The solution of the problem can be found by means of superposition of two separate
solutions: one is the wave-induced pore pressure solution with the absence of the pipeline
structure in the seabed, and the second one is a kind of pore pressure correction of the
wave-induced pore pressure solution, such that the gradient of the pore pressure at the
pipeline surface is zero. And thus:

p=p® = p(® 4 p(© (6.11)
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where: p(P) - perturbated (disturbed) wave-induced pore pressure, due to the pipeline
presence in the seabed [kPal,
p(®) - undisturbed wave-induced pore pressure, due to the pipeline absence in
the seabed [kPa,
p(¢) - wave-induced pore pressure correction, due to the pipeline presence in the

seabed [kPa).

By simple adding p{®) and p(®), the perturbated wave-induced pore pressure varia-
tions around the submarine pipeline buried in seabed sediments can be easily obtained.
Two typical pressure fields are shown in Fig. 6.4. The first picture illustrates the con-
tours of the undisturbed wave-induced pore pressure distribution in the soil, where
there is no pipeline buried in seabed sediments; the second picture shows the pertur-
bated wave-induced pore pressure field in the closest vicinity of the pipeline, where the
pipeline is located directly under the wave trough. As one would expect, the isobars
(i.e., the lines of constant pore pressure) are perpendicular to the pipeline impermeable
surface. There is a net pore pressure gradient at the pipeline, and clearly this will result
in a force acting on the pipeline. The influence of the pipeline on the pore pressure
field is a fairly local effect. Pore pressures induced by higher frequency waves are more
highly attenuated with depth. Therefore, absolute values of the pore pressure are less
for short waves than for long waves, but the pore pressure gradient may be larger.
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Figure 6.4 Wave-induced pore pressure p = p'/ P, induced by: (a) wave trough above
seabed without pipeline, (b) wave trough above pipeline buried in seabed,
[McPherson, 1978]

The boundary value problem, defined by Eqs. (4.6a) and (4.6b), together with
Eq. (4.6¢) or Eq. (4.6d), and Eq. (6.10), is difficult to be analysed in rectangular coordi-
nates. However, this difficulty may be overcome by transforming to a space in which the
variables become separable. Therefore, McPherson (1978) suggested the use of bipolar
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coordinates, whereas McDougal et al. (1988) proposed a transformation that maps the
problem in one imaginary plane into an annulus centered at the origin in another ima-
ginary plane. Contrary to the solution presented by McPherson (1978), McDougal et
al. (1988) treated the pore pressure totally, i.e. without distinguishing and superposi-
tioning of the two pore pressure components obtained for the case of pipeline absence
and presence in seabed sediments.

McPherson (1978) stated that in extereme conditions, beneath the wave trough the
seepage force will act vertically upwards and its magnitude per unit length may be as
large as 30 % of the buoya