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Abstract: This study proposes an example of a wireless charging station design for a small-scale
vehicle available on the market. The article analyzes basic transmitter inverter topologies and their
compensation methods in terms of flexibility of control, tolerance to uncertainty in positioning, and
the possibility of decreasing the integration price. Our comprehensive analysis focuses on the battery
voltage range, energy capacity, cost, and travel distance. We evaluate the constraints of efficiency,
transmitted power, amount of used material, and size of the energy delivery system based on our
design example. The aim is to increase the penetration of wireless technology in terms of convenience
and integration capabilities.
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1. Introduction

Wireless power transfer (WPT) technology provides an alternative method of energy
transmission without cords and the corresponding limitations [1–4]. The technology
provides high convenience and increased safety, which makes it beneficial for further
integration in automotive and consumer electronics. However, to integrate the technology,
we need a comprehensive analysis of such systems in terms of efficiency, safety, integration
cost, etc. Understanding the challenges and limitations will lead to the possibility of
extracting the full potential of this energy delivery technology.

The variety of utilization is wide. Such technologies can also be used in medical
applications [5,6]. WPT proposes revolutionary methods of medical implant integration
and utilization. One of them is pacemaker charging, where the pacemaker can be recharged
in a non-invasive way without any damage to the human body. Another application is
wheelchair charging, which makes it more convenient for people with physical limitations
to use such equipment without the necessity to connect a wheechair via wired connection
for battery recharging.

The widespread integration of WPT technology requires careful consideration of
various aspects and tradeoffs [7–12]. The first concern comes from the nature of WPT
technology, which implies a gap between the receiver and the transmitter (usually the air
gap) [13]. This distance causes losses in efficiency, and with an increase in the distance,
the efficiency continues to fall [14,15]. Additionally, any objects situated near the power
transmission path can also influence the efficiency. In addition to efficiency degradation,
depending on the material, these objects can be heated by the transmitted energy (caused
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by eddy currents in metal, etc.). In this case, additional foreign object detection units
should be integrated in order to not damage the energy transmission system and omit any
dangerous results.

Another concern is exposure to the electromagnetic field, which can influence humans
or animals. As scooters operate at comparably low power ratings (hundreds of watts) and
with a relatively small distance between the primary and the secondary side, the influence
of the electromagnetic field is relatively small.

Nevertheless, in a very general case, the influence of the human body should be
carefully analyzed in the case of a human body with medical implants [16–18]. To decrease
the effects of the electromagnetic field on the human body and implanted medical devices,
additional passive or active methods of shielding are applied. In simple solutions, addi-
tional metal shields or pot cores are used to concentrate the field and to omit leakage of the
field, and they are strongly concentrated between the transmitter and the receiver coils.

Another point is providing compatibility with existing wired and non-wired infras-
tructure in terms of various standards, which makes widespread adoption of the technology
challenging. The standards of wireless energy transmission [19–22] and interoperability
must be comprehensively analyzed in order to be deployed in everyday usage. Also, for
a particular group of applications, there are ranges and frequency groups that are stan-
dardized. The operating frequency for the wireless charging of light-duty electric vehicles
is 81–90.00 kHz, which is regulated by the Society of Automotive Engineers (SAE) Task
Force’s J2954 standard. It is recommended to set it to 85 kHz for electric vehicle (EV)
applications [9].

Despite these limitations, the technology of wireless charging is becoming more
popular. With the development of new materials, some of the limitations have disappeared
(like inverter operation frequency limitations caused by metal shields composed of metal
plates instead of the currently used ferromagnetic materials), which has opened up new
possibilities for research in the last few decades.

In the conditions of increased urbanization, today’s research into the application fields
has proposed optimistic outcomes in terms of investments covering the wireless charging
of small-scale vehicles like scooters, electric bicycles, etc.

A common diagram of such an infrastructure is shown in Figure 1. The transmitter
(blue color) rectifies the grid voltage via utilization of a high-frequency inverter, and the
transmitter delivers energy to the receiver coil. This high-frequency energy is rectified to
charge the battery of the vehicle.
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Figure 1. Schematic diagram of energy flow in the case of a WPT application.

