
Web-based Real-Time Simulation System

Tomasz Karla, Jarosław Tarnawski
Gdansk University of Technology, Faculty of Electrical and Control Engineering, Gdańsk, Poland

Email: tomasz.karla@pg.edu.pl, jaroslaw.tarnawski@pg.edu.pl

Abstract—The paper presents the development of
a simulation system composed of a real-time plant simulator with
real-time controller included in the software-in-the-loop
structure using web-based communication. The client-server
architecture build in a TCP/IP network environment was
introduced, where the server is a computing unit for real-time
high temporal resolution plant simulation (and optionally also as
controllers’ platform) and the web browser application is a client
for controller purposes and user interface. Such a structure
allows to familiarize user with the simulated plant but also to
perform simulation with wide variety of control algorithms and
control structures. Division of code into functional groups allows
easy modifications and application of new plants and controllers
for simulation. A communication latency is crucial element and
can be critical in case of specific processes to correctly perform
the simulation. Simulator uses previously developed mechanism
of step adaptation for keeping up with real-time which allows to
follow real-time operation at the expense of results quality. Clear
and easy interface for signals exchange between the simulated
plant and controllers and simulation was introduced.
Management console, which has the ability to present data in
form or numerical data or dynamically updated graphs was
provided. Users have ability to manage simulation parameters
and control chosen variables of the simulation through web
browser GUI. Some classic control schemes of the nuclear reactor
have been chosen as benchmarks and used with simple test
scenarios to present capabilities of the proposed structure.

Keywords—WebSocket, real-time simulation, web-based
simulation

I. INTRODUCTION

The simulation plays significant role in industry, research,
education and training activities. It allows to analyze the
response of a simulated plant to external stimuli. Simulation
applications include acquaintance with the plant and the way it
interacts, the ability to evaluate the control applied to the
plant. Special version of simulation is real-time simulation.
The real-time simulator is expected to deliver simulation
results at certain moments in time, according to simulated
plant dynamics. Very convenient platform for real-time
simulation may be network environment with web browser.
The web browser is available on almost every modern
hardware and software platform. The browser can use the
computational resources i.e. memory and computing power of
the hardware on which it runs. As a host of the simulation
system using to the standards HTML, WebSocket, WebRTC,
there exists a unified way of communication between elements
of the simulated control system. Due to the networking nature
of the browser's work, it is possible to create distributed
simulation systems with high-performance computing servers

or just other browsers. Dynamic models of devices as well as
entire control systems can be provided for a wide range of
users. Results of simulations can be sent to many recipients.
The browser also has very large presentation possibilities
which can be used to build the user interface - to acquire the
operator's commands and present the simulation status and
results. Browser is free to use also in the access to
development tools and almost everyone can use it. These
properties have didactic and popularizing potential. Many
services are transferred to the browser to provide broad access
and interoperability within one task or project. An example
may be office suites like Google Docs and Microsoft Office.
The browser also has its limitations in terms of its use for
simulation purposes. It is not optimized in terms of
computational efficiency and does not allow to enter directly
dynamic models as dedicated environments such as
Matlab/Simulink, Octave or SciLab.
Real-time simulation means that the results of the simulation
are given in accordance (not later and not before) with the
time of the simulated element or system. This allows to
familiarize user with the dynamics of the simulated plant, time
dependencies between the simulated quantities. It also allows
to check if the prepared control systems are sufficiently
computationally efficient to work with a given model or
device. Interacting with the real-time model allows to analyze
the answers of the simulated plant on an ongoing basis. Other
methods of simulation require the preparation of a priori
controls (before starting the simulation) and observation of the
a posteriori results (after simulation completion) or in a
completely asynchronous (not in pace with the dynamics of
the plant) manner. On digital machines, the values of
simulated quantities are updated at discrete time with a certain
calculation step. The calculation of new values takes time, and
the results may be available ahead of time, on time or after the
time for which they were calculated. Therefore, in a real-time
simulation, there must be a mechanism to coordinate the
delivery of results, ensuring that the results are reported at the
right time. In the case of calculations completed before the
time, this mechanism will stop the submission of results and
calculations of the next step. In case of too long calculations,
this mechanism will give results immediately after the
calculation is completed and depending on the solution it will
try to give next results on time (increasing the simulation step)
or accepts the loss of synchronization of the results with the
simulated time. Definition of the Hard Real Time HRT system
appears where requirements that in all simulation steps the
results are must be given on time without any violations. Soft
Real Time SRT means that incidental overruns of calculation

