Załącznik nr 1/1

WYDZIAŁ INŻYNIERII MECHANICZNEJ I OKRĘTOWNICTWA

Imię i nazwisko autora rozprawy: Maciej Gniot Dyscyplina naukowa: Inżynieria Mechaniczna

ROZPRAWA DOKTORSKA

Tytuł rozprawy w języku polskim: Wpływ parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych

Tytuł rozprawy w języku angielskim: The influence of dosing parameters of forced abrasive suspension on the effects of lapping single-disc surfaces of flat ceramic elements

Promotor	Drugi promotor
podpis	podpis
prof. dr hab. inż. Adam Barylski	<tytuł, i="" imię="" nazwisko="" stopień,=""></tytuł,>
Promotor pomocniczy	Kopromotor
podpis	podpis
<stopień, i="" imię="" nazwisko=""></stopień,>	<tytuł, i="" imię="" nazwisko="" stopień,=""></tytuł,>

Gdańsk, rok 2021

The author of the PhD dissertation: Maciej Gniot Scientific discipline: Mechanical Engineering

DOCTORAL DISSERTATION

Title of PhD dissertation: The influence of dosing parameters of forced abrasive suspension on the effects of lapping single-disc surfaces of flat ceramic elements

Title of PhD dissertation (in Polish): Wpływ parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych

Supervisor	Second supervisor
signature	signature
prof. dr hab. inż. Adam Barylski	<title, and="" degree,="" first="" name="" surname=""></title,>
Auxiliary supervisor	Cosupervisor
signature	signature
<title, and="" degree,="" first="" name="" surname=""></title,>	<title, and="" degree,="" first="" name="" surname=""></title,>

Gdańsk, year 2021

OŚWIADCZENIE

Autor rozprawy doktorskiej: Maciej Gniot

Ja, niżej podpisany(a), wyrażam zgodę na bezpłatne korzystanie z mojej rozprawy doktorskiej zatytułowanej:

Wpływ parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych do celów naukowych lub dydaktycznych.¹

Gdańsk, dnia

podpis doktoranta

Świadomy(a) odpowiedzialności karnej z tytułu naruszenia przepisów ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz. U. z 2006 r., nr 90, poz. 631) i konsekwencji dyscyplinarnych określonych w ustawie Prawo o szkolnictwie wyższym (Dz. U. z 2012 r., poz. 572 z późn. zm.),² a także odpowiedzialności cywilno-prawnej oświadczam, że przedkładana rozprawa doktorska została napisana przeze mnie samodzielnie.

Oświadczam, że treść rozprawy opracowana została na podstawie wyników badań prowadzonych pod kierunkiem i w ścisłej współpracy z promotorem <promotor>, drugim promotorem <drugi promotor>, promotorem pomocniczym <promotor pomocniczy>, kopromotorem <kopromotor>*.

Niniejsza rozprawa doktorska nie była wcześniej podstawą żadnej innej urzędowej procedury związanej z nadaniem stopnia doktora.

Wszystkie informacje umieszczone w ww. rozprawie uzyskane ze źródeł pisanych i elektronicznych, zostały udokumentowane w wykazie literatury odpowiednimi odnośnikami zgodnie z art. 34 ustawy o prawie autorskim i prawach pokrewnych.

Potwierdzam zgodność niniejszej wersji pracy doktorskiej z załączoną wersją elektroniczną.

Gdańsk, dnia

podpis doktoranta

Ja, niżej podpisany(a), wyrażam zgodę na umieszczenie ww. rozprawy doktorskiej w wersji elektronicznej w otwartym, cyfrowym repozytorium instytucjonalnym Politechniki Gdańskiej, Pomorskiej Bibliotece Cyfrowej oraz poddawania jej procesom weryfikacji i ochrony przed przywłaszczaniem jej autorstwa.

Gdańsk, dnia

podpis doktoranta

*) niepotrzebne skreślić

¹ Zarządzenie Rektora Politechniki Gdańskiej nr 34/2009 z 9 listopada 2009 r., załącznik nr 8 do instrukcji archiwalnej PG.

² Ustawa z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym: Rozdział 7 Odpowiedzialność dyscyplinarna doktorantów, Art. 226.

STATEMENT

The author of the PhD dissertation: Maciej Gniot

I, the undersigned, agree that my PhD dissertation entitled: The influence of dosing parameters of forced abrasive suspension on the effects of lapping singledisc surfaces of flat ceramic elements

may be used for scientific or didactic purposes.¹

Gdańsk,....

signature of the PhD student

Aware of criminal liability for violations of the Act of 4th February 1994 on Copyright and Related Rights (Journal of Laws 2006, No. 90, item 631) and disciplinary actions set out in the Law on Higher Education (Journal of Laws 2012, item 572 with later amendments),² as well as civil liability, I declare, that the submitted PhD dissertation is my own work.

I declare, that the submitted PhD dissertation is my own work performed under and in cooperation with the supervision of <name of the supervisor>, the second supervision of <name of the second supervisor>, the auxiliary supervision of <name of the auxiliary supervisor>, the cosupervision of <name of the cosupervisor>*.

This submitted PhD dissertation has never before been the basis of an official procedure associated with the awarding of a PhD degree.

All the information contained in the above thesis which is derived from written and electronic sources is documented in a list of relevant literature in accordance with art. 34 of the Copyright and Related Rights Act.

I confirm that this PhD dissertation is identical to the attached electronic version.

Gdańsk,....

signature of the PhD student

I, the undersigned, agree to include an electronic version of the above PhD dissertation in the open, institutional, digital repository of Gdańsk University of Technology, Pomeranian Digital Library, and for it to be submitted to the processes of verification and protection against misappropriation of authorship.

Gdańsk,.....

signature of the PhD student

*) delete where appropriate.

¹ Decree of Rector of Gdansk University of Technology No. 34/2009 of 9th November 2009, TUG archive instruction addendum No. 8.

² Act of 27th July 2005, Law on Higher Education: Chapter 7, Criminal responsibility of PhD students, Article 226.

I OKRĘTOWNICTWA

OPIS ROZPRAWY DOKTORSKIEJ

Autor rozprawy doktorskiej: Maciej Gniot

Tytuł rozprawy doktorskiej w języku polskim: Wpływ parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych

Tytuł rozprawy w języku angielskim: The influence of dosing parameters of forced abrasive suspension on the effects of lapping single-disc surfaces of flat ceramic elements

Język rozprawy doktorskiej: polski

Promotor rozprawy doktorskiej: prof. dr hab. inż. Adam Barylski

Drugi promotor rozprawy doktorskiej*: <imię, nazwisko>

Promotor pomocniczy rozprawy doktorskiej*: <imię, nazwisko>

Kopromotor rozprawy doktorskiej*: <imię, nazwisko>

Data obrony:

Słowa kluczowe rozprawy doktorskiej w języku polski: obróbka ścierna, docieranie jednotarczowe, kinematyka docierania, dawkowanie zawiesiny ściernej, optymalizacja parametrów dawkowania

Słowa kluczowe rozprawy doktorskiej w języku angielskim: abrasive machining, single-disc lapping, lapping kinematics, dosage, of abrasive suspended optimization of dosage parameters

Streszczenie rozprawy w języku polskim: Przedmiotem rozprawy doktorskiej jest analiza wpływu parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych. W pierwszej części pracy opisano proces docierania elementów na docierarkach jednotarczowych. Opisano rolę ziaren ściernych i mechanizm procesu docierania elementów ceramicznych AL₂O₃ na docierarkach jednotarczowych. Dokonano również przeglądu materiałów ściernych stosowanych w przemyśle. Przeanalizowano różne metody dawkowania substancji ściernych. Przeprowadzono przegląd dostępnych na rynku nowoczesnych urządzeń do docierania jednotarczowego. Dokonano również analizy literatury i opracowań branżowych. W kolejnej części rozprawy opracowano model matematyczny opisujący wpływ wybranych czynników wpływających na ubytek masowy i ubytek liniowy docieranych elementów ceramicznych. W dalszej części pracy opisano stanowisko badawcze z wymuszonym systemem dawkowania zawiesiny ściernej. Następnie otrzymane wyniki empiryczne poddano analizie statystycznej. Określono poziom istotności statystycznej wybranych czynników. Przeanalizowano na podstawie modelu matematycznego przebieg zmienności równania regresji ubytku liniowego. Na tej podstawie określono wartości minimalne i maksymalne dawkowania i przeprowadzono optymalizację. Określono wartość parametrów wejściowych, które zapewnią optymalny ubytek liniowy dla zadanych czynników wejściowych. W pracy przeprowadzono również analizę korelacji wybranych parametrów chropowatości powierzchni po docieraniu.

WYDZIA INŻYNIERII MECHANICZNEJ I OKRĘTOWNICTWA

Streszczenie rozprawy w języku angielskim: The subject of the doctoral dissertation is an analysis of the effect of the dosage parameters of forced abrasive suspension on the effects of lapping the single-disc surface of flat ceramic elements. The first part of the work describes the process of lapping elements on single-sided reaches. Describes the role of abrasive grains and the mechanism of the process of lapping ceramic elements AL₂O₃ on single-disc reachers. A review of abrasives used in industry has also been carried out. Various dosage methods of abrasives have been analysed. A review of the modern single-point running-in equipment available on the market was carried out. Literature and industry studies were also analysed. In the next part of the dissertation, a mathematical model was developed describing the impact of selected factors affecting the mass loss and linear loss of the layched ceramic elements. The test bench with forced abrasive suspension dosing system is described later in the work. The empirical results obtained were then statistically analysed. The level of statistical significance of the selected factors has been determined. Based on a mathematical model, the variability of the linear cavity regression equation was analysed. On this basis, minimum and maximum dosage values were established and optimised. The value of the input parameters is specified to ensure optimal linear loss for the input factors specified. The work also analysed the correlation of selected surface roughness parameters after lapping.

*) niepotrzebne skreślić.

**) dotyczy rozpraw doktorskich napisanych w innych językach, niż polski lub angielski.

DESCRIPTION OF DOCTORAL DISSERTATION

The Author of the PhD dissertation: Maciej Gniot

Title of PhD dissertation: The influence of dosing parameters of forced abrasive suspension on the effects of lapping single-disc surfaces of flat ceramic elements

Title of PhD dissertation in Polish: Wpływ parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych

Language of PhD dissertation: Polish

Supervision: prof. dr hab. inż. Adam Barylski

Second supervision*: <first name, surname >

Auxiliary supervision*: <first name, surname >

Cosupervision*: <first name, surname >

Date of doctoral defense:

Keywords of PhD dissertation in Polish: obróbka ścierna, docieranie jednotarczowe, kinematyka docierania, dawkowanie, optymalizacja parametrów dawkowania

Keywords of PhD dissertation in English: abrasive machining, single-disc lapping, lapping kinematics, dosage, optimization of dosage parameters

Summary of PhD dissertation in Polish: Przedmiotem rozprawy doktorskiej jest analiza wpływu parametrów dawkowania wymuszonego zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich elementów ceramicznych. W pierwszej części pracy opisano proces docierania elementów na docierarkach jednotarczowych. Opisano role ziaren ściernych i mechanizm procesu docierania elementów ceramicznych AL₂O₃ na docierarkach jednotarczowych. Dokonano również przeglądu materiałów ściernych stosowanych w Przeanalizowano różne metody dawkowania przemyśle. substancji ściernych. Przeprowadzono przegląd dostępnych na rynku nowoczesnych urządzeń do docierania jednotarczowego. Dokonano również analizy literatury i opracowań branżowych. W kolejnej części rozprawy opracowano model matematyczny opisujący wpływ wybranych czynników wpływających na ubytek masowy i ubytek liniowy docieranych elementów ceramicznych. W dalszej części pracy opisano stanowisko badawcze z wymuszonym systemem dawkowania zawiesiny ściernej. Następnie otrzymane wyniki empiryczne poddano analizie statystycznej. Określono poziom istotności statystycznej wybranych czynników. Przeanalizowano na podstawie modelu matematycznego przebieg zmienności równania regresji ubytku liniowego. Na tej podstawie określono wartości minimalne i maksymalne dawkowania i przeprowadzono optymalizację. Określono wartość parametrów wejściowych, które zapewnią optymalny ubytek liniowy dla zadanych czynników wejściowych. W pracy przeprowadzono również analizę korelacji wybranych parametrów chropowatości powierzchni po docieraniu.

Załącznik nr 3/2

AND SHIP TECHNOLOGY

Summary of PhD dissertation in English: The subject of the doctoral dissertation is an analysis of the effect of the dosage parameters of forced abrasive suspension on the effects of lapping the single-disc surface of flat ceramic elements. The first part of the work describes the process of lapping elements on single-sided reaches. Describes the role of abrasive grains and the mechanism of the process of lapping ceramic elements AL₂O₃ on single-disc reachers. A review of abrasives used in industry has also been carried out. Various dosage methods of abrasives have been analysed. A review of the modern single-point running-in equipment available on the market was carried out. Literature and industry studies were also analysed. In the next part of the dissertation, a mathematical model was developed describing the impact of selected factors affecting the mass loss and linear loss of the layched ceramic elements. The test bench with forced abrasive suspension dosing system is described later in the work. The empirical results obtained were then statistically analysed. The level of statistical significance of the selected factors has been determined. Based on a mathematical model, the variability of the linear cavity regression equation was analysed. On this basis, minimum and maximum dosage values were established and optimised. The value of the input parameters is specified to ensure optimal linear loss for the input factors specified. The work also analysed the correlation of selected surface roughness parameters after lapping.

*) delete where appropriate.

**) applies to doctoral dissertations written in other languages, than Polish or English.

Podziękowanie

W tym miejscu chciałem serdecznie podziękować promotorowi pracy prof. dr hab. inż. Adamowi Barylskiemu za pomoc w wyznaczaniu kierunków badań. Pan profesor z ogromną życzliwością poświęcał czas na konsultacje problemów naukowych, udzielał cennych rad, a także bardzo wspierał w rozwoju naukowym.

Chciałbym również podziękować nieżyjącej już dziś mojej ukochanej mamie, która mnie mocno wspierała. Podziękowania należą się również mojemu tacie, bratu i Bożence. Są to osoby mi najbliższe, które przyczyniły się również do powstania tej pracy.

Maciej Gniot

SPIS TREŚCI

Spis treści
Wykaz ważniejszych oznaczeń 13
1. Wstęp 15
2. Analiza stanu wiedzy tematu na podstawie literatury
2.1. Standardowy układ wykonawczy docierarki jednotarczowej 22
2.1.1. Kinematyka docierania powierzchni płaskich 22
2.1.2. Prędkość docierania w układzie wykonawczym standardowej docierarki
jednotarczowej
2.1.3. Przyspieszenia w układzie wykonawczym docierarki jednotarczowej 26
2.1.4. Przegląd docierarek jednotarczowych 27
2.1.5. Sposoby dawkowania zawiesiny ściernej podczas docierania powierzchni
płaskich
2.2. Wpływ dawkowania zawiesiny ściernej na przebieg i efekty docierania
2.3. Zasady programowania badań doświadczalnych 34
2.3.1. Programy stosowane do badań doświadczalnych w technologii maszyn . 35
2.3.2. Kryteria oceny programów badawczych
2.3.3. Programy statyczne selekcyjne wieloczynnikowe
2.4. Wnioski ogólne i uzasadnienie podjęcia tematu rozprawy 46
3. Cele pracy i hipotezy badawcze
3.1. Cele pracy
3.2. Hipotezy badawcze
4. Ogólny schemat realizacji badań własnych 49
4.1. Zakres rozprawy 49
5. Przygotowanie badań eksperymentalnych 50
5.1. Konwencjonalny system dozowania zawiesiny ściernej docierarki Abralap 380 50
5.2. Stanowisko badawcze z wymuszonym układem dozowania zawiesiny
ściernej - wersja I
5.2.1. Koncepcja układu52
5.2.2. Opis budowy stanowiska53
5.2.3. Wyniki prób docierania i ich ocena54
5.3. Stanowisko badawcze z wymuszonym układem dozowania zawiesiny ściernej -
wersja ostateczna

5.3.1. Opis konstrukcji stanowiska	57
5.3.2. Wyniki i analiza badań wstępnych	62
5.4. Charakterystyka docieranych próbek	68
5.5. Przygotowanie zawiesiny ściernej	70
5.5. Sposób oczyszczania powierzchni próbek po docieraniu	71
5. 6. Metody badań i aparatura	71
5.6.1 Sposób oceny kształtu ziaren ściernych	71
5.6.2. Sposób oceny lepkości nośnika płynnego ziaren ściernych	72
5.6.3. Sposób oceny ubytku masowego próbek	72
5.6.4. Sposób oceny ubytku liniowego próbek	73
5.6.5. Sposoby oceny chropowatości powierzchni próbek po docieraniu	74
5.7. Metodyka planowania doświadczeń	75
5.7.1. Model badań zasadniczych	75
5.7.2. Wybór planu eksperymentów	75
5.7.3. Opis ogólny wnioskowania statystycznego	78
6. Zasadnicze badania eksperymentalne docierania przy wymuszonym dawkowaniu zav	viesiny
sciernej praskich elementow ceramicznych	81
sciernej praskich elementow ceramicznych	81
6.1. Ogólny program badań 6.2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek	81 81 iniowy
 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 	81 81 iniowy 84
 Sciernej praskich elementow ceramicznych 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 	81 81 iniowy 84 95
6.1. Ogólny program badań 6.2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rv	81 iniowy 84 95 rametr 95
 Sciernej praskich elementow ceramicznych 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rv 6.3.2. Badania wpływu warunków dawkowania zawiesiny ściernej na pa 	81 iiniowy 84 95 rametr 95 rametr 104
 sciernej praskich elementow ceramicznych 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rv 6.3.2. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.3. Badania wpływu warunków dawkowania zawiesiny ściernej na pa 	81 iniowy 84 95 rametr 95 rametr 104 rametr 108
 sciernej praskich elementow ceramicznych 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rv 6.3.2. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.3. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.4. Badania wpływu warunków dawkowania zawiesiny ściernej na pa 	81 iiniowy 84 95 rametr 95 rametr 104 rametr 108 relacje
 Sciernej praskich elementow ceramicznych 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rv 6.3.2. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.3. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.4. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rz 6.3.4. Badania wpływu warunków dawkowania zawiesiny ściernej na ko podstawowych parametrów struktury geometrycznej powierzchni po docieraniu 	81 iniowy 81 iniowy 81 an attriction rametr 95 rametr 95 rametr 104 rametr 108 relacje 117
 6.1. Ogólny program badań	81 iniowy 84 95 rametr 95 rametr 104 rametr 108 relacje 117 138
 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów 6.3. Wyniki badań chropowatości powierzchni po docieraniu 6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rv 6.3.2. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.3. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rp 6.3.4. Badania wpływu warunków dawkowania zawiesiny ściernej na pa chropowatości Rz 6.3.4. Badania wpływu warunków dawkowania zawiesiny ściernej na ko podstawowych parametrów struktury geometrycznej powierzchni po docieraniu 7. Badania uzupełniające 7.1. Wpływ lepkości mieszaniny składników płynnych w zawiesinie ścierre 	81 iniowy 84 95 rametr 95 rametr 104 rametr 108 relacje 117 138 nej na
 6.1. Ogólny program badań 6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek l docieranych elementów	81 iniowy 84 95 rametr 95 rametr 104 rametr 108 relacje 117 138 nej na 138