The technology of WPT is well established and has been tested for high-power ap-
plications [23–26], but the economic aspect is a bottleneck for mass implementation and
should be taken into careful consideration. One of the main points is the costs related to
WPT infrastructure development.

The purpose of this paper is to analyze the possibility of integrating WPT technology
into scooters based on the case study analysis. Our focus is on the optimal design and the
limitations of inductive coupling technology as well as on the possible solutions that can
be applied to make the technology of WPT viable and competitive against conventional
wired charging solutions.
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2. Topology and Selection of the Compensation Method

To select a proper converter topology along with the compensation circuit, we need the
scooter parameters. For this purpose, solutions of scooters available on the current (2024)
market were analyzed statistically to evaluate the preferred parameters of the solution
that would be competitive in the near future and can be used as an object of wireless
power transfer technology integration. In our analysis, we used a freely available dataset
“https://freshlycharged.com/” (accessed on 20 May 2024) of available solutions, which
contains more than 500 solutions operating in various domains.

Figure 2a shows the number of solutions for the main operating voltages of the
batteries (a few solutions with an operating voltage differing from those listed are not
shown, as only one to three solutions of a particular voltage are available currently). As can
be seen, the main interest (in terms of the number of available solutions) is in the solutions
at the operating voltages of 36, 48, and 60 V.

The outdoor usage of the vehicles and limited space for battery integration provides a
list of constraints. The first constraint is the operating voltage. Outdoor operation makes
it impossible to perform any operation at a high voltage rating due to safety constraints,
which is a concern in places with high humidity and mechanical interactions.

The second limitation is the size of the battery. In order to be competitive in terms of
convenience, the tradeoff between the battery capacity (and corresponding size) and the
distance that can be covered by one battery charge should be found (Figure 2b). Under these
considerations, available solutions can be divided into two domains: compact solutions
with middle traveling distance capacity and bulky solutions with high traveling distance
capacity. Solutions in the first domain are convenient for use in a city where the demand on
the travel distance capacity is mostly covered by 20–40 km on one charge. These solutions
are mostly covered by operating voltages of 36 and 48 V. Solutions in the second domain
are convenient for use on terrain where the vehicles can be equipped with big wheels and
have a travel distance demand of at least 30 km. These solutions need operating voltages
of 60 and 72 V.

The statements above can be further verified by the analysis of battery charge (Figure 2c)
and battery capacity (Figure 2d). For this purpose, the probability density was built for
this parameter for each of the main battery operating voltages. It can be seen that low-
voltage solutions are equipped with batteries of low capacity (a few hundred Wh), while
high-voltage solutions (related to the distribution of current solutions) are equipped with
battery capacities of up to thousands of Wh.

It should also be pointed out that with the increase in distance and operating voltage,
the price of the scooter drastically increases (Figure 2e). For better representation of this
steep relationship, the scale for the price was chosen to be logarithmic. As can be seen, the
price of the scooter can reach nearly USD 10,000.

For clarity, in the analysis of the scooter design in terms of cost, the price of the scooter
per distance and energy per distance was determined (Figure 2f). The x axis denotes the
amount of money from the price of the scooter spent to obtain 1 km of travel distance. This
criterion shows the level of optimization achieved to make a cheap solution with a long
travel distance.

On the other hand, as the battery energy is proportional to the price of a charged
battery with a constant tariff, there is a possibility to use the scooter energy and the
maximum travel distance to estimate how efficiently the energy (and, correspondingly, the
money during each charge) is used. The only omission in this analysis is related to the lack
of information about the scooter charging stations. Thus, the efficiency of the charging
station attached to each scooter was chosen to be the same.

The scatter plot of all solutions shows that the most optimized scooter designs in terms
of scooter price per kilometer operate with voltages of 36 and 48 V, while the worst scooter
optimization in terms of this criterion are scooters at the operating voltages of 72 and 84 V.
The best solution in terms of energy (charging cost) per distance is at the operating voltage
of 36 V.
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Figure 2. Analysis of scooter solutions: battery voltage distribution (a), relation between battery
energy and distance (b), probability density of battery charge (c), probability density of battery
energy (d), distance as a function of price (e), price-related scooter optimization analysis (f).