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Post-print of: T. Karla and J. Tarnawski, "Web-based real-time simulation system," 2018 International Interdisciplinary
PhD Workshop (IIPhDW), Swinoujście, 2018, pp. 310-315, doi: 10.1109/IIPHDW.2018.8388379.

https://doi.org/10.1109/IIPHDW.2018.8388379

time relative to the simulation time are acceptable. The
simulation step should be selected for the needs of appropriate
representation of the simulated model, the stability of the
selected numerical method and the capabilities of the
equipment. This article discusses the SRT simulation system
with adaptive simulation step.

II. RELATED WORK

The idea of the virtual laboratory based on of
simulated/emulated plants is well presented in [1]. The
reference [2] indicates many examples of web based
simulation applications in the field of automation. By
developing concepts described in [3], [4], [5] the authors
designed a framework for soft-real-time simulations based on
network client-server model with web browser as simulation
supervisor and user interface. Real-time issues in a network
environment are current problems for engineers and scientists
[6]. A real technical problem is to develop an application
running under the regime of real-time, with a high temporal
resolution, in an environment which is not a native real-time
[7]. The adaptive multistep algorithm for catching up real-time
was applied to meet real-time requirements. The real-time
simulator allows to familiarize the user with the dynamics of
the processes, accustom the user with sense of real-time
relationships between the simulated values [8], [9]. Control
experiments can be performed, and their results observed.
Many examples of web-simulated plants can be found in
literature. The number of publications concerning real-time
simulation based on the network environment is considerably
smaller. The book [10] classifies the types of simulations
according to so-called rapid prototyping of the control system.
The simulation method described in this article can be
classified as 'Algorithm in the loop' or 'Software in the loop'
simulations, i.e. situations in which a controller is attached to
the plant model in the form of a control algorithm written in
any language or target software form. In the described
structure, it is possible (but not considered) to develop
software that will provide communication with the target
hardware control device (DCS, PLC) and thus provide the
most advanced 'Hardware in the loop' simulation structure.
Modern SCADA systems, for example InTouch Anywhere
[11] enable presenting and sharing simulated or real industrial
data from a plant in a browser window. They are rather
oriented to presenting synoptic screens as a website, but not as
simulation environments with real-time work control.

III. SIMULATION STRUCTURES

The article presents two structures for simulation. The first
one is distributed, shown in Fig. 1, requires at least two
separate units of computation, in which one plays the role of
the plant simulator and the other the control system and the
user interface. The second structure is centralized. One
computing unit is the plant simulator and control system. The
simulation and user interface management system are located
on the second unit. The distribution of roles in a distributed
structure enables to build a library of plants and place their

simulation models on very efficient machines, eg corporate or
university servers. Access to simulated plants and the
possibility of control is via client browsers. Communication
delays appears due to this structure which should be taken into
account in the simulation. The usefulness of this structure is
preserved when the transport delays together with the
calculation time on the server do not exceed the expected
simulation step. In this structure, the user's commands are read
in accordance with the current simulation status and the result
is presented on an ongoing basis. In a centralized structure,
there is no problem of transport delays between the plant and
the control system, but the user is notified of simulation results
with a delay and his commands are also applied to the plant
with a delay. Only the distributed structure will be presented
in detail.

Fig. 1. General structures of simulations.