7.3 .Wpływ prędkości obrotowej docieraka i separatora na kinematykę docierania 162
7.4. Wpływ rozmieszczenia losowego elementów docieranych w separatorze na kinematykę docierania
7.5. Wpływ podstawowych warunków dawkowania wymuszonego zawiesiny ściernej na ubytek masowy docieranych elementów ceramicznych
7.6. Wpływ sposobu dawkowania na zużycie zawiesiny ściernej 184
8. Podsumowanie i wnioski końcowe 185
8.1. Wnioski poznawcze
8.2. Wnioski o charakterze utylitarnym 188
8.3. Proponowane kierunki dalszych badań189
Literatura 190
Wykaz rysunków
Wykaz tabel

WYKAZ WAŻNIEJSZYCH OZNACZEŃ

- p nacisk jednostkowy [MPa]
- A pole powierzchni próbek wykonanych z ceramiki Al₂O₃ [mm²]
- Tcb czas jednej próby [min]
- K udział wagowy ziaren ściernych w zawiesinie [%]
- Vs dawka zawiesiny ściernej [ml/20 min]
- Le lepkość nośnika płynnego ziaren ściernych [mPa·s]
- Um ubytek masowy próbek [g]
- U1 ubytek liniowy próbek [µm]
- CD1, CD2 warunki stałe procesu docierania
- U_{D1}, U_{D1} zakłócenia podczas procesu docierania
- Ra średnie arytmetyczne odchylenie profilu
- Rq średnie kwadratowe odchylenie profilu
- Rp wysokość najwyższego wzniesienia profilu

Rt - całkowita wysokość profilu (między szczytem najwyższego wierzchołka a najniższym zagłębieniem)

Rz - największa wysokość profilu

Rsk - współczynnik asymetrii (skośność profilu)

Rku - współczynnik spłaszczenia (skupienia) - kurtoza

Rsm - średni odstęp pomiędzy wzniesieniami profilu (średnia szerokość rowków profilu)

Sa - średnie arytmetyczne odchylenie wysokości nierówności powierzchni od płaszczyzny odniesienia

Sq - średnie kwadratowe odchylenie wysokości nierówności powierzchni od płaszczyzny odniesienia

- Sp maksymalna wysokość wzniesienia powierzchni
- Sv maksymalna głębokość wgłębienia powierzchni
- Ssk współczynnik skośności rozkładu wysokości topografii (rzędnych) powierzchni
- Sku współczynnik skupienia rozkładu wysokości topografii (rzędnych) powierzchni
- Sz dziesięciopunktowa wysokość nierówności powierzchni
- St wysokość nierówności
- Smmr średnia objętość materiału

- Smvr średnia objętość pustek
- R współczynnik korelacji wielokrotnej
- R² współczynnik determinacji
- SS (suma kwadratów)
- MS (średnia kwadratów)
- df stopnie swobody
- s błąd standardowy regresji
- F istotność F
- p-value poziom istotności testu
- t Studenta wartość statystyki

1. WSTĘP

We współczesnych procesach wytwarzania części maszyn duży nacisk stawia się na stosowanie obróbki bardzo dokładnej, która zapewnia wysoką jakość powierzchni elementów obrabianych. Tak wytwarzane części maszyn pracują często w bardzo trudnych warunkach. Obróbka stosowana jest we wszystkich głównych gałęziach przemysłu, do których można zaliczyć przemysł lotniczy, samochodowy, kolejowy i okrętowy. Jedną z powszechnych metod stosowanych do obróbki wykańczającej jest docieranie [11], [27], [89], [90], [91], [77], [50], [30], [4].

Struktura stereometryczna powierzchni po docieraniu jest bardzo korzystna przy połączeniach ruchowych ze względu na dużą nośność i szczelność [8]. Jest wiele czynników wpływających na proces docierania, co zostało przedstawione na rys. 1.1. Istnieją również różne metody realizacji tego procesu, co przedstawiono na rys. 1.2 [12], [55], [33], [39].

Możemy klasyfikować odmiany docierania według następujących kryteriów: metoda docierania, stopień zmechanizowania, sposób współpracy materiału ściernego i docieraka, rodzaj docierania, rodzaj kształtu powierzchni poddanych docieraniu. Ważniejsze czynniki dotyczące docieraka podano na rys. 1.3. Zalicza się do nich czynniki związane z jakością powierzchni docieraka (opisanych odchyłkami niepłaskości powierzchni roboczej i chropowatością powierzchni) oraz z konstrukcją docieraka (jego wymiarami, kształtem, sposobem rowkowania). Podstawowe znaczenie ma też rodzaj (gatunek) materiału, z którego wykonany jest docieraka tarczowy.

Na rys. 1.4 przedstawiono czynniki dotyczące konstrukcji przedmiotu obrabianego (to jest jego zarysu, wymiarów i kształtu). Istotny jest też wpływ wstępnej jakości technologicznej obrabianych przedmiotów na efekt końcowy docierania [25], [19], [31]. W literaturze opisano charakterystyki warstwy wierzchniej docieranych materiałów [76], [3], [60].

Czynniki mające wpływ na przebieg procesu docierania, a dotyczące mieszaniny ściernej, przedstawiono na rys. 1.5. W szczególności dotyczy to wpływu sposobu dawkowania i rodzaju ścierniwa na przebieg procesu. Istotne są też czynniki związane z właściwościami reologicznymi, chemicznymi i fizycznymi substancji ściernych. Kolejne czynniki determinujące proces docierania, to warunki skrawania (głównie nacisk jednostkowy) i kinematyka obrabiarki (rys. 1.6).

Rys. 1.1. Czynniki wpływające na proces docierania

Rys. 1.2. Ogólny podział odmian docierania

Rys. 1.3. Ważniejsze czynniki dotyczące metalowego docieraka tarczowego

Rys. 1.4. Ważniejsze czynniki dotyczące przedmiotu obrabianego

Rys. 1.5. Ważniejsze czynniki dotyczące zawiesiny ściernej

Rys. 1.6. Ważniejsze czynniki dotyczące warunków docierania i układu wymuszonego dawkowania

2. ANALIZA STANU WIEDZY TEMATU NA PODSTAWIE LITERATURY

Docieranie powierzchni jest niezbędnym elementem procesu obróbki części maszyn, którym stawia się wysokie wymagania w zakresie jakości powierzchni. Docieranie jest obróbką wykańczającą, która jest stosowana na ostatnim etapie produkcji części maszyn. Poprzedzające zabiegi technologiczne nie pozwalają na osiągnięcie tak wysokich parametrów jakości powierzchni [92]. Proces docierania powierzchni odbywa się przy pomocy mikroziaren ściernych [77], [4], [50]. Na rys. 2.1 przedstawiono ziarna ścierne zakotwione w docieraku, gdzie ziarna ścierne mogą toczyć się i ślizgać pomiędzy przedmiotem obrabianym a powierzchnią roboczą docieraka. Zjawiska te mają duży wpływ na wydajność procesu [60], [75], [61], [59].

a)

b)

Rys. 2.1. Docieranie: a) dwuelementowe, b) trzyelementowe

Docieranie odbywa się wskutek bruzdowania, mikroskrawania i rysowania. Pożądane mikroskrawanie powoduje powstanie wióra o objętości równej objętości rysy, ale w praktyce jest to trudne do osiągnięcia [21], [57], [62], [63]. Wskutek działania skoncentrowanych obciążeń wywieranych przez ziarna ścierne może dochodzić do mikropęknięć w obrabianym przedmiocie. Podczas realizacji procesu docierania mikroziarna ścierne przyjmują różne położenia w strefie obróbki [29]. Na rys. 2.2 przedstawiono schemat ilustrujący różne położenie ziaren ściernych w strefie obróbki [80], [40], [58], [23], [86].

Przedmiot obrabiany

Docierak

Rys. 2.2. Położenie mikroziaren ściernych w strefie obróbki(1-mikroziarna wgniecione w powierzchnię docieraka, 2-mikroziarna toczące się, 3- mikroziarna wgniecione w docierak, nie oddziałujące na przedmiot obrabiany, 4-mikroziarna wgniecione w powierzchnię docieraną, 5-mikroziarna bierne, 6-mikroziarna wgniecione w powierzchnię docieraną)

2.1. Standardowy układ wykonawczy docierarki jednotarczowej

Docieranie powierzchni płaskich najczęściej realizowane jest na docierarkach jednotarczowych ze standardowym układem kinematycznym, wyposażonym w jeden lub kilka pierścieni prowadzących (rys. 2.3) [13].

Rys. 2.3. Układ wykonawczy docierarki jednotarczowej [13]

W tym układzie na powierzchni tarczy docieraka (1) poruszają się pierścienie prowadzące (5) z prędkością obrotową n_s . Tarcza docierająca obraca się z prędkością n_t napędzając pierścienie, w których w sposób swobodny umieszczone są separatory (4), umożliwiając zwykle pomijany dodatkowy ruch przedmiotów obrabianych (3). Na przedmioty wywierane jest obciążenie poprzez podkładkę filcową. Pierścień prowadzący obraca się pod wpływem momentu siły tarcia (2) uchwyt prowadzący separator. Jego prędkość zależy od prędkości obrotowej docieraka, warunków tarcia, obciążenia, oraz od położenia separatora względem środka docieraka [22]. Realizacja prawidłowego przebiegu obróbki wymaga odpowiedniej wartości nacisku jednostkowego na obrabiane elementy oraz dawki zawiesiny ściernej, która najczęściej w praktyce podawana jest z dużym nadmiarem.

2.1.1. Kinematyka docierania powierzchni płaskich

Istotny wpływ na jakość procesu docierania elementów ma kinematyka docierania [53], [73], [82], [52], [66], [9]. W celu opisu kinematyki należy wyznaczyć położenie dowolnego punktu *P* na polu powierzchni przedmiotu obrabianego, określonego za pomocą wektora promienia wodzącego: w układzie $\overline{R_P}(t)$ w dwóch układach: w układzie absolutnym ζ - η i układzie względnym *x-y*, związanym z obracającym się docierakiem (rys. 2.4). Ruch punktu *P* można opisać równaniami zawartymi w tabeli 2.1 [13].

Rys. 2.4. Układ kinematyczny docierarki jednotarczowej: 1-docierak, 2-separator, 3-przedmiot obrabiany n – pierścieni prowadzących [13]

Tabela 2.1.	Równanie	ruchu	dowolnego	punktu	Ρ	[1:	3]
-------------	----------	-------	-----------	--------	---	-----	----

W układzie absolutnym ζ-η	W układzie względnym <i>x-y</i>
$\overline{R_p}(t) = \zeta_p(t)\overline{\iota_{\zeta}} + \eta_p(t)\overline{J_{\eta}}$	$\overline{R_P}(t) = x_p(t)\overline{t_x} + y_p(t)\overline{J_y}$
$\begin{bmatrix} \zeta_p & (t) \\ \eta_p(t) \end{bmatrix} = R \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} + r \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix}$	$\begin{bmatrix} x_p & (t) \\ y_p(t) \end{bmatrix} = R \begin{bmatrix} \cos \delta \\ \sin \delta \end{bmatrix} + r \begin{bmatrix} \cos \varepsilon \\ \sin \varepsilon \end{bmatrix}$
$\alpha(t) = \omega_j t$	$\delta(t) = (\omega_j - \omega_t)t$
$\boldsymbol{\beta}(t) = \boldsymbol{\omega}_2 t$	$\varepsilon(t) = (\omega_2 - \omega_t)t$
t - dowolna chwila docierania,	
ω_t - prędkość kątowa docieraka,	
ω_2 - prędkość kątowa pierścienia p	prowadzącego,
ω_{i} - prędkość kątowa wyobrażalne	go jarzma ($\omega j = 0$)

W procesie docierania ważne jest położenie przedmiotu względem tarczy docierającej (w układzie *x-y*). Współrzędne x_p i y_p są ciągłymi funkcjami czasu i można je opisać równaniami skończonymi ruchu:

$$x_p(t) = R \cdot \cos(\omega_j \cdot t - \omega_t \cdot t) + r \cdot \cos(\omega_2 \cdot t - \omega_t \cdot t)$$
(2.1)

$$y_p(t) = R \cdot sin(\omega_j \cdot t - \omega_t \cdot t) + r \cdot sin(\omega_2 \cdot t - \omega_t \cdot t)$$
(2.2)

Zależności te przedstawiają parametryczne równania toru punktu *P*, gdzie parametrem jest czas t [13].

Prędkość względna w układzie przedmiot-docierak wynika z różnicy prędkości kątowej pierścienia prowadzącego i prędkości kątowej tarczy docierającej. Można wprowadzić dodatkowy parametr k, w postaci:

$$k = \frac{\omega_2 - \omega_t}{\omega_j - \omega_t} \tag{2.3}$$

przy czym w standardowym układzie kinematycznym docierarki jednotarczowej ω_j = 0, a więc

$$k = 1 - \frac{\omega_2}{\omega_t} \tag{2.4}$$

Przy takich założeniach równania ruchu przyjmują postać:

$$x_p(t) = R \cdot \cos(-\omega_t \cdot t) + r \cdot \cos(-k \cdot \omega_t \cdot t)$$
(2.5)

$$y_p(t) = R \cdot sin(-\omega_t \cdot t) + r \cdot sin(-k \cdot \omega_t \cdot t)$$
(2.6)

Wprowadzając dodatkowy parametr kinematyczny:

$$k' = \frac{\omega_2}{\omega_t} \tag{2.7}$$

można określić warunek występowania trajektorii w kształcie:

- epicykloidy $\mathbf{k}^{'} < 0$ (2.8)
- hipocykloidy k' > 1 (2.9)
- oraz pericykloidy 0 < k' < 1 (2.10)

Zakreślane trajektorie są krzywymi cyklicznymi. Czas jednego cyklu ruchu *Tz* wyznaczany jest z warunku równej długości promienia wodzącego $\overline{R_P}(t)$. Jest to czas, po którym długość wektora $\overline{R_P}(t)$ równa jest długości wyjściowej dla *t* = 0:

$$\left|\overline{R_P}(t=Tz)\right| = \left|\overline{R_P}(t=0)\right| \tag{2.11}$$

$$|\overline{R_P}(t)| = \sqrt{x_p t^2 + y_p t^2}$$
 (2.12)

Wykorzystując równania ruchu (2.1) i (2.2) po przekształceniu otrzymujemy:

$$\overline{R_P}(t=Tz)| = \sqrt{R^2 + r^2 + 2Rsos(-\omega Tz)}$$
(2.13)

$$\left|\overline{R_P}(t=0)\right| = R + r \tag{2.14}$$

Równość (2.11) jest spełniona dla:

$$T_Z = \frac{2\pi}{|-\omega_2|} \tag{2.15}$$

2.1.2. Prędkość docierania w układzie wykonawczym standardowej docierarki jednotarczowej

Wektor prędkości chwilowej dowolnego punktu *P* na powierzchni przedmiotu docieranego jest pochodną względem czasu wektora - promienia wodzącego $\overline{R_P}(t)$ tego punktu [13]:

$$\overline{v_P}(t) = \frac{d\overline{R_P}(t)}{dt} = \overline{\iota_x} \frac{dx_p(t)}{dt} + \overline{J_y} \frac{dx_p(t)}{dt} \overline{v_x} + \overline{v_y}$$
(2.16)

Wartość chwilowej prędkości punktu P wyraża się wzorem:

$$\overline{v_P}(t) = |\overline{v_P}(t)| = \sqrt{\dot{x}_p(t)^2 + \dot{y}_{(t)}(t)^2}$$
(2.17)

Dokonując przekształcenia otrzymujemy wzór na prędkość chwilową:

$$v_p(t) = \sqrt{\omega_t^2 R^2 + (\omega_2 - \omega_t)^2 r^2 - 2\omega_t (\omega_2 - \omega_t) r R cos(-\omega_2 t)}$$
(2.18)

Po podstawieniu parametru k, wzór (2.18) przyjmuje postać:

$$v_p(t) = \sqrt{\omega_t R^2 + k^2 r^2 + 2rRkcos(-\omega_2 t)}$$
(2.19)

Punkty powierzchni obrabianej zakreślają trajektorie ruchu, których długości zależą od położenia przedmiotu w separatorze. Długość trajektorii przebytą w czasie $t = t_2 - t_1$ można obliczyć ze wzoru:

$$s = \int_{t_1}^{t_2} v_p(t) dt$$
 (2.20)

Średnia prędkość docierania v_{sr} dowolnego punktu *P* na powierzchni przedmiotu docieranego określa wzór:

$$v_{\$r} = \frac{1}{T_z} \int_0^{T_z} v_p(t) dt$$
 (2.21)

2.1.3. Przyspieszenia w układzie wykonawczym docierarki jednotarczowej

Przyspieszenie chwilowe dowolnego punktu *P* leżącego na powierzchni przedmiotu obrobionego jest równe pierwszej pochodnej wektora prędkości lub drugiej pochodnej wektora promienia wodzącego $\overline{R_P}(t)$ względem czasu [13]:

$$\overline{a_P}(t) = \frac{d^2 \overline{R_P}(t)}{dt^2} = \frac{d\overline{v}}{dt} = \overline{\iota_x} \frac{d^2 x_p(t)}{dt^2} + \overline{J_y} \frac{d^2 y_p(t)}{dt^2} \overline{a_x} + \overline{a_y}$$
(2.22)

Wartość przyspieszenia punktu P wyrażona jest wzorem:

$$\overline{a_{P}}(t) = |\overline{a_{P}}(t)| = \sqrt{\ddot{x_{p}}(t)^{2} + \ddot{y}_{(t)}(t)^{2}}$$
(2.23)

Dokonując odpowiedniego przekształcenia otrzymujemy wzór na wartość chwilowego przyspieszenia:

$$a_p(t) = \sqrt{\omega_t^4 R^2 + (\omega_2 - \omega_t)^4 r^2 - 2\omega_t^2 (\omega_2 - \omega_t)^2 r R \cos(-\omega_2 t)}$$
(2.24)

Podstawiając parametr k, wzór (2.24) przyjmuje postać:

$$a_p(t) = \omega_t^2 \sqrt{R^2 + k^4 r^2 + 2rRk^2 cos(-\omega_2 t)}$$
(2.25)

Na przebieg procesu docierania ma wpływ również przyspieszenie styczne $\bar{a_t}$, które jest składową przyśpieszenia całkowitego $\bar{a_p}$ w kierunku stycznym do toru ruchu:

$$\bar{a}_t = \frac{dv}{dt}\bar{\tau} \tag{2.26}$$

gdzie:

 $\overline{\tau}$ – jednostkowy wektor styczny do toru ruchu.