Unfortunately, the dataset lacks information about the battery type and corresponding
charging operation parameters (charging type, charging power). A few solutions were
further investigated in terms of battery type and other related parameters. Table 1 shows
the summary of the parameters of the popular wireless scooter charging solutions currently
available on the market. As can be seen, in the popular solutions in the range of 36–48 V,
the charging power varies from 50 to 100 W (average 90 W). The charging time varies in
the range of 5–10 h, with an average of 7.5 h.
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Table 1. Overview of the existing scooters on the market.

Scooter Battery
Voltage (V)

Battery
Charge (Ah)

Battery
Capacity

(Wh)

Maximum
Charging

Power (W)

Charging
Time (h)

Nominal
Range (km)

Kugoo M4 Pro 18 Ah 48 18 864 101.64 8.5 53
Ninebot KickScooter Max G30 II 36 15 540 90 6 65
Xiaomi Mi Electric Scooter 4 Pro 36 12.4 446.4 49.6 9 55

Xiaomi Mi Electric Scooter 3 36 7.65 275.4 50.07 5.5 30
Hator Model Pro 48 15.6 748.8 106.97 7 80

Kugoo G1 48 18.2 873.6 109.2 8 70
Kugoo Kirin M4 Pro 48 18 864 108 8 65

Ruptor R1 48 20 960 96 10 80
Ninebot KickScooter MAX G2 E 36 15.3 550.8 91.8 6 70

Average - 15.57 680 89 7.56 63

Considering these aspects, the results of the available commercial and non-commercial
solutions and scooter charging stations in cities as the main interest for a wireless power
transfer technology indicate that the battery voltage range for most scooters varies in the
range of 36–48 V. Regarding the constraints concerning a decrease in the battery lifetime
related to charging at high power ratings, the maximum charging power should not exceed
500 W. As 36 V batteries are commonly charged at ratings of hundreds of W and any
increase in the charging power can cause battery lifetime decrease concerns, it can be stated
that the delivery of 100 W of wireless power transfer energy seems to be a reasonable
tradeoff. It covers most of the existing low-power scooters while keeping the charging
speed comparably equivalent to conventional contact charging.

WPT technology, particularly inductive coupling technology, utilizes a high diver-
sity of inverter topologies and types of compensation to satisfy the chosen application
requirements.

To increase the power transfer capabilities of inductive coupling technology and the
overall system efficiency, the coupled coils are compensated by the reactive elements or a
combination (usually single capacitors). These capacitors are tuned to work at resonance
with the coupled coils at the inverter switching frequency. Compensation capacitors can
be connected in series or in parallel with each of the coupled coils. For the case of a
single transmitter and a single receiver, there are four solutions: SS (series–series), SP
(series–parallel), PS (parallel–series), and PP (parallel–parallel).

The most popular compensation methods are SS and SP. The SS type of compensation
is preferable, as in this case, the compensation system remains in resonance for the cases
of the variable coupling coefficient (Figure 3). This enables resonance to be maintained
even at valuable air gap variation. The drawback of this topology is that voltage gain
is strongly related to the coupling coefficient (Figure 3d), which leads to the necessity of
a control output voltage. As can be seen in Figure 3c, the operation at a low coupling
coefficient yields a high level of loss. The output gain is also influenced by operating at a
proper switching frequency to obtain maximum power delivery capabilities (Figure 3a,b).
Nevertheless, this also can be utilized to control the output parameters.

On the other hand, the SP type of compensation provides the possibility to maintain
a constant output voltage. However, the compensation capabilities of this topology are
limited by the coupling coefficient depending on the reflected impedance. This means that
the system in this case should be tuned to the particular coupling coefficient (air gap), and
any variation of these parameters would cause deviation from the resonance operation,
which would cause a decrease in the output power rating and efficiency.
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This means that in most of the reported solutions for vehicle charging based on WPT,
SS compensation is used due to its ability to work with variable coupling.

The second element to be chosen is the high-frequency inverter topology. Some of the
topologies used in WPT are shown in Figure 4.