IV. A RELATION BETWEEN THE QUALITY OF THE

SIMULATION AND THE LENGTH OF THE SIMULATION STEP AND

THE SIMULATION TIME

The main parameter of the real-time simulator is the
simulation step. The described distributed structure causes the
simulator code to be executed on efficient digital machines,
but communication delays should be taken into account. The
presented simulator is supposed to operate according to the
idea of SRT, i.e. there may be occasional exceedances of the
simulation time, but in the case of such a transgression, the
simulation monitoring mechanism is supposed to "catch up
time" by increasing the simulation step which may affect the
simulator's quality performance. Thus, the issue of the
relationship between the quality of simulation and the step of
simulation appears. As a measure of the quality of the
simulation, its compliance with the model simulation
implemented without the real-time regime was accepted.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Another important issue is the numerical stability of the
simulation and the inability to infinitely increase the step of
simulation. In this case, the maximum allowable simulation
step is entered to ensure correct calculation. The idea of
adaptive simulation step length is presented on fig. 2 where:
tb - time of basic calculations, to,k - calculation time in step k
which exceeds the base calculation time, t+,k - estimated time
needed to perform calculations, tnb,k - adaptively selected
calculation step, tno,k+1 - new calculation time enabling
synchronization in the future with the step of basic
calculations. Detailed information can be found in paper [9].

Fig. 2. Mechanism of catching up real time during simulation

V. SIMULATION SYSTEM

The most widely available technologies, allowing for real-
time data exchange using the browser are WebRTC and
WebSocket. The first one is P2P communication type, which
allows for a significant dispersion of communication and direct
communication between clients. It also natively takes into
account aspects of real-time communication, but it is not
supported by all browsers and incompatibility problems
between different browsers are reported. In addition, despite
the character of P2P, an additional server is most often used to
set up the connection in order to simplify the entire structure.
WebSocket, in turn, is more of a classic client-server
architecture, where it is easier to control two-way
communication, is easy to implement and have a wealth of
documented usage. From the scientific and engineering point
of view, it would be interesting to compare WebRTC and
WebSocket closely to the possibilities, ease of use and results
of communication delays. The authors plan such work in the
future. This article uses the WebSocket communication
technology paired with node.JS to prepare software
environment for the system. The developed system allows for
easy implementation of many simulation plants in JavaScript
and the extension with new functionalities depending on the
needs. Simulation calculations for selected plants are carried
out on an efficient computing unit that acts as a server. By
connecting to the simulation server directly using a web
browser, it is possible to use a prepared GUI that can be used
by users without advanced technical knowledge. Simulations
can be carried out in two modes. The first one is based on a
centralized structure, the second one with a distributed
structure. The basis for the operation of the distributed system
structure is the communication interface developed for the
purposes of the article with the use of socket.io events.
Individual events are distinguished into several groups related
to: connection set-up and disconnection, simulation

initialization, main simulation loop and user requests. After
connecting to the server, the user can obtain information about
available events and parameters of simulation plants, thanks to
which he can prepare his own interface and algorithms. Table I
presents the most important events of the developed interface
and fig. 3 presents general hardware-software structure of the
system.

TABLE I. MAIN SOCKET.IO EVENTS USED IN DEVELOPED
INTERFACE.

T
yp

e

Client

D
ir

ec
tio

n

Server

In
iti

al
iz

at
io

n
of

 c
on

ne
ct

io
n

Connecting to server:
socket.connect(“http://...”) 

On connection event:
socket.on(“connection” ,

function(data){…})
send welcoming message:

socket.emit(“welcome” , {data})
and information about available

plants and their properties:
socket.emit(“objects_info” , {data})

Display welcoming message
from:

socket.on(“welcome” ,
function(data){…})



Acquire information about
available plants:

socket.on(“objects_info” ,
function(data){…})



In
iti

al
iz

at
io

n
of

 s
im

ul
at

io
n Prepare simulation, set

required parameters (like
plant number, step-time etc.):

socket.emit(“set” , {data})



Calculate initial state of plant, set
default values of parameters from:

socket.on(“set” ,
function(data){…})

and send information of initial state
when all necessary operations are

done:
socket.emit(“set_done” , {data})

Prepare necessary input for
step of simulation (control

values, step time adaptation
etc.) based on initial data:

socket.on(“set_done” ,
function(data){…}) or

previous step data
and send processed data to
calculate next simulation

step:
socket.emit(“calculate” ,

{data})



Si
m

ul
at

io
n

M
ai

n
lo

op



Calculate step of simulation with
received data:

socket.on(“calculate” ,
function(data){…})

and send results:
socket.emit(“results” , {data})

Process and store results

from:
socket.on(“calculate” ,

function(data){…})
in temporal buffer



C
on

di
tio

na
l Send data from buffer for

archiving purposes:
socket.emit(“save” , {data})