Wartość przyspieszenia stycznego można obliczyć korzystając ze wzoru:

$$a_{tp} = \frac{dv_p(t)}{dt} = \frac{rR\omega_t\omega_2(\omega_2 - \omega_t)sin(\omega_2 t)}{\sqrt{\omega_t^2 R^2 + (\omega_2 - \omega_t)^2 r^2 - 2\omega_t(\omega_2 - \omega_t)rRcps(-\omega_2 t)}}$$
(2.27)

Po podstawieniu parametru k, wzór (2.27) przyjmuje postać:

$$a_{tp} = -\frac{rR\omega_t\omega_2ksin(\omega_2 t)}{R^2 + k^2r^2 + 2krRcos(-\omega_2 t)}$$
(2.28)

2.1.4. Przegląd docierarek jednotarczowych

Obecnie istnieje wielu producentów obrabiarek jednotarczowych przeznaczonych do docierania powierzchni płaskich. Wiodący producenci to firmy: Kemet, Lapmaster Wolters, Hamail, czy też Speedfam. Konstrukcje obrabiarek służących do jednotarczowego docierania są bardzo podobne. Wielkość obrabiarki jest zdeterminowana średnicą tarczy docierającej [93]. Tarcze są wytwarzane w różnych rozmiarach i konstrukcji (np. rowkowana, pełna lub segmentowa) [54]. Przykład tarczy rowkowanej przedstawiono na rys. 2.5.

Rys. 2.5. Rowkowana tarcza docierająca o średnicy 3800 mm [93]

W docierarkach jednotarczowych bardzo ważnymi elementami są pierścienie prowadzące, wewnątrz których w separatorach umieszcza się elementy docierane. Liczba i rozmiar pierścieni prowadzących zależny jest od średnicy tarczy obrabiarki. Przykłady pierścieni prowadzących przedstawiono na rys. 2.6.

Rys. 2.6. Pierścienie prowadzące o średnicy wewnętrznej 140 mm i 578 mm [93]

Wielkość tarczy docierającej oraz liczba pierścieni prowadzących ma wpływ na liczbę elementów, które można docierać jednocześnie. W tabeli 2.2 przedstawiono dane dotyczące liczby elementów, które mogą być umieszczone w pierścieniu prowadzącym, dla różnych modeli docierarek firmy Kemet. Są to przybliżone wartości liczby elementów obrabianych, bazując średnio na 60% wypełnieniu separatora. Tabela 2.3 przedstawia wymiary pierścieni prowadzących dla docierarek firmy Kemet [93].

Model	Liczba	a 5 5 5 10 12 13, 15 18 22 26 30 34 38 42 46 50 54 60 70 80 90 10 11 12 130 140 275 175 11 86 60 50 40 5 4 32 2 4 3 8 2 6 30 34 38 42 46 50 54 60 70 80 90 10 11 12 130 140 275 175 11 86 60 50 40 2 1 10 1<																									
	pier.	6	7,5	9	10	12	13,	15	18	22	26	30	34	38	42	46	50	54	60	70	80	90	10	11	12	130	140
					,5		5																0	0	0		
15	3	275	175	11 8	86	60	50	40	27	18	12	10	8	6	5	4	3	2	2	2	1	1	1	1	1	1	1
20	3	-	-	-	-	150	114	90	63	39	33	21	17	14	10	9	7	6	5	3	3	2	2	1	1	1	1
24	3	-	-	-	-	210	165	13 2	87	57	42	33	24	18	15	13	10	9	7	5	4	3	3	2	2	1	1
24	4	-	-	-	-	150	114	90	63	39	33	21	17	14	10	9	7	6	5	3	3	2	2	1	1	1	1
36	3	-	-	-	-	-	-	-	20 4	93	93	69	60	42	33	29	24	21	17	12	10	7	6	5	4	3	2
36	4	-	-	-	-	-	-	-	15 6	72	72	54	39	33	25	33	20	15	12	10	8	5	5	3	2	2	2
48	4	-	-	-	-	-	-	-	-	132	132	99	75	60	48	39	33	29	24	17	14	12	8	7	5	5	4
56	4	-	-	-	-	-	-	-	-	204	204	150	117	100	76	62	52	44	35	26	20	16	12	10	8	8	6
72	4	-	-	-	-	-	-	-	-	-	-	-	204	164	132	108	92	78	62	44	35	26	21	18	16	14	10
64	4	-	-	-	-	-	-	-	-	-	-	-	-	-	185	152	129	109	88	63	47	38	30	24	20	17	15

Tabela 2.2. Liczba elementów, które mogą być umieszczone w pierścieniach prowadzących w docierarkach firmy Kemet [93]

Tabela 2.3. Wymiary pierścieni prowadzących w docierarkach jednotarczowych firmy Kemet [93]

Pierścień prowadzący			Model docierarki											
		15	20	24	36	48	56	72	84	120				
Średnica wewnętrzna	3 pierścienie	140	191	248	368	505	578	-	-	-				
[mm]	4 pierścienie	-	-	209	322	432	530	692	813	1016				

28

Najczęstszym sposobem obciążania przedmiotów docieranych jest stosowanie obciążników w przestrzeni pierścienia prowadzącego. Innym sposobem może być docisk za pomocą siłownika pneumatycznego. W takim przypadku jest możliwa zmiana wartości docisku jednostkowego podczas realizacji procesu, na który ma wpływ operator. W obrabiarkach nowej generacji stosuje się wyposażenie, które pozwala monitorować temperaturę tarczy docierającej i utrzymać temperaturę docieraka na założonym poziomie, ponieważ obrabiarka jest wyposażona w układ chłodzenia. Na rys. 2.7 i 2.8 przedstawiono przykłady docierarek jednotarczowych firmy Kemet [93].

Rys. 2.7. Docierarka jednotarczowa Kemet - model 300 L [93]

Rys. 2.8. Docierarka firmy Kemet - model 72 [93]

Producenci realizują również zamówienia ze względu na indywidualne wymagania, stawiane przez zamawiających. Jest to ogólnoświatowy trend, którego celem jest personalizowanie urządzeń pod kątem wymagań stawianych przez klienta. Przy takim podejściu producentów zamawiający jest niejako współtwórcą urządzenia. To on decyduje o stopniu zautomatyzowania obrabiarki i jej ostatecznym wyposażeniu. Tego typu "spersonalizowane" urządzenia przedstawiono na rys. 2.9 i 2.10 [94].

Rys. 2.9. Docierarka jednotarczowa typu FLM firmy STAHLI [94]

Rys. 2.10. Docierarka dwutarczowa DLM 705 firmy STAHLI [94]

2.1.5. Sposoby dawkowania zawiesiny ściernej podczas docierania powierzchni płaskich

Realizując proces docierania powierzchni płaskich należy sukcesywnie dawkować ziarna ścierne do strefy docierania [47]. Jest to możliwe, jeżeli ziarna ścierne zostaną umieszczone w nośniku [26], [86], [95], [14]. Najczęściej jako nośnik ziaren ściernych w przemyśle stosuje się olej maszynowy i naftę (np. kosmetyczną) lub wodę z odpowiednimi dodatkami. Występują również przygotowane przez odpowiednich producentów specjalistyczne zawiesiny ścierne. Przygotowane zawiesiny ułatwiają równomierne rozprowadzanie ziaren ściernych na powierzchni czynnej tarczy docierającej.

Wyróżniamy też inne odmiany zawiesin, które ze względu na swoją lepkość stanowią pastę ścierną. Pasta ścierna umożliwia także dobre rozprowadzanie ziaren ściernych na powierzchni czynnej narzędzia. Realizując proces docierania można wyróżnić dwa główne sposoby zbrojenia (aktywizacji ścierniwem docieraka):

- zbrojenie w sposób swobodny,
- zbrojenie w sposób wymuszony.

Zbrojenie docieraka w sposób swobodny może odbywać się na kilka sposobów. Na rys. 2.11 przedstawiono nanoszenie ręczne, polegające na bezpośrednim podawaniu zawiesiny ściernej na tarczę wprost z pojemnika z substancją. Sposób ten wymaga dużego doświadczenia od operatora obrabiarki, ponieważ w tej metodzie jest możliwe zbyt obfite i mało kontrolowane dawkowanie.

Rys. 2.11. Dawkowanie zawiesiny ściernej dozowanej w sposób ręczny bezpośrednio z pojemnika

Innym sposobem dawkowania jest dostarczanie zawiesiny ściernej na powierzchnię docieraka przy pomocy ręcznych aplikatorów. Przy takim sposobie nakładania operator po jednym naciśnięciu spustu dostarcza zawiesinę o określonej dawce, zależną od wydajności aplikatora. Substancja nanoszona jest na powierzchnię docieraną już nie w postaci strugi, lecz bardziej rozproszonego strumienia zawiesiny. Sposób dozowania zawiesin i past przy pomocy aplikatora przedstawiono na rys. 2.12 i 2.13.

Rys. 2.12. Dozowanie past ściernych przy pomocy zintegrowanego z pojemnikiem aplikatora

Rys. 2.13. Dozowanie zawiesiny ściernej przy pomocy aplikatora ręcznego

W następnej metodzie pojemnik zamocowany jest nad tarczą docierającą i pod wpływem siły grawitacji zachodzi wypływ substancji bezpośrednio na docierak [96]. W tej sytuacji istotny wpływ ma rozmiar otworu wylotowego z pojemnika, przez który wypływa substancja ścierna. Zazwyczaj rozmiar otworu wypływowego jest tak dopasowany, aby zawiesina mogła wypływać w sposób kroplowy lub bardzo cienką strugą (rys. 2.14).

Rys. 2.14. Dawkowanie grawitacyjne zawiesiny ściernej na powierzchnię roboczą docieraka

Kolejnym sposobem dawkowania jest dostarczanie płynnej zawiesiny przy pomocy pompy [93]. Taki układ pobiera ze zbiornika przygotowaną zawiesinę ścierną i dostarcza ją do elementu spustowego. Doprowadzona zawiesina spływa bezpośrednio na tarczę docierającą w postaci niewielkiej strugi - co schematycznie przedstawia rys. 2.15.

Rys. 2.15. Dozowanie zawiesiny ściernej przy pomocy pompy podającej

Zbrojenie docieraka w sposób wymuszony może odbywać się przy pomocy ręcznego narzędzia. Na powierzchnię docieraka metalowego, po wcześniejszym oczyszczeniu, nanoszona jest pasta ścierna [93], [15]. Nanoszenie powinno odbywać się równomiernie na całej powierzchni tarczy. Kolejnym etapem wymuszonego zbrojenia jest wgniatanie mikroziaren zawartych w paście przy użyciu specjalnego ręcznego narzędzia. Czynność tę należy powtarzać kilkakrotnie w różnych kierunkach. Przed bezpośrednim wykorzystaniem tak uzbrojonego narzędzia powierzchnię czynną docieraka należy zmyć i osuszyć. Czas zbrojenia ręcznego jest stosunkowo długi, zaś jakość tego procesu nie jest wysoka z powodu trudności w równomiernym rozprowadzeniu i zakotwieniu mikroziaren na powierzchni tarczy docierającej. Schemat wymuszonego zbrojenia docieraka przedstawiono na rys. 2.16.

Rys. 2.16. Wymuszony sposób zbrojenia docieraka

2.2. Wpływ dawkowania zawiesiny ściernej na przebieg i efekty docierania

Dozowanie zawiesiny ściernej ma istotny wpływ na przebieg i końcowy efekt procesu docierania powierzchni płaskich [93], [96], [74], [68]. W przemyśle najczęściej jest stosowane dawkowanie ręczne lub przy wykorzystaniu pompy podającej. Te metody są nieprecyzyjne, co jest powodem powstawania zakłóceń w przebiegu docierania.

Zbyt obfite dawkowanie zawiesiny ściernej może być przyczyną unoszenia (tzw. "pływania") elementów na powierzchni narzędzia. Taka sytuacja ma miejsce przy większych prędkościach względnych w układzie docierak - przedmiot obrabiany i małych naciskach jednostkowych wywieranych na przedmiot. Nadmierne dawkowanie wpływa również na podwyższenie kosztów realizacji procesu, ponieważ część zawiesiny ściernej, podanej w nadmiarze, w ogóle nie bierze udziału w docieraniu z powodu usunięcia przez pierścienie prowadzące.

Dawkowanie zawiesiny ściernej w niedomiarze jest również zjawiskiem niekorzystnym. Taki stan może doprowadzić do bezpośredniego kontaktu przedmiotów z powierzchnią metalowego docieraka . Zazwyczaj w praktyce przemysłowej dawkowanie zawiesiny ściernej jest uzależnione od udziału procentowego ziaren ściernych w cieczy (nośniku) [43], [71], [80]. Zużycie zawiesiny ściernej w głównym stopniu jest uzależnione od średnicy tarczy docierającej oraz sposobu dawkowania. Należy również zwrócić uwagę na to, że zawiesiny ścierne (na bazie np. weglika krzemu) maja bardzo duża skłonność do sedymentacji, dlatego tak przygotowane w zbiorniku zawiesiny należy ciągle mieszać. Podczas dawkowania ziarna często osiadają w przewodach i elementach bezpośrednio odpowiadających za wypływ zawiesiny na tarczę docierającą. To jest również powodem powstawania zakłóceń. W procesie obróbkowym zwykle utrzymanie stałych parametrów dawkowania i nanoszenia nie jest prostym zabiegiem [78], [44], [34], [85]. Tak przebiegający proces wymaga stałego monitorowania przez operatora, należy więc poszukiwać takich rozwiązań, które zminimalizują powstawanie zakłóceń podczas dozowania zawiesiny. Należy zastosować taki sposób dawkowania, aby na tarczę docieraka dostarczać założoną warstwę zawiesiny ściernej. Z tego powodu zasadne jest zastosowanie wymuszonego systemu dawkowania i nanoszenia, co zmniejszy zużycie zawiesiny ściernej, nie pogarszając jednocześnie jakości docieranych powierzchni.

2.3. Zasady programowania badań doświadczalnych

Teoria eksperymentu jest nauką o badaniu procesów, realizacji pomiarów i badań doświadczalnych [70], [65], [64], [67]. Programowanie badań doświadczalnych może mieć zastosowanie niezależnie od dyscypliny naukowej, do której ją stosujemy. Na rys. 2.17 przedstawiono układ problematyki i teorii eksperymentu. Przyjęcie odpowiedniego planu badań jest podstawowym zadaniem badacza. Wybór niewłaściwego planu badań może spowodować duże straty finansowe i niepotrzebne przedłużenie kosztownych badań.

Rys. 2.17. Układ problematyki teorii eksperymentu (teoria badań doświadczalnych) z określeniem możliwych sprzężeń informacyjnych [70]

2.3.1. Programy stosowane do badań doświadczalnych w technologii maszyn

Programy badań doświadczalnych można podzielić na dwie podstawowe grupy: programy statystyczne (jednoczesne), oznaczone symbolem **PS** oraz programy dynamiczne (sekwencyjne), oznaczone symbolem **PD** [70], [64]. Określenia przedstawiane jako dynamiczne i statyczne określają cechy programu, a nie cechy obiektu badań. Programy statystyczne mogą dotyczyć badań układów, jak i procesów. Na rys. 2.18 przedstawiono opisane w literaturze podstawowe programy badań doświadczalnych. Cechą podstawową programów statystycznych jest to, że dla wszystkich wartości czynników badanych *X*, są przeprowadzane pomiary wartości czynnika wynikowego, które są określone przed rozpoczęciem badań doświadczalnych, a kolejne wyniki realizowanych pomiarów nie mają wpływu na program. Cechą programów dynamicznych jest to, iż przed rozpoczęciem badań doświadczalnych określamy jedynie jeden wybrany układ wartości czynników badanych *X*, od którego rozpoczynamy pomiary, stanowiące tzw. wartość centralną, która jest pierwszym punktem startu dla programu. Program dynamiczny przypomina procedurę iteracyjną i składa się z ciągu sekwencji pomiarowych, realizowanych według przyjętych reguł, różnych dla różnych programów dynamicznych [70], [64].

Pomiędzy wymienionymi programami istnieje silne powiązanie, ponieważ pewne programy o zbliżonych zasadach można traktować jako statystyczne lub po niewielkich zmianach stają się programami dynamicznymi. Analizując programy nie można jednoznacznie z góry określić, jaki z wyżej wymienionych typów programów jest lepszy. Programy statystyczne umożliwiają określenie rodzaju, ilości i warunków pomiarów już przed rozpoczęciem badań, co w znaczny sposób ułatwia przygotowanie techniczno-organizacyjne całego procesu badawczego. Programy dynamiczne mają nieco odmienny charakter, a mianowicie sekwencyjny, który uwzględnia wyniki poprzednich pomiarów. Z takiego punktu widzenia ta sytuacja przynosi niewątpliwe korzyści, jednak, w przeciwieństwie do programu statystycznego, utrudnia techniczno-organizacyjną stronę badań. W takim przypadku należy w sposób ciągły analizować zebrane wyniki za pomocą różnych technik i urządzeń obliczeniowych.

Rys. 2.18. Podstawowe programy badań doświadczalnych [70]

37

2.3.2. Kryteria oceny programów badawczych

Programy badawcze posiadają szereg zalet, ale wybór właściwego programu wymaga określonej wiedzy i doświadczenia osoby decydującej o zastosowaniu konkretnego rozwiązania badawczego. Oceny programu można dokonać na podstawie uniwersalnych kryteriów, które charakteryzują każdy z programów badawczych, to jest informatywność i efektywność badań doświadczalnych [70], [64]. Informatywność programu badań jest określona ilością informacji uzyskanych w wyniku realizacji doświadczeń. Miarą informatywności może być stosunek liczby pomiarów, wymaganych do realizacji danego programu, do liczby pomiarów w programie statystycznym kompletnym. Stosunek obliczamy dla takich samych czynników badanych i ich wartości.

$$I_{(N)} = \frac{N_{(P)}}{N_{(\frac{PS}{DK})}},\tag{2.29}$$

gdzie:

 $I_{(N)}$ – informatywność programu badań,

N(P) – liczba pomiarów dowolnego programu,

 $N_{\left(\frac{PS}{DK}\right)}$ – liczba pomiarów w programie statystyczny kompletnym.