The conventional solution based on a full-bridge inverter is shown in Figure 4a. The
advantage of this topology is high tuning simplicity and the possibility to implement
various types of control (duty cycle, frequency, etc.). The topology in Figure 4c extends
the conventional solution by involving the Z-source network before the switching com-
ponents [27]. The Z-source network provides the topology with boost possibilities and
increases reliability, as this topology does not suffer from the misalignment effect (where
noise on transistor control signals can cause simultaneous opening of the transistor and
shorting of the circuit).

The topology depicted in Figure 4d has the same capabilities. In this case, the Z-source
network covers all transmitter tasks by utilizing only one controlled element [28–30]. Such
topology has two transmitting coils, which enables an increase in the tolerance of the
displacement of the receiver. However, the system operates solely in a shoot-through mode,
which limits the possibilities to apply different control techniques. One of the methods to
control the topology is to use pulse skipping control, which leads to concerns regarding
the input and output parameter stability and the complexity of the output value filtering.
Additionally, there is only one controlled component that does not enable separate control
of each of the transmitters. Separate control of each transmitter can be implemented by
the utilization of E-class converters (Figure 4b). This provides the possibility to turn off
one of the transmitters when the level of displacement is too high. The drawback of this
topology is in the large number of reactive components and the complexity of tuning. The
main parameters of the listed topologies are compared in Table 2.
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(d), spider plot of the constraints and limitations of circuits (e).

To perform a visual comparison between the constraints and limitations of the listed
circuits, the list of criteria was composed as a spider plot (Figure 4e). The parameters were
scaled where the minimal values showed the worst solutions or solutions with limited
capabilities of the chosen criteria; conversely, the solutions with better capabilities had the
maximum value. The analysis involved additional parameters not listed in Table 2.

The priority of each criterion is strongly dependent on the particular application. In
further analysis, only the main parameters were taken into account as the basis to choose
the topology. As the wireless charging system for a scooter operates at a fixed voltage,
boost capabilities were not necessary.
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Table 2. Comparison of inverter topologies.

Topology Figure 4a Figure 4b Figure 4c Figure 4d

Transmitter count 1 1 2 2
Tuning simplicity High Low Low Low

Semiconductor components 4 2 5 2
Switching components 4 2 4 1
Reactive components 4 12 8 6

Boost capabilities No Yes Yes
Controllability High High High Low

Shoot-through capabilities No Yes Yes Yes

Additionally, as further analysis mostly concentrated on the wirelessly coupled coils,
the conventional solution (Figure 4a) was chosen. In this case, the tuning operation is the
simplest, as the circuit operates with the minimum number of reactive components and
consequently the lowest cost.

3. Analysis of Coil Design Constraints

Taking into account data from Table 1, we can specify the required parameters of the
wireless charging station. As a multichannel charging station was considered with a target
battery voltage not higher than 48 V, it was reasonable to design a single 48 V DC bus
for supply. In this case, the most effective SS compensation approach was applied. The
nominal switching frequency was selected to be equal to 85 kHz. According to these data,
the nominal required mutual inductance to provide the desired 100 W per channel can be
estimated from the load matching factor [14]:

γ =
RL,eq

ω0L2
, (1)

where the equivalent load can be estimated from the DC output voltage and power recalcu-
lated to the first harmonic:

RL,eq =
π2

8

V2
2,dc

P2
. (2)

As Q values of coils are high in the case of SS compensation, the mutual inductance
can be calculated as follows:

M =
π2

8

V2
2,dc

P2

1
ω0L2

√
L1 · L2 (3)

Based on these values, we can analyze the geometry of the coils. To analyze the
limitations of coil design, a general FEM model with a high level of parameterization was
developed. The simulations were performed in ANSYS MAXWELL 2021 (Figure 5). The
electrical parameters were simulated by the first harmonic approximation model [31] using
the Symbolical Math Toolbox in MATLAB R2022a.

The transmitter and receiver coil parameters were chosen to be the same. The same is
true for the ferrite shielding dimensions, which remained the same for all of the solutions
and defined coil sizes.

To analyze how the air gap between the receiver and the transmitter coil influences
the output power and the system efficiency, we performed simulations on a set of solutions
(Figure 6). Air gaps of 10, 20, 30, 40, and 50 mm were simulated. Additionally, the variation
in turn counts and wire diameter was included for each air gap. Each of the solutions was
set to occupy the same coil area. The equivalent output load was tuned to work at 48 V of
DC voltage.
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The simulation results show that low levels of coupling coefficient (big air gap) enabled
higher power rates to be transmitted than the high-coupling coefficients (small air gap).
This was caused by the unloaded transmitter. On the other hand, such solutions yielded
low levels of efficiency, which would gradually limit its application in real applications.