Write to file acquired data from:
socket.on(“save” ,

function(data){…})

O
n

us
er

 r
eq

ue
st

Send command to prepare
archived data for download:
socket.emit(“download” ,

{data})



Receive command to prepare for for
download:

socket.on(“download” ,
function(data){…})

save leftover data, compress file
send link to prepared file:

socket.emit(“download_ready”,
{data})

Acquire link to file:
socket.on(“download_ready”

, function(data){…}) 

D
is

co
nn

ec
tio

n

Disconect from server:
socket.emit(“disconnect” ,

{data})


Disconnecting information:
socket.on(“disconnect” ,

function(data){…}), close
connection, remove unnecessary

data and files, free memory

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 3. Hardware-software implementation of distributed simulation stracture

VI. EXAMPLE SIMULATIONS IN SIMULATION SYSTEM

For the presentation purposes authors implemented two
plants in simulation framework and PID controller with
AntiWindup and DeadZones capabilities. The first considered
plant is a simple first order linear system (inertia). Second
plant is much more complex, represents basic principles of
nuclear reactor [12] and includes processes with varying
dynamics from very fast one (like neutron kinetics) to very
slow (like burning up nuclear fuel). Developed model [8][9] of
simulation plant is composed of 18 differential equations and
over 100 linear equations. Differential equations were
resolved using Runge-Kutta 4 order method. Simulator server
hardware-software platform was composed of: PC Class
Computer with i7 4790k CPU, 32 GB RAM and fast SSD
disk. As for the client units, there were 2 test units, one
smartphone, which was used only for monitoring simulations,
and one laptop, on which later were stored results of
simulation. Both unit were within the same local network but
accessed with different medium (laptop was using Ethernet
cable, smartphone Wi-Fi AC).
Tests included simulating both plants in control system loops
with PID. In case of reactor plant, from all the processes,
thermal power was chosen as controlled value. Both plants
were tested with prepared testing scenarios which were
composed of step changes in set points at specific times.
Simulations were performed with the use of prepared
WebBrowser GUI. It allowed for full control over simulation
process. All necessary simulation and controller parameters
were possible to change in form of inputting numerical values
in specific textboxes or using knobs. Prepared GUI allowed

for presenting real time trends of chosen simulated processes
values as well as simulation control values (delays,
communication times, step time etc.). Fig. 4 presents
developed GUI for operators, where is it possible to adjust
parameters of simulations and parameters of controllers.

Fig. 4. Developed GUI – control panel.

The values of selected process variables can be displayed for
the user in two different forms. One is simple display of
instantaneous values of the process variables, other one is
displaying registered values of the processes through
simulation in form of a trend. Fig. 5 presents an example of
time trends for relation between real and simulation time
(deviation from real time) and the response of simple plant
(inertia).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 5. Developed GUI – graphs.

Tests of both plants were conducted in distributed structure
mode with adaptive step length of simulation for real-time
operation with base step 10 ms. Both simulation results were
compared with reference data obtained from non real-time
simulation with fixed step 10 ms (for simple plant output was
simply Y(t) of first order plant, for reactor plant simulation
results present change of thermal power). Fig. 6 and 7 show
results of both simulations, simple plant and reactor plant
respectively. In each pair of trends top trend is showing results
of simulation at calculated simulation times, bottom one
obtained simulation results in real time.

Like mentioned before, difference in quality of results
between reference simulator and simulation system were
expected. Main reason for differences are occurring varying
delays in communications, which require compensation by
step adaptation (fig.8 presents observed communication delays
in one of performed simulations and their cumulative
distribution function). In case of very simple and fast plant the
difference is easily visible and can be quite big on short
periods of time, but average error of whole simulation in
comparison to reference data is small. In this case there wasn’t
much of difference in real-time execution and calculation time
of reference data.

Fig. 6. Simple plant simulation results.

Fig. 7. Reactor plant simulation results.

In case of much more complex reactor plant results also
showed differences, but the value of maximal observed error
was below 0.5% in comparison to reference value which is
acceptable. But what is clearly noticed is difference in
computation time. The time to calculate reference data took
more than three times more time than their simulation period
(clearly visible by comparing top and down trends in each
figure). Fig. 9 presents time differences observed in reactor
plant simulation between calculated simulation time and real
time. Table II presents calculated errors of simulations. D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Fig. 8. Reactor plant simulation varying delays of communication.