Przyjęcie jedynie miary $I_{(N)}$ jest niewystarczające. W wielowymiarowej przestrzeni czynnikowej Π^{i+1} , przy założeniu dyskretnych wartości x₁, x₂, x₃,, x_k,, x_i otrzymujemy dla każdego z analizowanych programów pewną możliwą liczbę pomiarów wartości czynnika wynikowego *z*, dla różnych układów dyskretnych wartości x_k. Liczba pomiarów nie jest wystarczającym wskaźnikiem informatywności programu, ponieważ za ważniejsze uważa się rozmieszczenie na powierzchni określonej funkcji obiektu badań w wielowymiarowej przestrzeni czynnikowej [70]. W dość prosty sposób, na przykładzie funkcji obiektu, możemy wykazać jaką jest funkcją, co zostało przedstawione w następującej postaci:

$$z = F(x_1)$$
, (2.30)

gdzie:

z-wartość czynnika wynikowego,

 $F(x_1)$ - funkcja wartości x_1 .

Efektywność programu badań doświadczalnych to pojęcie dotyczące kosztów i czasu potrzebnego na ich realizację. Efektywność programu badawczego należy określać jedynie metodą porównawczą, porównując co najmniej dwa programy [70], [64], [65], [1], [38], [41].

Analizując metodykę badań doświadczalnych niezwykle ważne jest określenie liczby układów pomiarowych określających całkowitą liczbą pomiarów do realizacji programów [70].

2.3.3. Programy statyczne selekcyjne wieloczynnikowe

Jednym z programów, który można wykorzystać do programowania badań doświadczalnych jest program statystyczny zdeterminowany selekcyjny wieloczynnikowy **PS/DS-P**. Istotną cechą tego programu jest zmiana wartości wielu czynników badanych w czasie kolejnych pomiarów. Program **PS/DS-P** prowadzi do uzyskania jednej funkcji obiektu, w skład której wchodzą wszystkie istotne czynniki badane X oraz czynnik wynikowy z. W takim przypadku należy wybrać jedną funkcję, która najczęściej jest wielomianem [70]. Stopień wielomianu jest dowolny, ale ze względów praktycznych przyjmuje się wielomian drugiego stopnia:

$$z=b_0 + \sum_{k=1}^{i} b_k x_k + \sum_{k=1}^{i} b_{kk} x_k^2 + \sum_{k< q}^{i} b_{kq} x_k x_q$$
(2.31)

gdzie:

z-czynnik wynikowy,

x_k, *x_q* - czynniki badane (*k*=1, 2..., *i*; *q*=2, 3,..., *i*; *k*<*q*),

i – liczba czynników badanych,

b_k, b_{kk}, b_{kq} – współczynnik regresji.

Do programów statystycznych zdeterminowanych selekcyjnych wieloczynnikowych zaliczamy [70], [48]:

- program PS/DS-P: n^{i-p} zwanym powtarzalnym ułamkowym,
- program PS/DS-P: α, zwany programem ortogonalnym,
- program PS/DS-P: λ, zwany programem rototabilnym.

W niniejszym rozdziale w sposób szczególny przedstawiono opis programów badań, które były rozważane jako plany możliwe do zastosowania w badaniach opisanych w rozprawie.

Program PS/DS-P: n^{i-p}.

Jest to program, który posiada określoną liczbę czynników badanych, każdy może przyjmować *n* wartości. Najbardziej znanym programem jest tu program dwuwartościowy "binarny", dla którego: $n=n_k=2$, k=1, 2..., i, a funkcja obiektu przyjmuje postać:

 $z=F(x_1)$

Stosując podstawowe zasady układów binarnych otrzymujemy wartość czynnika x_1 , która wynosi: x_{1max} ("+") oraz x_{1min} ("-") z tego wynika, iż i = 1, $n_1 = 2$. Na tej podstawie można określić ostateczną liczba pomiarów, które przedstawia tabela 2.4. W tym przypadku N = 2 dla r = 1 [70].

Tabela 2.4. Układ wartości czynnika badanego x1 dla elementarnego programu PS/Dk-21 [70]

Program tego typu nazywamy *elementarnym programem* **PS/DK-2**¹. Prowadząc dalsze rozważania nad tym rozwiązaniem można podać, jak będzie wyglądała kompletacja funkcji obiektu dla czynników badanych x_1 i x_2 [70]:

$$z=F(x_1, x_2)$$
 (2.33)

Każdy z czynników zgodnie z zaprezentowaną zasadą przyjmuje następujące dwie wartości:

$$x_{1} = \begin{cases} x_{1max(+),} \\ x_{1min}(-), \end{cases}$$
$$x_{2} = \begin{cases} x_{2max(+),} \\ x_{2min}(-). \end{cases}$$

Całkowita liczba pomiarów, dlatego przypadku wynosi N = 4, dla r = 1.

Można więc wprowadzić ogólny schemat programu dotyczący funkcji obiektu obejmującego X czynników badanych [70]:

$$z = F(x_1, x_2..., x_i)$$
 (2.34)

Na tej podstawie został sformułowany wzór, którym można się posłużyć, aby obliczyć wymaganą liczbę pomiarów dla tego programu [70].

$$N = r \cdot 2^i, \, \text{dla r} = const. \tag{2.35}$$

W tabeli 2.5 przedstawiono wartości czynników badanych x_1 , x_2 , x_3 dla programu PS/DK-2³ przy założeniu: r = 1, n1 = n2 = n3 = 2, i = 3 [70]

Tabela 2.5. Układ wartości czynników badanych x_1 , x_2 , x_3 , dla programu PS/DK-2³ przy założeniu: r = 1, n1 = n2 = n3 = 2 i = 3 [70]

Pomimo występowania znacznej liczby pomiarów, informatywność tego programu jest na poprawnym poziomie. Opracowanie wyników badań doświadczalnych opiera się na analizie statystycznej **modelu liniowego** (analiza regresji i wariancji). Wykorzystując do badań program **PS/DS-P: 2**^{i-p} na podstawie uzyskanych informacji z programu **PS/DK-2**¹ można wykazać pewną **"nadmiarowość uzyskanych informacji"** niezbędnych do analizy modelu liniowego. Jeżeli ogólną postać funkcji obiektu aproksymujemy wielomianem liniowym, to otrzymamy model liniowy obiektu badań [70]:

$$z = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + \dots + b_i x_i$$
(2.36)

W takim modelu wielkości niewiadome określamy na drodze doświadczalnej następującymi współczynnikami: b_0 , b_1 , b_2 ,..., b_k ..., b_i . W przyjętym modelu liniowym liczba niewiadomych współczynników bo, b_1 ...bi, wynosi: i+1, a każdy współczynnik, może być wyznaczony na podstawie wyników jednego pomiaru.

Dla dwóch pomiarów można ustalić równania modelu liniowego przy *r* = 1, które przyjmują postać:

$$z_1 = b_0 + b_1 x_{11},$$

$$z_2 = b_0 + b_1 x_{12},$$

a następie obliczyć współczynniki funkcji bo i bi:

$$b_1 = \frac{z_2 - z_1}{x_{12} - x_{11}},$$
$$b_o = z_1 - b_1 x_{11}.$$

Na tej podstawie stwierdzono, iż w programie **PS/DK-2**^{*i*} wymagana liczba *N* przekracza liczbę pomiarów niezbędnych do określenia współczynników modelu liniowego. Można wręcz odnotować "nadwyżkę" równań [70]:

$$R = N - (i + 1) = 2^{i} - (i + 1), dla r = 1$$
(2.37)

Program PS/DS-P: 2i-p.

W tym programie liczba pomiarów wymaganych do realizacji kompletnego programu zostaje ograniczona, przy zachowaniu cech związanych z analizą modelu liniowego np. symetrią, ortogonalnością i równością sum kwadratów [70], [65].

Liczba pomiarów wymaganych do realizacji programu **PS/DS-P: 2^{i-p}** określona jest wzorami i w stosunku do programu **PS/DK-2ⁱ** nie może być dowolna, lecz musi spełnić następujące warunki:

$$N = r \cdot 2^{i-p}, dla r = const.$$

$$N \ge i + 1, dla R \ge 0,$$

$$2^{i-p} \ge i + 1, dla r = 1$$

$$p \le -\frac{\log(i+1)}{\log 2} \approx i - 3, 3\log(i+1).$$
(2.40)

Analizując charakterystykę programów *PS/DS-P: 2^{i-p}* stwierdzono, że można zastosować je do badań obiektów, dla których wartość czynników badanych może być ograniczona do dwóch, czyli do układów binarnych, przy czym w takim przypadku jest możliwe przyjęcie modelu liniowego z pominięciem możliwych interakcji [70], [65]. Na bazie programów *PS/DS-P: 2^{i-p}* powstały programy trzywartościowe *PS/DS-P: 3^{i-p}*. Jest to koncepcja, dotycząca sytuacji, w której liczba wartości czynników badanych przyjmuje odpowiednio trzy poziomy: poziom ("+"), poziom ("0"), poziom (-). W badaniach eksperymentalnych programy typu: *PS/DK-2ⁱ*, *PS/DS-P: 2^{i-p}*, *PS/DS-P: 3^{i-p}*, *PS/DS-P: n^{i-p}* są związane z modelem liniowym, co stwarza pewne wątpliwości związane z tym, iż model linowy opisuje płaszczyzny, które nie posiadają punktów ekstremalnych wewnątrz badanych przedziałów. Programy związane z modelem nieliniowym, to znaczy z *wielomianem drugiego stopnia* i wyższymi, wydają się bardziej przydatne do przeprowadzenia optymalizacji procesu badań. Do takich programów zaliczamy [70], [64], [2], [46]:

- program PS/DS-P: α, zwany programem ortogonalnym,

- program **PS/DS-P:** *λ*, zwany programem rototabilnym.

W praktycznym podejściu do realizacji badań eksperymentalnych można przyjąć pewną etapowość związaną z planowaniem i realizacją badań. W pierwszym podejściu można zastosować najpierw program *PS/DS-P: n^{i-p}* lub program *PS/DK-2ⁱ*, wykorzystując w tym przypadku model liniowy. Należy również przeanalizować techniczne możliwości przeprowadzenia pomiarów dla założonych wartości granicznych czynników badanych. Jeżeli ten etap zostanie poddany całościowej analizie, to będzie można podjąć odpowiedzialną decyzję, stwierdzając, czy model liniowy spełnia, czy nie spełnia naszych oczekiwań. Jeżeli nie spełnia, to przechodzimy do realizacji jednego z programów: *PS/DS-P: α* lub *PS/DS-P: λ* lub *PS/DS-P: λ* α.

Istnieje również inne podejście do planowania badań, a mianowicie oparte na założeniu od początku modelu nieliniowego za właściwy, który ostateczne też może być zredukowany do modelu liniowego. W takim przypadku, jeżeli nie ma ograniczeń technicznych związanych z przeprowadzaniem pomiarów, od razu stosujemy jeden trzech programów tj: *PS/DS-P:* α I, *PS/DS-P:* λ lub *PS/DS-P:* λ/α , przyjmując model nieliniowy w postaci wielomianu drugiego stopnia [70], [20]. Zastosowanie wielomianu drugiego stopnia pozwala w ewidentny sposób na zmniejszenie liczby wymaganych pomiarów oraz na zastosowane analizy statystycznej i analizy regresji.

Podstawową cecha programu ortogonalnego PS/**DS-P**: α jest wprowadzenie specjalnych kompozycji (układów) wartości czynników badanych, zapewniających **ortogonalność**, a w przypadku programu **PS/DS-P**: λ **rototabilność** [70], [64], [46], [20]. W programie **PS/DS-P**: α przed przystąpieniem do realizacji badań należy zakodować rzeczywiste wartości czynników badanych x_k symbolami kodowymi $\widetilde{x_k}$ oznaczonymi: $\pm \alpha$, ± 1 , oraz 0. Aby tego dokonać, należy dysponować zakresem czynników badanych:

$x_{1min} \div x_{max}$
$x_{2min} \div x_{2max}$
$x_{kmin} \div x_{kmax}$
$x_{imin} \div x_{imax}$.

Następnym krokiem jest ustalenie "*centrum programu*" oznaczonego według kodu symbolem **0** zgodnie ze wzorem:

$$x_{ko} = \frac{x_{k\,max} + x_{k\,min}}{2} \tag{2.50}$$

Następnie należy przystąpić do określenia "jednostki zmienności" ze wzoru:

$$\Delta x_k = \frac{x_k \max - x_{ko}}{2} \tag{2.51}$$

Wartość α nazywamy **"ramieniem gwiezdnym",** określającym tak zwane **"punkty gwiezdne"**, oznaczone symbolem kodowym: $\mp \propto$. Wartość \propto można określić z równania :

$$\propto^4 + 2^{i-i} \propto^2 - 2^{i-2}(i+0.5n_0) = 0$$
 (2.52)

gdzie:

i - liczba czynników badanych,

n₀ – liczba pomiarów powtarzanych w centrum programu.

Na rys. 2.19 zostały zilustrowane wartości α dla dowolnego czynnika x_k , i dla trzech czynników x_1 , x_2 , x_3 [70].

Rys. 2.19. Schemat kompozycji kodowych wartości czynników badanych: a) dla dowolnego czynnika x_k, b) dla trzech czynników x₁,x₂,x₃ [70]

Dla program **PS/DS-P:** α odpowiednie dane są przedstawione w formie tabelarycznej (tabela 2.6) [70].

i	2	3	4	5
α	1,000	1,215	1,414	1,547
n,	3	4	5	5
n _ĸ	2 ²	2 ³	24	2 ⁵⁻¹
n _o	1	1	1	1
n _a	4	6	8	10
n	9	15	25	27

Tabela 2.6. Wartości charakteryzujące program PS/DS.-P: α [70]

 α – "punkty gwiezdne oznaczone symbolem kodowym $\mp \propto$ "

n_i – poziomy,

nk – "jądro programu",

- no "centrum programu",
- n_{α} "punkty gwiezdne",

n – liczna pomiarów, jaką należy zrealizować dla programu w zależności od liczby czynników badanych.

Analizując zalety programu *PS/DS-P:* α można stwierdzić, że zachowuje on jedynie "*ortogonalność"*, jednak nie zapewnia "*rotatabilności"*, ponieważ centrum programu wynosi n₀=1. Program w praktyce jest zbliżony do programu *PS/DS-P:* α , lecz istnieje zasadnicza różnica, która polega na tym, iż program *PS/DS-P:* λ przyjmuje inne wartości α niż program *PS/DS-P:* α , jak również inną liczbę pomiarów w centrum programu (n₀ >1), inne schematy obliczania współczynników regresji funkcji obiektu [65], [20], [28]. Wartości charakteryzujące program *PS/DS-P:* λ przedstawiono w tabeli 2.7 [70].

i	2	3	4	5	5
α	1,414	1,682	2,000	2,000	2,378
n _i	5	5	5	5	5
n _ĸ	2 ²	2 ³	24	25-1	2⁵
n _o	5	6	7	6	10
n _α	4	6	8	10	10
n	13	20	31	32	52

Tabela 2.7. Wartości charakteryzujące program PS/DS.-P: λ [70]

gdzie:

 α – "punkty gwiezdne oznaczone symbolem kodowym $\mp \propto$ "

n_i – poziomy,

n_k – "jądro programu",

n₀ – "centrum programu",

n_α – "punkty gwiezdne",

n – liczna pomiarów, jaką należy zrealizować dla programu w zależności od liczby czynników badanych.

2.4. Wnioski ogólne i uzasadnienie podjęcia tematu rozprawy

Na podstawie analizy literatury można jednoznacznie stwierdzić, iż proces docierania powierzchni płaskich jest bardzo złożoną obróbką. Jest to proces, na który ma wpływ wiele czynników [32], [63], [83], [88], [87], [74], [78].

Dominującym [16], [17] procesem jest skrawanie za pomocą dawkowanych ziaren ściernych. Stosowane ziarna ścierne posiadają strukturę monokryształów i ich odłamków, przybierają również strukturę kryształów bliźniaczych lub strukturę polikrystaliczną. Pojedyncze ziarno ścierne może posiadać regularny, przestrzenny kształt geometryczny lub przyjmuje postać nieregularnej bryły o wielu narożach, podobnych do piramid. Na rys. 2.20 przedstawiono wielkości charakteryzujące geometrię naroża ziarna. Istotnymi dla procesu obróbki są: kąt naroża β (odpowiednik kąta ostrza) oraz promień zaokrąglenia naroża δ , wyznaczany w płaszczyźnie odpowiadającej przekrojowi głównemu [97].

Rys. 2.20. Wielkości charakteryzujące geometrię naroża ziarna ściernego: kąt naroża β i promień zaokrąglenia δ na rysunku α i γ oznaczają kąty przyłożenia i kąt natarcia [97]

Na prawidłowy przebieg docierania ma wpływ również odpowiednia wielkość ziaren. Podstawowym kryterium klasyfikacji ziaren są ich wymiary [95], [86], [45]. Wymiar charakterystyczny pojedynczego ziarna opisano jako szerokość prostopadłościanu opisanego na ziarnie lub dla materiałów super twardych średnią boków prostokąta opisanego na mierzonym ziarnie w płaszczyźnie obserwacji, co zostało przedstawione na rys. 2.21 [97]. Na realizację procesu docierania ma również wpływ rodzaj materiału obrabianego jak i rozmieszczenie docieranych elementów wewnątrz pierścienia prowadzącego (w separatorze).

Rys. 2.21. Wymiary charakterystyczne ziarna ściernego [97]

Na przebieg procesu docierania jednotarczowego powierzchni płaskich mają również wpływ warunki kinematyczne, (prędkość obrotowa tarczy docierającej oraz prędkość obrotowa pierścienia prowadzącego) [51], [5], [6], [7], [97]. Jeżeli istnieje stała nastawiona prędkość obrotowa tarczy docierającej, to już na prędkość pierścienia prowadzącego ma wpływ wiele czynników. Kolejnym czynnikiem mającym wpływ na przebieg i końcowy efekt docierania, jest nacisk jednostkowy. Zbyt duży nacisk może wpływać niekorzystnie na parametry chropowatości powierzchni po docieraniu [11], [22], [49], [56], [84]. Na realizację procesu ma również wpływ mechanizm zbrojenia tarczy docierającej oraz sposób przygotowania, dozowania i nanoszenia zawiesiny ściernej. Z analizy literatury wynika, że proces dawkowania jest jednym z głównych czynników determinujących wydajność docierania, wpływa również na jego kosztochłonność.