Also, it should be noted that in the solutions with big air gaps, the coupling coefficient
was not gradually influenced by parameters like turn count and wire diameter.

In order to analyze the influence of the occupied coil space on the coupling coefficient,
a simulation for a fixed air gap of 30 mm was performed (Figure 7). The area was calculated
as coil width by coil length, which means that blank ferrite on the corners was also added
to the coil space.

The simulation results show that the coupling coefficient was fully defined by the
geometrical size of the coils and was not gradually influenced by the coil turns. This
means that solutions with 45 and 7 turns, as shown in Figure 7a, would have the same
coupling coefficient if they occupy the same area. On the other hand, coil inductance would
be influenced by the coil turns, as shown in Figure 7b. The same would be true for the
coil resistance.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2024, 17, 2472 10 of 15

Energies 2024, 17, x FOR PEER REVIEW 10 of 15 
 

 

In order to analyze the influence of the occupied coil space on the coupling 

coefficient, a simulation for a fixed air gap of 30 mm was performed (Figure 7). The area 

was calculated as coil width by coil length, which means that blank ferrite on the corners 

was also added to the coil space. 

The simulation results show that the coupling coefficient was fully defined by the 

geometrical size of the coils and was not gradually influenced by the coil turns. This means 

that solutions with 45 and 7 turns, as shown in Figure 7a, would have the same coupling 

coefficient if they occupy the same area. On the other hand, coil inductance would be 

influenced by the coil turns, as shown in Figure 7b. The same would be true for the coil 

resistance. 

 

Figure 7. Simulation of different coil sizes: occupied coil area S (a); coil inductance L (b). 

The solutions with the maximum occupied area and comparably the same coupling 

coefficient were further simulated for different wire radiuses. This provided a set of 

solutions with the same air gap, coupling coefficient (5% deviation), and output voltage. 

These solutions were analyzed in terms of volume-related power density (Figure 8). 

The simulation results are shown below. The Pareto front shows that the best solutions in 

terms of a tradeoff between the efficiency and the volume-related power density could be 

obtained for a big step between the turns and the big diameter of the wire. 

 

Figure 8. Volume-related power density. 

  

Figure 7. Simulation of different coil sizes: occupied coil area S (a); coil inductance L (b).

The solutions with the maximum occupied area and comparably the same coupling
coefficient were further simulated for different wire radiuses. This provided a set of
solutions with the same air gap, coupling coefficient (5% deviation), and output voltage.

These solutions were analyzed in terms of volume-related power density (Figure 8).
The simulation results are shown below. The Pareto front shows that the best solutions in
terms of a tradeoff between the efficiency and the volume-related power density could be
obtained for a big step between the turns and the big diameter of the wire.
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4. Experimental Verification

From the simulation results, we conclude that varying coupling coefficients lead to
significant size redundancy. In simple terms, in order to provide the same charging power,
the mutual inductance between the coils has to be the same, and in case of significant
misalignment or distance increase, the size of coils has to be very large. This makes this
solution not feasible against conventional wired charging solutions.

At the same time, if misalignment is absent, the size is obviously redundant, and
in order to decrease power, switching frequency control has to be applied. This means
that in order to provide a cost-effective charging station, the misalignment has to be
minimized. In this case, the single-coil solution with a simple H-bridge is considered to be
the optimal solution.

The prototype of the scooter charging station is shown in Figure 9. The scooter is fixed
on a special ramp with the transmission system. The height of the ramp decreases the
air gap between the receiver and the transmitter. This ramp also works as a front wheel
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holder to fix the scooter and perfectly align the receiver and the transmitter to exclude any
energy losses.
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Figure 9. Prototype of a scooter charging station.

Such a construction allows for minimal distance to be maintained and the impact of
misalignment to be minimized. Also, one of the main aspects of such a system is that it
will mostly work outside, where the influence of different factors can cause component
parameter degradation. The designed docking station has a waterproof concept that
minimizes the influence of these factors.