Fig. 9. Simulation times compared to real-time for different types of
simulations

TABLE II. OBSERVED ERRORS OF SIMULATIONS IN TEST
SCENARIOS

 Simple plant Reactor plant
Maximal instantaneous error 57% 0.42%

Average of relative errors 1.79% 0.07%

VII. CONCLUSIONS

The real-time simulation system based on network solutions
and a web browser open up new possibilities for presentation,
education and popularization. The clear, functional interface
between simulated plant and controller was introduced. The
software-in-the-loop scheme allows to set up almost any
combination of real-time control system with a simulated in
the server plant model. The simulated schema presented in the

paper has many advantages: accessibility across the Internet,
availability on any hardware and an operating system, free
software, open programming, simulation flexibility, scalability
and the ability to build an arbitrary a user interface. A
functional example of the application of this structure has been
demonstrated in the article. The example of an extremely
time-sensitive plant that is a nuclear reactor was introduced.
Control effects are graphed in browser windows similar to
those from simulation packages or HMI applications. The
obtained results were consistent with those obtained in the
classic simulation software which confirms the correctness of
the implementation. WebRTC technology with the possibility
of managing communication delays will certainly be the
subject of future work in this field.

ACKNOWLEDGEMENTS

The research work was done under grant Polish MNiSW
8902/E-359/M/2016: Young Researcher Support Program.
The authors wish to express their thanks for support.

REFERENCES

[1] G.C. Goodwin, A.M. Medioli, W. Sher, L.B. Vlacic, and J.S. Welsh,

“Emulation-Based Virtual Laboratories: A Low-Cost Alternative to
Physical Experiments in Control Engineering Education.”, IEEE
Transactions on Education, vol. 54, no. 1, pp. 48 - 55, February 2011

[2] Ch. Dufour, C. Andrade, J. Bélanger, “Real-Time Simulation
Technologies in Education: a Link to Modern Engineering Methods and
Practices”, Proceedings of the 11th International Conference on
Engineering and Technology Education INTERTECH 2010 Ilhéus,
Bahia, Brazil, 2010

[3] K. Popovici, P.J. Mosterman (Eds.), Real-time simulation technologies:
principles, methodologies, and applications., CRC Press, 2012

[4] J. Byrne, C. Heavey, P.J. Byrne, “A review of Web-based simulation
and supporting tools”, Simulation Modelling Practice and Theory, vol.
18, no. 3, pp. 253-276, Elsevier, March 2010

[5] S.M. Kuo, B.H. Lee, W. Tian, Real-Time Digital Signal Processing:
Implementations and Applications, John Wiley & Sons, Ltd, 2006

[6] G. Carlucci , L. De Cicco , S. Holmer , S. Mascolo, “Congestion Control
for Web Real-Time Communication”, IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 2629-2642, June 2017

[7] J. Tarnawski, T. Karla, “Real-time simulation in non real-time
environment”, 2016 21st International Conference on Methods and
Models in Automation and Robotics (MMAR), pp. 577-582, IEEE,
September 2016

[8] T. Karla, J. Tarnawski, K. Duzinkiewicz, “Cross-Platform Real-Time
Nuclear Reactor Basic Principle Simulator”, 20th International
Conference on Methods and Models in Automation and Robotics
(MMAR), pp.1074-1079, IEEE, August 2015

[9] D. Juszczuk, J. Tarnawski, T. Karla, K. Duzinkiewicz, “Real-Time Basic
Principles Nuclear Reactor Simulator Based on Client-Server Network
Architecture with WebBrowser as User Interface”, Trends in Advanced
Intelligent Control, Optimization and Automation, pp. 344-353,
Springer, 2017

[10] J. Eickhoff, Simulating Spacecraft Systems, Springer, 2009

[11] Wonderware InTouch Access Anywhere User Guide, access 25.02.2018
https://www.logic-
control.com/datasheets/1/InTouch/ITAA_UserManual.pdf

[12] Y. Oka, K. Suzuki, Nuclear Reactor Kinetics and Plant Control,
Springer, 2013

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