Na podstawie analizy stanu wiedzy można sformułować następujące wnioski ogólne:

- 1. Dostarczenie mikroziaren ściernych (o nieokreślonej geometrii ostrzy) do strefy obróbki jest niezbędnym warunkiem realizacji procesu docierania.
- 2. Ziarna ścierne są przenoszone w substancji nośnej o określonej lepkości.
- W praktyce przemysłowej dostarczanie zawiesiny ściernej odbywa się w sposób punktowy (w określonym miejscu na tarczę docierającą) z nadmiarem.
- 4. W konwencjonalnych układach dawkowania znaczna część dostarczanej zawiesiny ściernej, po pierwszym kontakcie z pierścieniem prowadzącym, jest usunięta z tarczy docierającej i stanowi szkodliwy odpad, wymagający utylizacji.
- Należy zmodyfikować układ dostarczania zawiesiny ściernej tak, aby można było przy pomocy tego samego urządzenia dostarczać zawiesiny ścierne o różnym składzie i właściwościach (lepkości).
- Nanoszenie zawiesiny powinno odbywać się w sposób zaplanowany, zaś rozprowadzenie tak równomierne, aby utworzyć film ścierny o zaplanowanej grubości.
- 7. Zmodyfikowany system dostarczania zawiesiny ściernej powinien być podzielony na:
 - a. układ przygotowania i dawkowania zawiesiny ściernej,
 - b. układ nanoszenia zawiesiny ściernej,
 - c. układ sterujący.
- Układ przygotowania i dawkowania oraz nanoszenia powinny być połączone z układem sterowania tak, aby uzyskać oszczędności w zużyciu zawiesiny ściernej, jednocześnie nie pogarszając wydajności i jakości obróbki.
- Zmodyfikowane urządzenie przygotowania i dawkowania oraz nanoszenia zawiesiny ściernej powinno być skonstruowane w taki sposób, aby można było je adaptować do pracy z różnymi modelami docierarek jednotarczowych.

3. CELE PRACY I HIPOTEZY BADAWCZE

Podjęcie tematu badawczego związanego z dozowaniem i nanoszeniem zawiesiny ściernej wynika z potrzeby zastosowania rozwiązania, które pozwoli na precyzyjne dozowanie zawiesiny ściernej bezpośrednio na tarczę docierającą w postaci mgły. W efekcie czego doprowadzi to do znacznego ograniczenia jej zużycia. Ze względu na możliwość wprowadzenia rozwiązania, które w sposób zaplanowany i zautomatyzowany nakłada założoną grubość warstwy ściernej (w przeliczeniu na jeden obrót docieraka) podjęto realizację pracy własnej.

3.1. Cele pracy

Celem rozprawy jest określenie wpływu parametrów dawkowania wymuszonego zawiesiny ściernej, to jest zawartości procentowej ziaren ściernych K dawki zawiesiny ściernej V_s, i lepkości nośnika zawiesiny L_e, na efekty docierania jednotarczowego powierzchni płaskich wykonanych z ceramiki technicznej (Al₂O₃). Zastosowanie wymuszonego systemu przygotowania, dozowania i nanoszenia pozwoli na znaczące zmniejszenie zużycia zawiesiny ściernej w porównaniu z konwencjonalnym systemem dawkowania

3.2. Hipotezy badawcze

Na podstawie szczegółowej analizy rozpatrywanego zagadnienia naukowego oraz dotychczasowych badań własnych można sformułować następujące hipotezy naukowe:

- Podstawowe parametry dawkowania wymuszonego, a więc zawartość procentowa ziaren ściernych w nośniku K, wielkość dawki zawiesiny ściernej V_s oraz lepkość nośnika ziaren L_e, mają istotny wpływ na parametry chropowatości powierzchni oraz ubytek docieranych elementów wykonanych z ceramiki Al₂0₃.
- Istnieje możliwość opracowania modelu matematycznego, który pozwoli na: optymalizację badanego procesu docierania.

4. OGÓLNY SCHEMAT REALIZACJI BADAŃ WŁASNYCH

4.1. Zakres rozprawy

Aby osiągnąć wytyczone cele ogólne należy zrealizować w kolejności:

- 1. Opracowanie koncepcji wymuszonego układu przygotowania, dozowania i nanoszenia zawiesin ściernych wraz z układem sterowania.
- 2. Zbudowanie prototypu innowacyjnego urządzenia mechanicznego.
- 3. Zbudowanie prototypu układu sterowania.
- 4. Przeprowadzenie prób technicznych wykonanych urządzeń.
- 5. Wdrożenie ewentualnych zmian i poprawek.
- 6. Wybór materiału obrabianego w celu przeprowadzenia eksperymentów.
- 7. Wybór materiału ściernego i nośnika ziaren, na bazie których zostanie przygotowana zawiesina ścierna.
- 8. Wybór programu badań.
- 9. Przeprowadzenie badań wstępnych.
- Przeprowadzenie badań zasadniczych w celu określenia wydajności docierania w funkcji K, Vs, Le.
- 11. Analiza wyników i sformułowanie wniosków.

Przed przystąpienie do eksperymentów opracowano schemat przygotowania i realizacji badań własnych, co przedstawiono na rys. 4.1.

Rys. 4.1 Ogólny schemat realizacji badań własnych

5. PRZYGOTOWANIE BADAŃ EKSPERYMENTALNYCH

5.1. Konwencjonalny system dozowania zawiesiny ściernej docierarki Abralap 380

Urządzenie, które wykorzystano do przeprowadzenia eksperymentów badawczych, to docierarka jednotarczowa Abralap 380. Obrabiarka jest wyposażona w konwencjonalny system dozowania zawiesiny ściernej, w skład systemu wchodzi element spustowy i pompa (rys. 5.1).

Rys. 5.1. Docierarka jednotarczowa z konwencjonalnym systemem dozowania zawiesiny ściernej (1- obrabiarka Abralap 380, 2- element spustowy, 3- pompa)

W konwencjonalnym systemie dozowania zawiesina wypływa z elementu spustowego w sposób swobodny, co przedstawiono na rys. 5.2.

Rys. 5.2. Obrabiarka Abralap 380 z fabrycznie zamontowanym systemem dozowania (1-element spustu zawiesiny bez możliwości dokładnej regulacji strumienia, 2- ciągła struga zawiesiny podawana na docierak)

Taki sposób dozowania jest mało precyzyjny, zaś zawiesina ścierna wypływa z dużym naddatkiem. Wyniki badań wydajności pompy dozującej (rys. 5.3) w dalszej części pracy posłużą do analizy porównawczej zużycia zawiesiny ściernej, przy zastosowaniu wymuszonego systemu dawkowania.

Rys. 5.3. Pompa wraz ze zbiornikiem na zawiesinę ścierną (1-pompa, 2-zbiornik, 3-przewód zasilający, 4-przewód powrotny)

Analizując konwencjonalny system dawkowania obrabiarki Abralap 380, można stwierdzić, że na wydajność dozowania w tym rozwiązaniu ma jedynie wpływ lepkość przygotowanej zawiesiny, która zależy od procentowej zawartości jej składników [26], [10]. W wyniku przeprowadzonych prób określono wydatek na poziomie 26 ml/min na obrabiarce Abralap 380 (1,56 dm³/h). Wadą konwencjonalnego systemu dawkowania jest to, że przygotowana zawiesina nie podlega stałemu mieszaniu (w czasie postoju obrabiarki), co skutkuje sedymentacją cząstek i zaburza założoną procentową zawartość mikroziaren ściernych dawkowanych podczas procesu obróbkowego. Kolejną wadą jest dawkowanie zawiesiny ściernej z dużym naddatkiem. Duży wydatek zawiesiny podawanej strumieniem powoduje większe zanieczyszczenie obrabiarki (rys. 5.4). W takim przypadku konieczna jest dodatkowa obsługa związana z częstym oczyszczaniem obrabiarki z osadów (szlamu).

Rys. 5.4. Osadzanie szlamu na wewnętrznej części obrabiarki Abralap 380 (1-odpływ substancji, 2-gęsty, osad przywarty do ścian rynny spustowej, 3- narzędzie do usuwania osadu)

5.2. Stanowisko badawcze z wymuszonym układem dozowania zawiesiny ściernej - wersja l

5.2.1. Koncepcja układu

Dla zrealizowania celu rozprawy opracowano koncepcję wymuszonego systemu dozowania i nanoszenia zawiesiny ściernej, którego schemat przedstawiono na rys. 5.5. Układ dozowania został podzielony na dwa zasadnicze zespoły. W skład pierwszego zespołu wchodzi ciśnieniowy zbiornik zamknięty wraz z mieszadłem o napędzie hydraulicznym, do którego, po napełnieniu zawiesiną ścierną, wprowadza się powietrze pod ciśnieniem. W skład drugiego zespołu wchodzi elektrozawór z regulatorem czasu włączenia i wyłączenia. System posiada precyzyjny rozpylacz, który uruchamia zawór sterujący [35].

Wymuszony system (według koncepcji I) dozowania i nanoszenia zawiesiny ściernej składa się z następujących elementów (rys. 5.5):

- 1) kompresor powietrza,
- 2) silnik elektryczny do napędu pompy,
- 3) pompa hydrauliczna,
- 4) zbiornik oleju,
- 5) rozdzielacz oleju hydraulicznego,
- 6) silnik hydrauliczny do napędu mieszadła,
- 7) ciśnieniowy zbiornik zawiesiny ściernej,
- 8) mieszadło zawiesiny ściernej,
- 9) licznik przepływu zawiesiny ściernej,
- 10) elektrozawór sterujący wypływem zawiesiny ściernej,
- 11) potencjometr nastawu czasu między otwarciami (nastawa OFF) 0,5-45 min,
- 12) potencjometr czasu otwarcia (nastawa ON) 0,5-10 s.,
- 13) zasilanie elektryczne elektrozaworu (230 V),
- 14) zasilanie silnika elektrycznego napędu pompy (230 V),

- 15) zasilanie elektryczne kompresora powietrza (230V),
- 16) włącznik silnika elektrycznego,
- 17) regulator ciśnienia powietrza wpływającego do zbiornika z zawiesiną ścierną,
- 18) regulator ciśnienia powietrza wpływającego do rozpylacza,
- 19) rama układu dozowania wraz z podwoziem,
- 20) rozpylacz,
- przewód zasilający w sprężone powietrze zbiornik ciśnieniowy z zawiesiną ścierną i rozpylacz,
- 22) przewody wysokiego ciśnienia dostarczające olej do napędu mieszadła,
- 23) przewód dostarczający sprężoną zawiesinę ścierną do rozpylacza,
- 24) docierarka jednotarczowa Abralap 380.

5.2.2. Opis budowy stanowiska

Na podstawie opracowanej I koncepcji wymuszonego układu dozowania zbudowano prototyp, który jest przystosowany do współpracy z docierarką Abralap 380. Wymuszony system dawkowania i nanoszenia zawiesiny ściernej podzielono na dwa układy (rys. 5.6 i 5.7).

Rys. 5.6. Układ pierwszy wymuszonego systemu dawkowania i nanoszenia zawiesiny ściernej (1 - zespół nanoszenia, 2 - rozpylacz, 3 - elektrozawór wraz potencjometrami, 4 - licznik zużycia substancji ściernej, 5 - zawór odcinający)

Rys. 5.7. Układ drugi wymuszonego systemu dawkowania i nanoszenia zawiesiny ściernej (1 - zbiornik z zawiesiną ścierną, do którego dostarczane jest sprężone powietrze, 2 - hydrauliczny układ napędowy systemu mieszania, 3 - silnik napędu mieszadła wewnętrznego, 4 - zbiornik oleju hydraulicznego, 5 - rozdzielacz hydrauliczny)

Układ pierwszy odpowiedzialny jest za bezpośrednie nanoszenie zawiesiny ściernej na tarczę docierającą. Składa się z elektrozaworu, kompresora z dwoma regulatorami ciśnienia i rozpylacza. Tak zbudowany system nanoszenia, równomiernie i w sposób zaplanowany pokrywa warstwą zawiesiny powierzchnię docieraka. Zawiesina jest podawana okresowo, a następnie następuje przerwa do czasu ponownego uruchomienia elektrozaworu. Operator ma możliwość zaplanowania czasu otwarcia rozpylacza i czasu przerw pomiędzy kolejnym nanoszeniem dawki.

Układ drugi odpowiedzialny jest za przygotowanie zawiesiny ściernej. Głównym elementem tego podzespołu jest zamknięty zbiornik wraz z mieszadłem, do którego po napełnieniu zawiesiną ścierną wprowadza się sprężone powietrze. Sprężone powietrze wypycha ciecz ze zbiornika, w którym odbywa się proces ciągłego mieszania [35]. Tak przygotowana zawiesina ścierna przewodem wysokiego ciśnienia dostarczana jest do elektrozaworu zespołu pierwszego.

Prototyp ten poddano wstępnym próbom w celu sprawdzenia poprawności działania.

5.2.3. Wyniki prób docierania i ich ocena

Szczegółowej weryfikacji poddano wszystkie zespoły, aby określić wady i zalety zaprojektowanego rozwiązania. Analizując system stwierdzono, że:

- System pozwala w znaczący sposób ograniczyć zużycie substancji ściernej w porównaniu do układu dozowania konwencjonalnego, w jaki jest wyposażona docierarka jednotarczowa.
- Układ umożliwia nanoszenie zawiesiny ściernej o lepkości przekraczającej, 300 [mPa·s].
- Ciśnienie powietrza w zbiorniku z substancją ścierną w zależności od lepkości cieczy powinno zawierać się w przedziale od 0,1 do 2,5 bara. Wartość ciśnienia wypływu należy ustawić przy pomocy regulatora indywidualnie dla danej lepkości. Ciśnienie to nie może

przewyższać ciśnienia nanoszenia przez rozpylacz na docierak, ponieważ spowoduje to zakłócenia w dawkowaniu.

- Zainstalowany kompresor o wydajności 180 l/min i poborze mocy 2,2 KWh jest wystarczający.
- Zainstalowany układ hydrauliczny odpowiedzialny za mieszanie substancji w celu zapobiegania sedymentacji jest wydajny, ale zużywa dużo energii (około 3 KWh) i jest głośny.
- Rozdzielacz hydrauliczny sterujący przepływem oleju do silnika hydraulicznego ma wystarczający przepływ.
- Zawór sterujący otwarciem i zamknięciem wypływu substancji ściernej ze zbiornika do rozpylacza działa poprawnie.
- Sterownik elektrozaworu pozwala ustawiać czas między otwarciami w przedziale od 0,5 s do 45 min oraz czas otwarcia w przedziale od 0,5 s do 10 s. Zakres tej pracy jest niezadawalający, ponieważ uniemożliwia to dawkowanie w szerszym zakresie, który dotyczy czasu nakładania i odstępu pomiędzy kolejnymi cyklami.
- Urządzenie nanoszące posiada szeroki zakres regulacji strumienia i dawki, jednak wypływ jest możliwy tylko przy zwolnionej iglicy. W tym rozwiązaniu iglica służy jedynie do regulacji wypływu dawki. Jest to pewien mankament tego rozwiązania, ponieważ po zamknięciu zaworu sterującego pewne ilości zawiesiny ściernej spływają na tarczę docierającą w sposób niekontrolowany.
- Kolejną kwestią do rozwiązania jest zmiana sposobu podawania powietrza do rozpylacza.
 W tym rozwiązaniu powietrze jest podawane w sposób ciągły, co powoduje pewne zapylenie cząsteczkami substancji ściernej w pomieszczeniu. Inne niepożądane skutki to zbędne zużycie sprężonego powietrza w sytuacji, gdy nie odbywa się nanoszenie substancji ściernej.

Po przeprowadzeniu analizy skuteczności działania opracowanego wymuszonego systemu dozowania i nanoszenia podjęto decyzję o wprowadzeniu pewnych modyfikacji, które poprawią wydajność, dokładność dozowania i sposób mieszania. Zostanie również zbudowany elektroniczny układ sterowania. Wszystkie te zabiegi podyktowane są faktem, iż prototypowe rozwiązanie, choć działa poprawnie, to dla celów eksperymentu nie spełnia wszystkich oczekiwań. Na tej podstawie podjęto decyzję o modyfikacji pierwszej wersji urządzenia. Ostateczne rozwiązanie ma mieć charakter utylitarny, co może spowodować wdrożenie tego rozwiązania do produkcji przemysłowej [35], [10], [36].

5.3. Stanowisko badawcze z wymuszonym układem dozowania zawiesiny ściernej - wersja ostateczna

Nowy układ, który umownie został nazywany "wersją ostateczną", został zmodyfikowany w taki sposób, aby zwiększyć jego skuteczność działania. Poprawiono w nim system sterowania, sposób nanoszenia zawiesiny ściernej, zmodyfikowano zespół ciągłego mieszania i zbiornik zawiesiny. Układ zawiera również dwa elektroniczne sterowniki sprzężone z dwoma elektrozaworami. Zastosowano precyzyjne sterowanie iglicą urządzenia nanoszącego, wykorzystując do tego celu siłownik pneumatyczny. Zintegrowano system sterowania oraz wyposażono układ w kamerę, której zadaniem jest rejestracja procesu na dysku komputera. W zmodyfikowanym układzie zbudowano kabinę przestrzeni roboczej, co zmniejszyło zapylenie pomieszczenia. System jest również przystosowany do współpracy z innymi docierarkami jednotarczowymi. Do jego konstrukcji użyto modułowych profili aluminiowych, a strefę roboczą w całości podświetlono w kolorze ułatwiającym obserwację obróbki.

Na rys. 5.8 przedstawiono zmodyfikowany układ dawkowania i nanoszenia zawiesiny ściernej zainstalowany na docierarce Abralap 380.

Rys. 5.8. Widok ogólny zmodyfikowanego układu wymuszonego dawkowania zawiesiny na tarczę docierającą

Na rys. 5.9 przedstawiono pozostałe zespoły wchodzące w skład zmodyfikowanego układu .

Rys. 5.9. Elementy wymuszonego układu dozowania (1-kompresor, 2-napęd wirnika mieszadła, 3regulator ciśnienia wewnątrz zbiornika, 4-pokrywa zbiornika wraz z elementami mocującymi)

5.3.1. Opis konstrukcji stanowiska

Na rys. 5.10 przedstawiono układ sterowania systemem wymuszonego dawkowania, wraz z opisem klawiszy funkcyjnych.

Rys. 5.10. Elektroniczny układ sterowania (1 - aluminiowa obudowa, 2 - wyświetlacz sterownika elektrozaworu 3 - wyświetlacz sterownika, 4 - wyłącznik główny zasiania układu sterowania, 5 - włącznik sterownika, 6 - włącznik sterownika, 7 - włącznik oświetlenia, 8 - włącznik elektrozaworu, 9 - włącznik elektrozaworu)

Układ sterowania powstał, na bazie autorskiego pomysłu, z następujących podzespołów:

 dwóch programowanych przekaźników czasowych z wyświetlaczami. Są to układy cyklicznego przełączania, o możliwości zaprogramowania czasu załączenia i czasu wyłączenia przekaźnika (rys. 5.11) [99],

Rys. 5.11. Programowany przekaźnik czasowy (1 - zasilanie układu, 2 - układ wyjściowy NC, 3 - układ wyjściowy NO, 4 - cyfrowy, 5 - przycisk ustawienia czasu wyłączenia przekaźnika, 6 - przycisk ustawienia czasu załączenia przekaźnika) [99]

 zaworów elektromagnetycznych: MODEL:2V08-1/4 (rys.5.12) i MODEL: 4V210-1/4 (rys. 5.13), [100] które spełniają ważną funkcję w układzie sterowania,

Rys. 5.12. Zawór elektromagnetyczny 2/2 drożny bezpośredniego działania - MODEL:2V08-1/4, (1 - cewka elektrozaworu, 2 - aluminiowy korpus, 3 - podejście gwintowe ¼", 4 - podejście elektryczne 230V) [100]

Rys. 5.13. Elektrozawór siłownika 5/2 MODEL: 4V210-1/4, (1 - cewka elektrozaworu 2 - aluminiowy korpus, 3 - złączka wtykowa prosta ¼", 4 - podejście elektryczne 230V) [100]

• mini siłownika pneumatycznego (rys. 5.14), który steruje otwarciem iglicy rozpylacza,

Rys. 5.14. Mini siłownik pneumatyczny CJPB 15x15 (1 – podejście sprężonego powietrza, 2 – mocowanie, 3 – tłoczysko siłownika [100]

• zasilacza (rys. 5.15) [99].