Figure 10 shows the experimental setup. It shows a general view of the experimental
tests (Figure 10a), when oscillograms and efficiency were measured. Also, it shows the
coils (Figure 10b) and the battery simulator (Figure 10c) used during testing and tuning.
Figure 10 summarizes the details of the experimental verification.
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Figure 11a shows the structure of the developed experimental prototype of the scooter
charger. The cost and feasibility of the concept were the priority in the design procedure.
A very simple closed-loop control was carried out. The control itself is based on the ESP-
WROOM-32 unit, which provides measurement sensing, switching of semiconductors, and
communication with an external control source via Wi-Fi. At the same time, indirect output
voltage control is needed and implemented if the receiver is not responding. This is carried
out via input current and voltage measurement by a simple resistor divider for voltage and
shunt resistor RSH, which are also used for output and input power control.
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Table 3 shows the component list and specifications. The primary-side PCB (transceiver)
has a control unit, a cheap non-isolated multichannel driver, and Si transistors. Also, there
are ceramic capacitors that play the role of a resonance capacitor and input DC link. An
auxiliary supply is provided via simple non-isolated cheap and external inductors.

Table 3. Components of the wireless charging station.

Parameter Value

BUK9K29-100E Primary-side transistors: 100 V, 30 A, 25 mOhms
PMEG10020ELRX Secondary-side diodes: 100 V, 2 A

LCT7063 Primary-side non-isolated drivers
ESP-WROOM-32 Control and communication unit

BUK9K29-100E transistors were used with a maximum drain current of 30 A, a maxi-
mum drain-to-source voltage of 100 V, and a drain-to-source resistance at 25 ◦C, equal to
25 mOhm. The transistors have low thermal resistance in a small package. The transistors
are located at the bottom of the PCB without additional radiators.

Figure 11b,c demonstrate the efficiency and thermal study. It can be seen that the
hottest temperature corresponds to the secondary-side PCB and, in particular, to the diodes.
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At the same time, the transformer coils are the coldest elements in the power path. This
means that this solution has a significant reserve in terms of possible maximum power
increase. All the measurement results were obtained by voltage probes Tektronix TPA-BNC,
current probes Tektronix TCP0150, and the digital oscilloscope Tektronix MDO4034B-3.
For testing different voltage levels and operating points, a Chroma 62150H-1000S power
supply was used.

Figure 11b shows loss distribution at 130 W transmitted power, where Pl—losses
in coils, Poss—switching losses in primary-side transistors, Pcond—conduction losses in
primary-side transistors, Pdiode—diode losses, and Pauxiliary—losses in auxiliary supply
(maximum consumption during communication).

It can be concluded that the experimental efficiency reached around 95%, which
is a significant result, taking into account that cost is a design priority and losses in
auxiliary supply are unavoidable. Figure 12 demonstrates the experimental waveform
of the presented solution of the primary and secondary sides. The very first picture
(Figure 12a) shows the idle operation mode when the scooter is removed and pure reactive
power is observed. After several seconds of scooter absence, the control system switches
the transistors off in order to avoid energy loss. During the experiment, the maximum
transmitted power was 130 W under the operating frequency of 85 kHz. This corresponds to
Figure 12b, which shows the primary and secondary coil voltage/current, and to Figure 12c,
where the battery voltage and current are shown.
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5. Conclusions

This paper presented a case study design example of a wireless charging system for
an electric scooter. To study the possible system operation and implementation, first, a very
general scenario of wireless charging stations for scooters was composed. It is shown that
varying coupling coefficients leads to significant size redundancy of the coils, which in turn
leads to additional conduction losses in the coils. Due to the necessity of using litz wire,
cost issues arise as well.

As a result, after analytical evaluation, a simple charging system is proposed based
on a special ramp with a hole for the front wheel. This decreases the air gap between the
receiver and the transmitter, which in turn provides the opportunity to decrease the size of
the coils, the loss, and the primary cost of the device.

Although wireless charging is a well-known and well-studied topic, it is widely imple-
mented only for very low power. This study may provide a push for further promotion
and implementation of the technology for light-vehicle wireless charging systems.
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