Rys. 5.15. Zasilacz 12V 5A [99]

Układ sterujący, skonfigurowany z elementów przedstawionymi wcześniej, ma za zadanie sterowanie systemem wymuszonego dawkowania, dozowania i nanoszenia zawiesiny. Do jego zadań należy sterowanie czasem nanoszenia substancji ściernej na docierak oraz sterowanie czasem przerwy pomiędzy kolejnymi cyklami nanoszonej warstwy. Układ pozwala na programowanie w szerokim zakresie i to programista ustala skalę czasową (minutową lub sekundową), co daje możliwość precyzyjnego zaplanowania procesu. Znając prędkość obrotową docieraka oraz dawkę i czas nanoszenia, można przewidzieć, jak gruba warstwa pokryje powierzchnię roboczą tarczy docierającej po jednym obrocie. Daje to duże oszczędności w zużyciu zawiesiny ściernej.

Na rys. 5.16 przedstawiono zintegrowany system dawkowania i nanoszenia zawiesiny ściernej po wprowadzeniu zaplanowanych modyfikacji, który współpracuje z elektronicznym układem sterowania.

Rys. 5.16. Zintegrowany system dawkowania i nanoszenia zawiesiny (1 - Iglica dyszy natryskowej, 2 - regulator wielkości plamy nanoszonej na docierak,3 - dysza rozpylająca z gniazdem, 4 - siłownik pneumatyczny sterujący iglicą, 5 - przyłącze doprowadzające sprężoną zawiesinę ścierną do systemu, 6 - zawór odcinający dopływ powietrza do rozpylacza, 7 - regulator powietrza dostarczanego do układu)

W tym rozwiązaniu zaproponowano nowy sposób dostarczania zawiesiny do urządzenia bezpośrednio nanoszącego warstwę ścierną na docierak, jak również zamontowano specjalny siłownik pneumatyczny, który steruje iglicą rozpylacza. Tak skonstruowany układ (rys. 5.17) pozwala nanosić zawiesinę ścierną w sposób zaplanowany i kontrolowany [35],[36], [10].

Rys. 5.17. Układ nanoszący substancję ścierną na docierak (1 - kształt plamy, którą tworzy nanoszona zawiesina ścierna, 2 - kierunek obrotu tarczy docierającej, 3 - nałożona warstwa zawiesiny)

Zmodyfikowany układ nanoszenia umożliwia zmianę kształtu plamy nanoszonej warstwy. Na rys. 5.18 zaznaczono poglądowo eliptyczne pola, jakie tworzy naniesiona warstwa zawiesiny ściernej. Pole może być umieszczane w różnych miejscach docieraka, pod różnym kątem i o różnej powierzchni.

Rys. 5.18. Eliptyczny kształt jaki przyjmuje strumień nakładanej warstwy, z możliwością umiejscowienia go w różnych miejscach docieraka (1 - położenie rozpylacza, 2, 3, 4 - różne położenia plamy i jej wielkość)

Urządzenie umożliwia również nanoszenie plamy zbliżonej kształtem do okręgu, jak również punktowe i kroplowe dozowanie zawiesiny ściernej (rys. 5.19).

Rys. 5.19. Kształt zbliżony do okręgu jaki przyjmuje strumień nakładanej warstwy (1-regulator kształtu plamy nanoszonej na tarczę docierającą, 2, 3, 4 - różne położenia plamy zawiesiny ściernej)

Jak można zaobserwować, wielkość i kształt plamy zależy od zadanych ustawień. Można również stwierdzić, iż układ pozwala na dozowanie wielkości pojedynczej dawki zawiesiny, co przekłada się na możliwość zaplanowania całkowitego zużycia substancji ściernej w zaplanowanym procesie. System nanoszenia zapewnia utrzymanie pewnej założonej grubości nanoszonej warstwy na powierzchni docieraka podczas procesu docierania. Na rys. 5.20 przedstawiono pokrycie powierzchni docieraka zawiesiną po zastosowaniu opisywanego systemu. Można zauważyć jednolite pokrycie całej powierzchni tarczy docierającej, o czym świadczy charakterystyczny połysk jaki tworzy naniesiona zawiesina ścierna [10].

Rys. 5.20. Pokrycie powierzchni docieraka po zastosowaniu wymuszonego systemu przygotowania dozowania substancji ściernej (1 - połyskująca powierzania po naniesieniu zawiesiny ściernej)

Kolejnym ważnym elementem systemu jest układ odpowiedzialny za przygotowanie zawiesiny ściernej w zamkniętym zbiorniku, do którego doprowadzane jest sprężone powietrze. Konstrukcja dna zbiornika zapewnia dobre warunki mieszania zawiesiny w sposób ciągły. Mieszadło ma napęd pneumatycznym oraz wirnik o kształcie śrubowym (rys. 5.21).

Rys. 5.21. Układ przygotowania zawiesiny ściernej (1 - śruba mieszadła, 2 - smok, 3 - zasilanie substancją ścierną aparatu nanoszącego, 4 - pokrywa zbiornika, 5 - zawór bezpieczeństwa, 6 - regulator ciśnienia powietrza dostającego się do zbiornika mieszającego, 7 - manometr ciśnienia powietrza, 8 - regulator prędkości obrotowej mieszadła, 9 - przyłącze sprężonego powietrza)

5.3.2. Wyniki i analiza badań wstępnych

Głównym celem badań wstępnych było określenie wartości ubytku masowego i liniowego elementów wykonanych z ceramiki technicznej Al₂O₃ oraz oszacowanie zużycia zawiesiny ściernej przy konwencjonalnym systemie dawkowania. W badaniach wstępnych mierzono również lepkość nośnika ziaren ściernych na bazie oleju maszynowego LAN-68 i nafty kosmetycznej (w zależności od proporcji zmieszania tych dwóch składników) [101].

Przed przystąpieniem do badań zasadniczych przyjęto stałe warunki docierania, które zapisano w tabeli 5.1.

Prędkość obrotowa tarczy docierającej	60 obr/min
Nacisk jednostkowy	0,0446 MPa
Czas docierania	20 min

Tabela 5.1. Zestawienie stałych warunków docierania

Następnie dokonano pomiaru wydatku konwencjonalnego systemu dawkowania zawiesiny. Ustalono, że zużycie zawiesiny ściernej jest na poziomie 26 ml/min (1560 ml/h). W wyniku badań wstępnych ustalono również, że układ nie zapewnia prawidłowego ciągłego mieszania zawiesiny ściernej. Nie ma możliwości dokładnej regulacji ilości wypływającej zawiesiny ściernej po włączeniu pompy dozującej. Wpływa to na przyspieszony proces sedymentacji ziaren ściernych już w zbiorniku mieszania.

Wyniki badań lepkości nośnika zawiesiny ściernej przygotowanej na bazie oleju maszynowego LAN-68 i nafty kosmetycznej, w zależności od różnych proporcji składników, przedstawiono w tabeli 5.2.

Tabela 5. 2. Lepkość nośnika	zawiesiny	ściernej
------------------------------	-----------	----------

Stosunek oleju maszynowego	Lepkość nośnika zawiesiny ściernej
do nafty kosmetycznej	L₀ [mPa·s]
(wagowo)	
10/10	10,3
18/10	16,5
30/10	23
42/10	29,5
50/10	34

W kolejnym etapie badań wstępnych ustalono poziom ubytku masowego i liniowego elementów wykonanych z ceramiki Al₂O₃ przy zastosowaniu konwencjonalnej metody dawkowania. Substancja ścierna, której użyto, składała się z 10% (wagowo) ziaren ściernych. W tabeli 5.3 i 5.4 przedstawiono wyniki badań wstępnych docierania powierzchni płaskich przy następujących warunkach:

- prędkość obrotowa tarczy docierającej 60 obr/min,
- nacisk jednostkowy 0,0446 MPa,
- zawartość ziaren ściernych K = 10 %,
- lepkość nośnika ziaren ściernych 10,3 mPa·s,
- dawka zawiesiny ściernej V_s = 260 ml/10 min,
- czas realizacji procesu t = 10 min.

W tabeli 5.5 i 5.6 przedstawiono zaś wyniki badań wstępnych docierania powierzchni płaskich elementów z Al₂O₃ przy następujących warunkach:

- prędkość tarczy docieraka 60 obr/min,
- nacisk jednostkowy 0,0446 MPa,
- zawartość ziaren ściernych K = 10 %,
- lepkość nośnika ziaren ściernych 10,3 mPa·s,
- dawka zawiesiny ściernej V_s = 260 ml/10 min,
- czas realizacji procesu t =20 min.

Stwierdzono, iż po 10 min docierania elementów wykonanych z Al₂O₃ i konwencjonalnej metodzie dozowania zawiesiny ściernej, ubytek masowy średnio osiąga wartość 0,0816 g, a średni ubytek liniowy ma wartość 121,1 µm. Po wydłużeniu czasu docierania do 20 min ubytek masowy wyniósł 0,151 g, a ubytek liniowy 227,8 µm. Wyniki te pozwoliły na oszacowanie wielkości ubytku masowego i liniowego elementów docieranych przy użyciu konwencjonalnego systemu dozowania zawiesiny ściernej, w jaki jest wyposażona przez producenta obrabiarka Abralap 380. Uzyskane wyniki posłużą jako dane porównawcze do oceny wymuszonego systemu dozowania i nanoszenia, w który, dla potrzeb przeprowadzenia eksperymentów, została wyposażona docierarka jednotarczowa.

Tabela 5.3. Zestawienie analizy wyników ubytku masowego (czas docierania t = 10 min)

Tabela 5.4. Zestawienie analizy wyników ubytku liniowego (czas docierania t = 10 min)

5.4. Charakterystyka docieranych próbek

Dla przeprowadzenia eksperymentów związanych z wykorzystaniem wymuszonego systemu dozowania i nanoszenia zawiesiny ściernej użyto próbek z ceramiki technicznej Al₂O₃, o przekroju walcowym (rys. 5.22).

Rys. 5.22. Elementy docierane z ceramiki Al₂0₃ [102]

Materiał zastosowany do badań to ceramika w stanie surowym, wytworzona na potrzeby eksperymentu i dostarczona przez producenta (Zakład Ceramiki Specjalnej Ceramit, Brzeźnica) po zakończeniu procesu wypalania. Ceramika Al₂O₃ ma właściwości podane w tabeli 5.7 [102].

Tabela 5.7	Właściwości	ceramiki Al ₂ O ₃
------------	-------------	---

Właściwości	Jednostka	Al ₂ O ₃
Gęstość	kg/dm ³	3,93
Twardość Vickersa	HV	1800
Twardość Rockwella	HRC	80
Współczynnik	αx10 ⁻⁶ /K	9,10
rozszerzalności		
cieplnej α		
Przewodność cieplna	W/mk	25
Maks. temp pracy	°C	1850
Moduł Younga	GPa	380
Wytrzymałość na	MPa	220
zginanie przy (800°C)		
Wytrzymałość na	MPa	1500
ściskanie przy (800°C)		
Odporność na	MPa m ^{1/2}	4,6
pęknięcia kruche		
Oporność elektryczna	Oh/m	108
przy (600°C)		

Ceramika Al₂O₃ wykorzystana do badań to materiał o bardzo wysokiej twardości. Wykazuje również wysoką odporność na działanie wysokich temperatur, posiada wysoką oporność elektryczną, wykazuje bardzo dobre właściwości w trudnym środowisku chemicznym i gazowym. Ceramika jest materiałem kruchym [72], [81], [36], [63]. Odkształca się sprężyście, aż do momentu zniszczenia. W tabeli 5.8 przedstawiono wymiary badanych elementów ceramicznych.

Tabela 5.8. Średnie wymiary próbek przed docieraniem

Materiał	Wysokość	Średnica	Pole docieranej	Masa
	[mm]	[mm]	powierzchni	[g]
			elementu	
			[mm ²]	
Al ₂ O ₃	4,85	17,82	85,89	4,66

5.5. Przygotowanie zawiesiny ściernej

Przeprowadzenie eksperymentów wymaga przygotowania substancji ściernej dedykowanej do obróbki danego materiału. W tym przypadku materiał obrabiany to ceramika Al₂O₃, a materiał ścierny to ziarna węglika krzemu 98C F400/17 [66], [86], [95]. Na rys. 5.23 przedstawiono zdjęcie zastosowanych ziaren węglika krzemu (przy 200 krotnym powiększeniu roboczym) [103].

Rys. 5.23. Użyty w badaniach węglik krzemu 98C F400/17 w 200 krotnym powiększeniu roboczym, (mikroskop skaningowy JOEL JSM-7800F) [103]

Ziarna ścierne w procesie docierania muszą być zatopione w nośniku. W tym przypadku nośnikiem jest mieszanina oleju maszynowego LAN-68 i nafty kosmetycznej. W celu sprawdzenia wpływu podstawowych czynników dawkowania, to jest: zawartości procentowej ziaren K [%], dawki zawiesiny V_s [ml/20 min] oraz lepkości nośnika L_e [mPa·s], sporządzono zestaw zawiesin (tabela 5.9).

Lp.	Zawartość ziaren ściernych K [%]	Lepkość nośnika Le [mPa s]
1	15	10,3
2	9	16,5
3	21	16,5
4	5	23
5	15	23
6	25	23
7	9	29,5
8	21	29,5
9	15	34

Tabela 5.9. Stosowane udział procentowe ziaren ściernych i wartości lepkość nośnika (w różnych konfiguracjach)

Skład opracowano na podstawie badań wstępnych. Następnie określono wartości maksymalne i minimalne K i Le, zaś na podstawie wybranego planu badań określono pozostałe wartości czynników badanych.

5.5. Sposób oczyszczania powierzchni próbek po docieraniu

Oczyszczenie elementów po docieraniu jest niezbędnym zabiegiem przed przystąpieniem do pomiarów. Jako urządzenia myjącego użyto myjki ultradźwiękowej TYP UM-0,5. Proces mycia próbek odbył się w kąpieli benzyny ekstrakcyjnej, co zapewnia wysoką jakość powierzchni po umyciu. Na tak przygotowanych próbkach dokonano pomiarów unikając niepotrzebnych zakłóceń.

5. 6. Metody badań i aparatura

5.6.1 Sposób oceny kształtu ziaren ściernych

Realizacja badań własnych wymagała specjalistycznej aparatury badawczej i pomiarowej. Na podstawie opracowanej koncepcji wymuszonego przygotowania, dozowania i nanoszenia zawiesiny zbudowano specjalistyczne stanowisko, na którym docierano płaskie elementy z ceramiki Al₂O₃. Do pomiarów użyto kilku urządzeń. Pierwszym jest mikroskop skaningowy (rys. 5.24) [103]. Mikroskop posłużył do jakościowej analizy kształtu ziaren ściernych użytych w badaniach.

Rys. 5.24. Mikroskop skaningowy JOEL JSM-7800F [103]

5.6.2. Sposób oceny lepkości nośnika płynnego ziaren ściernych

Kolejnym urządzeniem pomiarowym był wiskozymetr rotacyjny, który przedstawiono na rys. 5.25 [104]. Urządzenie to pozwoliło na pomiar lepkości przygotowanego płynu.

Rys. 5. 25. Wiskozymetr rotacyjny [104]

5.6.3. Sposób oceny ubytku masowego próbek

Do pomiaru ubytku masowego próbek użyto wagi laboratoryjnej (rys. 5.26) [105]. Dane techniczne tego urządzenia przedstawiono w tabeli 5.10.

Rys. 5.26. Widok wagi laboratoryjnej Radwag Was 220/X [105]
	, o i
Obciążenie maksymalne	220 g
Obciążenie minimalne	10mg
Dokładność odczytu	0,1 mg
Zakres tary	-220 g
Powtarzalność (5%, max)	0,08mg
Liniowość	±0,2 mg
Czas stabilizacji	2s
Adiustacja wewnętrzna	automatyczna
Klasa dokładności OIML	1
Wyświetlacz	5"(pojemnościowy, dotykowy)
Obsługa bezdotykowa	2 czujniki podczerwieni
Bazy danych	7 baz
Interfejs	2×RS232, USB-A, USB-B, Wi-Fi®,
Zasilanie	100 ÷ 240 V AC 50 / 60 Hz
Maksymalny pobór mocy	250 mA
Temperatura pracy	+10 ÷ +40°C
Wymiar szalki	ø100 mm

5.6.4. Sposób oceny ubytku liniowego próbek

Pomiaru ubytku liniowego dokonano przy pomocy mikromierza zewnętrznego (rys. 5.27) [106]. Zastosowany przetwornik elektroniczny wraz z cyfrowym wyświetlaczem zapewniają żądaną dokładność pomiaru. Szczegółowe dane techniczne mikromierza zostały zawarte w tabeli 5.11.

Rys. 5.27. Mikromierz cyfrowy [106]

Zakres pomiarowy	0-25 mm
Rozdzielczość	0,001 mm
Błąd maksymalny	0,001 mm
Stopień	IP65
zabezpieczenia	
Powierzchnie	węglik spiekany
pomiarowe	
Dodatkowe	funkcja ABS, funkcja oszczędzania baterii (automatyczne wyłączenie),
informacje	sygnalizacja wyczerpania baterii, skok śruby mikrometrycznej 2 mm/obr.
Zgodność z normami	DIN 863

5.6.5. Sposoby oceny chropowatości powierzchni próbek po docieraniu

Pomiaru chropowatości powierzchni obrobionych elementów dokonano wykorzystując dwa urządzenia. Pierwsze urządzenie to MarSurf XR 20 z GD 120 (rys. 5.28) [107]. Szczegółowe dane techniczne urządzenia zostały zawarte w tabeli 5.12.

Rys. 5.28. Referencyjne stanowisko do pomiaru chropowatości i falistości MarSurf XR 20 z GD 120 firmy Mahr [107]

Zasada pomiaru	Metoda profilometryczna
Czujnik	Czujnik R, MFW 250 B
Zakres pomiarowy mm	MFW 250: ±25 μm, ±250 μm,
	(do ±750 μm); ±1,000 μm, ±10,000 μm (do ±30,000 μm)
	Filtr wg ISO 16610-21 (wcześniej ISO 11562), odporny filtr
Filtr wg ISO/JIS	Gaussa wg ISO 16610-31, filtr wg ISO 13565
Odcinki odwzorowania	Automatycznie; 0,56 mm; 1,75 mm; 5,6 mm; 17,5 mm, 56
	mm*, pomiar do zatrzymania, zmienny * Odcinek
	pomiarowy zależny od mechanizmu posuwowego
Liczba n pojedynczych odcinków	1 do 50 (standard: 5)
pomiarowych wg ISO/JIS	
Parametry	Ponad 100 parametrów dla profili R, P, W
	według aktualnych norm ISO/JIS lub MOTIF (ISO 12085)

 Tabela 5.12.
 Dane techniczne urządzenia MarSurf XR 20 z GD 120

Drugim urządzeniem, jakiego użyto do pomiaru powierzchni, był mikroskop laserowy 3D Laser Scanning Confocal Microscope VK-X Series (rys. 5.29) [108].

Rys. 5.29. Mikroskop laserowy (Keyence 3D Laser Scanning Confocal Microscope VK-X Series) [108]

5.7. Metodyka planowania doświadczeń

Po wykonaniu badań wstępnych oraz zaprojektowaniu i wykonaniu stanowiska do przygotowania, dozowania i nanoszenia zawiesiny ściernej, przystąpiono do badań zasadniczych wpływu podstawowych warunków dawkowania zawiesiny, na efekty docierania płaskich elementów ceramicznych.

5.7.1. Model badań zasadniczych

Metodyka planowania doświadczeń w niniejszej pracy została skoncentrowana na takiej optymalizacji parametrów technologicznych dawkowania, by osiągnąć maksymalny ubytek liniowy docieranych elementów. Tak więc celem pracy było wdrożenie układu dozowania, który znacząco, w porównaniu do konwencjonalnego dawkowania, zmniejszy zużycie zawiesiny ściernej. Za cel przyjęto również określenie wpływu trzech czynników wejściowych dawkowania na efektywność obróbki.

5.7.2. Wybór planu eksperymentów

Przystąpienie do prac własnych wymaga oceny możliwości technicznych dotyczących dokonania pomiarów badanych elementów oraz wytworzenie innowacyjnego stanowiska badawczego. W tym celu dokonano rozpoznania na podstawie omówionych rozdziale 2.3 kryteriów, takich jak: efektywność i informatywność poszczególnych programów badawczych [70], [65], [59], [2], [28]. Aby możliwe było porównanie, należy określić liczbę czynników badanych oraz niezbędną liczbę prób tak, aby uzyskać informacje o wysokiej wiarygodności [48], [20].

Program **PS/DK** w swym założeniu wykorzystuje wszystkie możliwe układy czynników badanych. Przy założeniu liczby czynników i = 3, liczba prób n_i = 20 oraz dla r = 3 powtórzeń otrzymano całkowitą liczbę prób N = 24000. Zakładając czas pojedynczej próby t = 0,5 h, daje to czas realizacji badań Tcb = 1200 h. Oceniając przydatność programu PS/DK stwierdzono, że informatywność programu jest silnie zależna od liczby czynników badanych oraz ich rozmieszczeniu w przedziałach [xmax, xmin], co wpływa na długi czas badań. Z tego powodu nie zastosowano programu PS/DK do badań własnych [70]. Przeanalizowano również pod kątem możliwego wykorzystania do badań własnych program PS/DS-Up. Program opiera się na dokonywaniu selekcji czynników badanych X i ustaleniu ich centralnych wartości. Ustalone wartości centralne nie ulegają zmianie w czasie kolejnych prób wpływu pojedynczego czynnika X. Aby była możliwość ustalenia wartości centralnej, należy w pierwszej kolejności przeprowadzić analizę wstępną obiektu badań. Program PS/DS-Up ma charakter procedury jednoznacznie określonej przed rozpoczęciem badań, po określeniu w pierwszej kolejności wartości centralnych programu. Informatywność programu PS/DS-Up jest nieco ograniczona w stosunku do programu PS/DK i w znacznym stopniu, zależy od arbitralnego wyboru wartości centralnych. Liczbę wymaganych pomiarów w programie **PS/DS-Up** jest to znacznie mniejsza i wynosi N = 228 przy takich samych założeniach: i = 3, $n_i = 20$, r = 3. Całkowity czas badań oszacowano na Tcb = 114 h. Czas realizacji badań radykalnie się zmniejszył.

Kolejny program to **PS/DK-2ⁱ**. Program w swym założeniu opiera się na analizie statystycznej modelu liniowego i następnie na analizie regresji oraz wariancji. W tym programie wymagana liczba prób wynosi N = 24. Rozwinięciem program **PS/DK-2ⁱ** jest program **PS/DS.-2^{i-p}**. Program ten ma pewną zaletę, względem programu **PS/DK-2ⁱ**, a mianowicie charakteryzuje się własnością zwaną nadmiarowością informacyjną, która pozwala na analizę modelu liniowego. W tym modelu występują niewiadome, które określamy doświadczalnie (dla *i* = 3, n_i = 20 oraz r = 1 niewiadome przyjmują postać b₀, b₁, b₂, b₃....,b_k,,b_i).

W tym przypadku większa liczba równań zwiększa dokładność modelu liniowego, który obliczamy wielokrotnie z równań, a następnie określamy ich miary położenia (np. średnią arytmetyczną). Program ten w przypadku i = 3 czynników badanych wykazuje nadwyżkę równań r = 4, należy określić jedynie, które 4 pomiary z 8 wybieramy. Podsumowując, możliwość zastosowania programu *PS/DS.-2^{i-p}*, który dla założonego i = 3 i p = 1 pozwala na ograniczenie w znacznym stopniu błędów pomiarowych, jest jego zaletą. Po analizie programu *PS/DK-2ⁱ* i jego rozwiniętej formy, to jest programu *PS/DS-2^{i-p}* nie zdecydowano się na wybór tego rozwiązania, choć całkowity czas niezbędnych badań w tym programie wynosi Tcb = 4 h (tylko samego docierania). Zdecydował o tym fakt, iż ten program wykorzystuje jedynie model liniowy, co może być niewystarczającym rozwiązaniem w tym przypadku.

Programy *PS/DS-P:* α i program *PS/DS-P:* λ , w swym założeniu, wykorzystują model nieliniowy w postaci wielomianu drugiego stopnia. Podstawową cechą programów *PS/DS-P:* α i *PS/DS-P:* λ jest wprowadzanie specjalnych kompozycji (układów) wartości czynników badanych zapewniających tzw. ortogonalność - dotyczy to programu *PS/DS-P:* α oraz pojęcie rotatabilności związane z programem *PS/DS-P:* λ . Analizując przydatność powyższych programów do badań własnych stwierdzono, że przy wyborze programu *PS/DS-P:* α , badania powinny być realizowane na czterech poziomach, a łączna liczba układów pomiarów n = 15. Czas realizacji badań przy pomocy tego programu wyniesie Tcb = 7,5 h. W programie *PS/DS-P:* λ badania powinny być realizowane na pięciu poziomach, a łączna liczba układów do realizacji pomiarów n = 20, czas realizacji badań przy pomocy tego programu wyniesie Tcb = 10 h.

Ostatecznie, do przeprowadzenia badań własnych, wybrano program *PS/DS-P:*A ponieważ jego czasochłonność jest względnie mała a informatywność stosunkowo wysoka. Model opisany w tym programie jest wielomianem drugiego stopnia, co pozwoli na interpretację graficzną postaci funkcji [70], [65], [64], [48], [20]. Na rys. 5.30 przedstawiono schemat postępowania podczas wartościowania przydatności poszczególnych programów badawczych [37].

Rys. 5.30. Schemat porównawczy analizowanych programów badawczych [37]

5.7.3. Opis ogólny wnioskowania statystycznego

Do badań zasadniczych eksperymentalnych wykorzystano plan badań statyczny, zdeterminowany, selekcyjny, wieloczynnikowy, quasi-rotabilny drugiego rzędu opracowany przez Boxa i Huntera, o kulistym rozkładzie informacji [20]. Zapewnia to stałość oszacowania funkcji regresji w pewnym otoczeniu punktu centralnego planu *PS/DS-P: λ.*

Wartości czynników wyjściowych **Y** są zmiennymi o charakterze losowym. Takie założenie pozwala zakładać, iż występujące zakłócenia **U** oraz warunki stałe **C** są parametrami pozornie stałymi przy założonych warunkach badań. W pracy funkcję obiektu określono w wielowymiarowej przestrzeni czynnikowej jako równanie regresji:

$$Y=f(x_1, x_2, x_3, \dots, x_k)$$
(5.1)

gdzie:

k - liczba analizowanych zmiennych,

Wyznaczane współczynniki $B = [b_1, b_2, ..., b_k]$ dotyczą równania regresji:

$$Y = b_0 x_1 + b_1 x_2 + b_2 x_3 + b_3 x_4 + b_4 x_2^2 + b_5 x_3^2 + b_6 x_4^2 + b_7 x_2 x_3 + b_8 x_2 x_4 + b_9 x_3 x_4,$$
(5.2)

gdzie:

 $Y = U_l$ to wartość czynnika wyjściowego z modelu, zaś zmienne niezależne odpowiednio:

$$x_1 = 1, x_2 = K, x_3 = V_s, x_4 = L_e$$

(5.3)

Plan **PS/DS-P:** λ. charakteryzuje się dużą informatywnością i efektywnością oraz wymaga przeprowadzenia n = 20 prób [70], [20].

Wyniki przeprowadzonych badań poddano następnie analizie statystycznej [69], [109]. Podstawowym zadaniem było wyznaczenie równania regresji opisującego ubytek liniowy U₁ obrabianych elementów w funkcji zmiennych czynników wejściowych (*K*, V_s oraz L_e).

Pierwszym zadaniem była estymacja współczynników $B = [b_1, b_2, ..., b_k]$ równania regresji. Jeśli przez X oznaczymy macierz planu eksperymentu, a przez Y kolumnę wyników pomiarów, to wektor *B* estymuje się za pomocą wzoru macierzowego w postaci:

$$B^{T} = (X^{T}X)^{-1}X^{T}Y, (5.4)$$

gdzie X^{τ} oznacza symbol transpozycji macierzy X, a $X^{\cdot 1}$ jest macierzą odwrotną do macierzy X. Estymacja wektora *B* jest oparta na metodzie najmniejszych kwadratów. Nieobciążonym estymatorem wariancji δ^2 składnika losowego jest statystyka s^2 określona wzorem:

$$s^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n} (y(i) - yt(i))^{2}, \qquad (5.5)$$

gdzie y(i) jest *i*-tym punktem pomiarowym (i-tym punktem planu eksperymentu), yt(i) wartością funkcji regresji w *i*-tym punkcie, *n* liczbą punków planu, zaś *k*+1 liczbą współczynników równania regresji. Wzór (5.5) w postaci macierzowej to:

$$s^{2} = (Y^{T}Y - b^{T}X^{T}Y)/(n - k - 1).$$
(5.6)

Założenie o normalności rozkładu czynnika losowego umożliwia, wyznaczenie przedziałów ufności i wykorzystanie właściwych testów statystycznych dla współczynników b_i (*i*=1,2, ..., *k*) równania regresji. Parametrem opisującym jakość przybliżenia równaniem zależności empirycznej jest współczynnik korelacji wielokrotnej *R*. Współczynnik *R* mierzy stopień zależności (skorelowania) zmiennej Y od zmiennych niezależnych $x_1, x_2, ..., x_n$. Kwadrat współczynnika korelacji jest współczynnikiem determinacji R^2 , przy czym yt(i) jest wartością funkcji w *i*-tym punkcie planu eksperymentu, ye(i) wartością zmierzoną (empiryczną), zaś *ys* wartością średnią obliczoną z wszystkich wyników eksperymentu. Tak więc:

$$R^{2} \sum_{i=1}^{n} \frac{\left(ye(i) - yt(i)\right)^{2}}{\sum_{i=1}^{n} \left(ys - yt(i)\right)^{2}}.$$
(5.7)

Im bliższa jedności jest wartość współczynnika korelacji *R*, tym stopień wyjaśnionej zmienności przez funkcję regresji jest większy. Wartość *R* bliska zeru oznacza brak zależności między zmienną *Y* a zbiorem zmiennych ($x_1, x_2, ..., x_n$). W celu zbadania, czy współczynnik korelacji jest istotnie różny od zera, wykonano test istotności regresji. W tym przypadku hipoteza zerowa testu ma postać:

$$H_0: R = 0.$$
 (5.8)

Statystyka testowa dla tej hipotezy wyraża się wzorem:

$$F = \frac{n-k-1}{k} \frac{R^2}{1-R^2} . (5.9)$$

Zmienna losowa *F* ma rozkład *F* – Snedecora o stopniach swobody $d_{f1} = k$ (licznika) i $d_{f2} = n - k - 1$ (mianownika). Wartość krytyczną $F_{\alpha,df1,df2}$ dla zadanego poziomu istotności α odczytano z tablic statystycznych. Podczas budowy równania regresji wieloczynnikowej uwzględniono zmienne badane, które mogą mieć wpływ na wartość zmiennej zależnej Y. Aby sprawdzić, które ze zmiennych *X* istotnie wpływają na zmienną *Y*, koniecznym jest wykonanie testu istotności dla wszystkich współczynników regresji wyznaczanego równania. Hipoteza zerowa ma wtedy postać:

$$H_0: b_i = \beta_i. \tag{5.10}$$

Statystyka testowa to:

$$t = \frac{b_i - \beta_i}{S_{b_i}},\tag{5.11}$$

gdzie:

 b_i - i-ty współczynnik równania regresji (5.2), zaś:

$$s_{b_i} = s_v \overline{d_{ii}},\tag{5.12}$$

przy czym *s* jest odchyleniem standardowym równania (2), zaś d_{ii} *i*-tą wartością diagonalną macierzy ($X^T X$)⁻¹.

Statystyka *t* określona wzorem (5.11) ma przy założeniu prawdziwości hipotezy H_0 rozkład *t* -Studenta o n - k - 1stopniach swobody. Obszar krytyczny dla tej hipotezy to: (- $t_{n-k-1, \alpha}$, $t_{n-k,\alpha}$). Wartość $t_{n-k-1,\alpha}$ wyznaczona jest z tablicy *t*-Studenta dla n - k -1 stopni swobody i poziomu istotności α .

Rozrzut wartości współczynnika b_i (i = 1, 2, ..., k) opisuje przedział ufności:

$$(b_i - t_{\propto s_{b_i}}, b_i + t_{\propto s_{b_i}}), \quad \text{dla } i=1, 2, ..., k,$$
 (5.13)

gdzie:

$$P\left\{b_{i} - t_{\alpha s_{b_{i}}}, b_{i} + t_{\alpha s_{b_{i}}}\right\} = 1 - \alpha,$$
(5.14)

zaś 1- α jest poziomem ufności.

Znaczenie współczynników t_a i s_{b_i} jest takie samo, jak w przypadku omawianego wcześniej testu istotności dla współczynników równania regresji.

Korelację wielokrotną dla równania (5.3) można wyznaczyć z:

$$R_{1.23\dots k} = \sqrt{1 - \frac{\det D}{\det R}} \tag{5.15}$$

gdzie:

 $R_{1.23...k}$ - współczynnik korelacji wielokrotnej pomiędzy zmienną 1, a pozostałymi zmiennymi od 2 do k_{i}

detD - macierz współczynników korelacji zmiennych od 2 do k i zmiennej 1,

detR - macierz współczynników korelacji zmiennych od 2 do k.

6. ZASADNICZE BADANIA EKSPERYMENTALNE DOCIERANIA PRZY WYMUSZONYM DAWKOWANIU ZAWIESINY ŚCIERNEJ PŁASKICH ELEMENTÓW CERAMICZNYCH

Aby zrealizować postawiony cel pracy, przeprowadzono badania eksperymentalne, które mają na celu określenie wpływu parametrów dawkowania wymuszonego zawiesiny ściernej, a więc: zawartości procentowej ziaren ściernych K [%], dawki zawiesiny ściernej Vs [ml/20 min] i lepkości nośnika zawiesiny Le [mPa·s] na efekty docierania jednotarczowego powierzchni płaskich elementów wykonanych z ceramiki Al₂O₃.

6.1. Ogólny program badań

Badania eksperymentalne przeprowadzono w kilku etapach. W pierwszym etapie został ustalony ogólny model badań oraz warunki realizacji procesu (stałe i zmienne), co przedstawiono na rys. 6.1.

Rys. 6.1. Schemat doświadczalnych badań laboratoryjnych [70]

gdzie:

- K zawartość procentowa ziaren ściernych (wagowo) [%],
- Vs dawka zawiesiny ściernej [ml/20 min],
- Le lepkość nośnika zawiesiny ściernej [mPa·s],
- UI ubytek liniowy próbek docieranych [µm],
- CD2, CD2... warunki stałe procesu docierania,
- UD1, UD2... zakłócenia w procesie docierania.

Warunki stałe eksperymentów to:

- elementy docierane (kształt, materiał),
- stanowisko i warunki kinematyczne docierania,
- rowkowana żeliwna tarcza docierająca,
- sposób dawkowania zawiesiny ściernej,
- czas docierania elementów t = 20 min,
- nacisk jednostkowy p = 0,0446 MPa,
- prędkość obrotowa docieraka nt = 60 obr/min.

Czynniki zakłócające to:

- zmienność wymiarów geometrycznych ziaren ściernych,
- koncentracja mikroziaren w strefie obróbki,
- zmienność obciążenia mikroziaren podczas docierania,
- rozrzut wysokości próbek umieszczonych w separatorze,
- prędkość punktów leżących na powierzchni obrabianej,
- stereometria powierzchni roboczej tarczy docierającej.

W następnym etapie określono wartości czynników badanych, zgodnie z planem **PS/DS-P:** λ , co przedstawiono w tabeli 6.1.

Numer próby	K [%] - zawartość	V₅ [ml/20 min] - ilość	L₀ [mPa·s] - lepkość
	ziaren ściernych w	dawkowanej	nośnika ziaren
	zawiesinie	zawiesiny ściernej	ściernych
1	9	26	16,5
2	21	26	16,5
3	9	74	16,5
4	21	74	16,5
5	9	26	29,5
6	21	26	29,5
7	9	74	29,5
8	21	74	29,5
9	5	50	23
10	25	50	23
11	15	10	23
12	15	90	23
13	15	50	10,3
14	15	50	34
15	15	50	23
16	15	50	23
17	15	50	23
18	15	50	23
19	15	50	23
20	15	50	23

Tabela 6.1.	Plan eksr	ervmentu F	PS/DS-P:λ	i wartości o	zvnników	badanych
	i ian onop			1 1100001 0	<i></i>	baaanyon

Po zakodowaniu wartości czynników badanych przystąpiono do realizacji eksperymentów. Otrzymane wyniki badań poddano analizie statystycznej. W efekcie końcowym powstał model matematyczny wpływu parametrów dawkowania wymuszonego na ubytek liniowy U_I = f (K, V_s, L_e). Opracowane zostały wykresy powierzchniowe i warstwicowe ilustrujące wpływ badanych czynników na wyniki docierania. W końcowym etapie badań dokonano optymalizacji procesu z uwzględnieniem korelacji poszczególnych parametrów chropowatości powierzchni badanej ceramiki po docieraniu.

6. 2. Wyniki badań wpływu warunków dawkowania zawiesiny ściernej na ubytek liniowy docieranych elementów

Dla oceny wpływu parametrów wymuszonego dawkowania zawiesiny ściernej na ubytek liniowy docieranych elementów z ceramiki Al₂O₃ przeprowadzono badania na docierarce jednotarczowej Abralap 380. Celem badań było określenie funkcji:

$$U_{l} = f(K, V_{s}, L_{e})$$
 (6.1)

gdzie:

K - procentowa (wagowa) zawartość ziaren ściernych w nośniku,

Vs - dawka zawiesiny ściernej [ml/20 min],

Le - lepkość nośnika ziaren ściernych [mPa·s].

Założono, że model matematyczny ma postać wielomianu drugiego stopnia z interakcjami w postaci:

$$U_{1} = b_{0} + b_{1}K + b_{2}K^{2} + b_{3}V_{s} + b_{4}V_{s}^{2} + b_{5}L_{e} + b_{6}L_{e}^{2} + b_{7}KV_{s} + b_{8}KL_{e} + b_{9}V_{s}L_{e}$$
(6.2)

Na podstawie przeprowadzonych badań wstępnych, jak i badań opisanych w literaturze [24], [79], [42], [17], [18] przyjęto zakresy wartości czynników badanych: K = 5 ÷ 25 %, V_s = 10 ÷ 90 ml/20 min, L_e = 16,5 ÷ 34 mPa·s. Warunki stałe docierania jednotarczowego zamieszczono w tabeli 6.2.

Tabela 6.2.	Stałe	warunki	dociera	ania
-------------	-------	---------	---------	------

L.p.	Stałe warunki docierania	Wartość	Jednostka
1	Nacisk jednostkowy	0,0446	MPa
2	Średnica tarczy docierającej	380	mm
3	Prędkość obrotowa tarczy docierającej	60	obr/min
4	Czas docierania	20	min
5	Średnica dyszy natryskowej	2	mm
6	Prędkość obrotowa mieszadła zawiesiny ściernej	120	obr/min
7	Ciśnienie zawiesiny w zbiorniku	0,8	MPa
8	Ciśnienie nanoszenia zawiesiny ściernej na docierak	2,2	MPa
9	Pole powierzchni naniesionej dawki ("plamy" w kształcie elipsy)	188,4	cm ²
10	Położenie środka separatora na docieraku (rys. 6.2)	R = 115	mm
11	Położenie środka docieranego elementu w separatorze (rys. 6.2)	r = 45	mm

Rys. 6. 2. Położenie elementów docieranych w separatorze (R - odległość od środka docieraka do środka separatora, r - odległość środka separatora do środka przedmiotu obrabianego)

W celu przeprowadzenia badań zastosowano plan **PS/DS-P:** λ (statyczny, zdeterminowany, selekcyjny, wieloczynnikowy, quasi-rotabilny drugiego rzędu) o kulistym rozkładzie informacji.

Realizacja programu **PS/DS-P:** λ wymaga wykonania n = 20 prób. Na podstawie ustalonego zakresu wartości czynników wejściowych utworzona została macierz planu, tabela 6.3. Znając warunki stałe, (tabela 6.2) i macierz planu (tabela 6.3), obliczono również wysokości warstw zawiesiny ściernej przypadającą na jeden obrót tarczy ściernej (tabela 6.4). Na rys. 6.3, 6.4 i 6.5 zaznaczono kilka punktów charakterystycznych, na podstawie których można określić, dla jakich zmiennych objaśnianych ubytek liniowy przyjmuje określone wartość.

Nr próby	Wartości kodowe czynników badanych			
	K [%] - zawartość ziaren ściernych w zawiesinie	V₅ [ml/20 min] - ilość dawkowanej zawiesiny ściernej	L₀ [mPa·s] - lepkość nośnika zawiesiny ściernei	
1	-1	-1	-1	
2	1	-1	-1	
3	-1	1	-1	
4	1	1	-1	
5	-1	-1	1	
6	1	-1	1	
7	-1	1	1	
8	1	1	1	
9	-1,682	0	0	
10	1,682	0	0	
11	0	-1,682	0	
12	0	1,682	0	
13	0	0	-1,682	
14	0	0	1,682	
15	0	0	0	
16	0	0	0	
17	0	0	0	
18	0	0	0	
19	0	0	0	
20	0	0	0	
Wartości	Wartości czyni	ników badanych przed ko	dowaniem	
kodowe	K [%]	V₅ [ml/20 min]	L₀ [mPa·s]	
-1,682	5	10	10,3	
-1	9	26	16,5	
0	15	50	23	
1	21	74	29,5	
1,682	25	90	34	

Tabela 6.3. Zastosowany program badań (PS/DS-P: λ)

Tabela 6.4 Obliczona wysokość warstwy zawiesiny ściernej

Dawka [ml / 20 min]	Wysokość warstwy zawiesiny po wykonaniu jednego obrotu tarczy [µm]	Całkowita wysokość naniesionej warstwy po t = 20min [µm]
10	0,0074	8,8219
26	0,0191	22,9370
50	0,0368	44,1096
74	0,0544	65,2822
90	0,0662	79,3973

Tabela 6.4. Warunki wymuszonego dawkowania zawiesiny ściernej i wielkości ubytku liniowego próbek ceramicznych (podano wartości średnie z 3 pomiarów)

Nr	K [%]	Vs [ml/20 min]	Le [mPa·s]	U _I [μm]
1	15	10	23	36
2	15	50	23	138
3	15	50	23	138
4	15	50	23	138
5	15	50	23	138
6	15	50	23	138
7	15	50	23	138
8	15	90	23	190
9	5	50	23	26
10	25	50	23	98
11	21	74	29,5	74
12	21	26	29,5	30
13	9	74	29,5	48
14	9	26	29,5	13
15	15	50	34	63
16	15	50	10,3	68
17	21	74	16,5	109
18	21	26	16,5	86
19	9	74	16,5	31
20	9	26	16,5	25

Wykorzystując program Statistica zbudowano wykresy przestrzenne i warstwicowe przedstawiające wpływ poszczególnych czynników badanych (K, V_s, L_e) na wielkość ubytku liniowego próbek docieranych.

U_I [μm]

Vs [ml/20min]

UΙ [μm]

Le [mPa•s]

Rys. 6.4. Wykres powierzchniowy wartości ubytku liniowego próbek ceramicznych w funkcji czynników wejściowych Le i Vs

K [%]

K [%]

Rys. 6.5. Wykres powierzchniowy wartości ubytku liniowego próbek ceramicznych w funkcji czynników wejściowych K i Le

Analizując wykresy tabelę 6.4 można zauważyć, iż największy ubytek liniowy w zrealizowanych badaniach doświadczalnych (U_I = 190 μ m) osiągnięto przy następujących wartościach parametrów wejściowych: K = 15 %, V_s = 90 ml/20 min oraz L_e = 23 [mPa·s]. Uzyskane wyniki potwierdzają skuteczność zastosowania wymuszonego dawkowania zawiesiny ściernej, a wielkość ubytku liniowego z wykorzystaniem tej metody jest porównywalna do wartości uzyskanych w docieraniu konwencjonalnym, gdzie zawiesina jest podawana w sposób ciągły (ze znacznym nadmiarem).

W celu sprawdzenia istotności statystycznej otrzymanych wyników przeprowadzono odpowiednią analizę. Na podstawie danych zawartych w tabeli 6.4 przeprowadzono test SS dla pełnego modelu. Dla wyznaczonego równania regresji obliczono kolejno współczynniki korelacji wielokrotnej oraz współczynnik determinacji. Wyniki testu SS pełnego modelu przedstawiono w tabeli 6.5.

Tabela 6.5. Wyniki analizy modelu

	Test SS d	Test SS dla pełnego modelu									
Zależna	Wielokr.	Wielokr.	Skorygow	SS	df	MS	SS	df	MS	F	2
zmienna	R	R2	R2	Model	Model	Model	Reszta	Reszta	Reszta	Г	р
Uı	0,939112	0,881931	0,775668	45387,46	9	5043,051	6076,290	10	607,6290	8,299556	0,001367

Następnie przeprowadzono jednowymiarowe testy istotności równania $U_I = f (K, V_s, L_e)$. Wyniki analizy przedstawiono w tabeli 6.6.

	Jednowymiarowe testy istotności dla U _l Parametryzacja z sigma-ograniczeniami Dekompozycja efektywnych hipotez; błąd standardowy oceny: 24,6501								
Efekt	SS	Stopnie swobody	MS	F	р				
Wyraz wolny	10322,20	1	10322,20	16,98766	0,002072				
к	12752,76	1	12752,76	20,98774	0,001009				
K^2	15574,03	1	15574,03	25,63083	0,000490				
Vs	966,54	1	966,54	1,59068	0,235857				
Vs^2	3169,55	1	3169,55	5,21625	0,045482				
Le	9663,60	1	9663,60	15,90379	0,002568				
Le^2	13311,63	1	13311,63	21,90750	0,000867				
K*Vs	84,50	1	84,50	0,13907	0,716995				
K*Le	1152,00	1	1152,00	1,89589	0,198579				
Vs*Le	312,50	1	312,50	0,51429	0,489698				
Błąd	6076,29	10	607,63						

Tabela 6.6. Jednowymiarowe testy istotności równania U_I = f (K, V_s, L_e)

Dla analizowanego równania regresji otrzymano F = 8,2995. Tej wartości odpowiada poziom istotności p-value = 0,001367. Wartość poziomu istotności świadczy o wysokiej istotności zbudowanego równania regresji. Błąd standardowy oceny testu wynosi 24,6501, co świadczy o tym, że wszystkie parametry modelu zostały oszacowane wystarczająco dokładnie.

Model uznano za pozytywny. Analizę równania regresji rozszerzono o testowanie istotności współczynników równania (tabela 6.7).

	Oceny pa	rametrów l	Parametry	zacja z sigi	ma-ogranio	czeniami				
Efekt	U _l Param.	U _l Bł. std.	U _I t	U _I p	-95,00% Gr.ufn.	+95,00% Gr.ufn.	U _I Beta (ß)	U _l Bł.Std.ß	-95,00% Gr.ufn.	+95,00% Gr.ufn.
Wyraz wolny	-587,166	142,4604	-4,12161	0,002072	-904,587	-269,745				
к	37,537	8,1936	4,58124	0,001009	19,280	55,793	3,65525	0,797873	1,87747	5,43302
K^2	-0,929	0,1835	-5,06269	0,000490	-1,338	-0,520	-2,77089	0,547315	-3,99038	-1,55139
Vs	2,481	1,9669	1,26122	0,235857	-1,902	6,863	0,96627	0,766140	-0,74079	2,67334
Vs^2	-0,026	0,0115	-2,28391	0,045482	-0,052	-0,001	-1,05089	0,460126	-2,07611	-0,02566
Le	29,885	7,4937	3,98796	0,002568	13,188	46,582	3,28053	0,822608	1,44764	5,11341
Le^2	-0,626	0,1337	-4,68055	0,000867	-0,924	-0,328	-3,12991	0,668707	-4,61989	-1,63994
K*Vs	0,023	0,0605	0,37291	0,716995	-0,112	0,157	0,17637	0,472946	-0,87742	1,23016
K*Le	-0,308	0,2235	-1,37691	0,198579	-0,806	0,190	-0,86832	0,630627	-2,27345	0,53681
Vs*Le	0,040	0,0559	0,71714	0,489698	-0,084	0,165	0,42808	0,596926	-0,90195	1,75812

Tabela 6.7. Wartości współczynników regresji i poziom ich istotności

Na tej podstawie uzyskano model matematyczny, który jest wielomianem drugiego stopnia z trzema zmiennymi (K, Vs, Le):

 $U_{I} = -587,166 + 37,5369K - 0,9291K^{2} + 2,4807V_{s} - 0,0261V_{s}^{2} + 29,88456L_{e} - 0,6259L_{e}^{2} + 0,0226KV_{s} - 0,3077KL_{e} + 0,0401V_{s}L_{e}$ (6.3)

Znając równanie regresji, obliczono wartości teoretyczne ubytku liniowego U_{lt}. Porównanie wyników rzeczywistych U_l i przewidywanych U_{lt} przedstawiono w tabeli 6.8.

	Wartości obserwowane, przewidywane i reszty Parametryzacja z sigma-ograniczeniami								
	U _I	U _{lt}	U _{lt}						
	Obserw.	Przewid.	Reszty						
1	36,00000	51,68005	-15,68005						
2	138,00000	138,43365	-0,43365						
3	138,00000	138,43365	-0,43365						
4	138,00000	138,43365	-0,43365						
5	138,00000	138,43365	-0,43365						
6	138,00000	138,43365	-0,43365						
7	138,00000	138,43365	-0,43365						
8	190,00000	141,35218	48,64782						
9	26,00000	8,38497	17,61503						
10	98,00000	82,64726	15,35274						
11	74,00000	100,24266	-26,24266						
12	30,00000	27,43938	2,56062						
13	48,00000	73,18528	-25,18528						
14	13,00000	13,38200	-0,38200						
15	63,00000	45,96700	17,03300						
16	68,00000	56,78950	11,21050						
17	109,00000	131,51228	-22,51228						
18	86,00000	83,70900	2,29100						
19	31,00000	56,45491	-25,45491						
20	25,00000	21,65163	3,34837						

Tabela 6.8. Porównanie ubytków liniowych zaobserwowanych i przewidywanych

Wprowadzono też pojęcie parametru funkcji użyteczności (tabela 6.9). Wartość maksymalna parametru U_{lt} jaką przewidziano w wyniku optymalizacji to:

U_{lt} = 190,3390 µm dla U_{lużyt.} = 1,

a w przypadku, gdy:

 $U_{lt} = -17,8390$ to $U_{lużyt.} = 0$

Tabela 6.9. Parametry funkcji użyteczności

	Parametry fu Ustawienia f	Parametry funkcji użyteczności Ustawienia funkcji użyteczności dla kożdej zmiennej zależnej									
	dia kazdej zr	dia kazdej zmiennej zaleznej									
	Niska	Użytecz.	Pośr.	Użytecz.	Wysoka	Użytecz.	s	t			
Zmienna	Wartość	Wartość	Wartość	Wartość	Wartość	Wartość	Param.	Param.			
U _{lużyt.}	-17,8390	0,00	86,25000	0,500000	190,3390	1,000000	1,000000	1,000000			

Taka parametryzacja pozwala na lepszą interpretację wyników graficznych wygenerowanych przez program Statistica.

Po przeprowadzeniu optymalizacji, zestawienie wartości wejściowych (K_t, V_{st}, L_{et}) i odpowiadający im teoretyczny ubytek liniowy U_{lt} elementów docieranych zamieszczono w tabeli 6.10.

	Poziomy czynnika i przewidywane odpowiedzi									
Czvnnik	Czynnika Poziom	Przewid. U _{lt}	Użytecz. Wartość	-95% P U _{lt}	+95% P U _{lt}					
K	4,864082	12,4470	0,145481	-63,5052	88,3992					
К	9,932041	105,3116	0,591564	43,9881	166,6351					
К	15,00000	150,4459	0,808370	91,0115	209,8803					
К	20,06796	147,8499	0,795900	86,5265	209,1734					
К	25,13592	97,5237	0,554154	21,5715	173,4759					
Vs	9,456326	50,1862	0,326765	-19,8131	120,1855					
Vs	29,72816	105,1385	0,590732	45,7041	164,5729					
Vs	50,00000	138,5584	0,751268	79,2464	197,8704					
Vs	70,27184	150,4459	0,808370	91,0115	209,8803					
Vs	90,54367	140,8010	0,762040	70,8018	210,8003					
Le	11,48885	75,6057	0,448869	1,1364	150,0749					
Le	17,20192	133,4559	0,726758	71,8264	195,0855					
Le	22,91500	150,4459	0,808370	91,0115	209,8803					
Le	28,62808	126,5756	0,693707	65,0295	188,1217					
Le	34,34115	61,8450	0,382769	-14,7987	138,4887					

Profile wartości aproksymowanych i teoretycznego ubytku liniowego w funkcji czynników wejściowych przedstawiono na rys.6.6. W tym przypadku zmienną zależną jest U_{lt} = U_{lużyt.}, a predyktory to K_t, V_{st}, i L_{et}. Na rys. 6.7, 6.8, i 6.9 zamieszczono wykresy przestrzenne U_{lużyt.} = f (K_t, V_{st}, L_{et})

Rys. 6.6. Profile wartości aproksymowanych i teoretyczny ubytek liniowy w funkcji czynników wejściowych Kt, Vst, i Let

Rys. 6.7. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku liniowego użytecznego w funkcji czynników K_t i V_{st}

Rys. 6.8. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku liniowego użytecznego w funkcji czynników K_t i L_{et}

Rys. 6.9 Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku liniowego użytecznego w funkcji czynników V_{st} i L_{et}

K_t [%]

K_t [%]

V_{st} [ml/20min]

Analizując powyższe wykresy, można określić, jaki wpływ wywierają predyktory na zmienną objaśnianą. Dzięki tej metodzie, można prognozować przewidywane odpowiedzi dotyczące ubytku liniowego w funkcji czynników wejściowych.

W badaniach doświadczalnych ubytek liniowy UI przyjmował wartości:

 U_{lmin} = 25 µm dla parametrów wejściowych K = 15 %, V_s = 26 ml/20 min oraz L_e=16,5 mPa·s U_{lmax} = 190 µm dla parametrów wejściowych K = 15 %, V_s = 90 ml/20 min i L_e = 23 mPa·s.

Dokonując optymalizacji prognozy przewidywanych odpowiedzi ustalono, że ubytek liniowy U_{ltmax} wyniesie:

 U_{ltmax} = 150 µm dla czynników wejściowych K = 15 %, V_s = 70 ml/20 min oraz L_e = 22,9 mPa·s.

Opracowany model matematyczny pozwala przeprowadzić optymalizację procesu. W badaniach potwierdzono, że wymuszony system przygotowania, dawkowania i nanoszenia zawiesiny pozwala na zmniejszenie zużycia zawiesiny ściernej w porównaniu z konwencjonalnym systemem dawkowania. Potwierdzono też, że opracowany układ pozwala na dozowanie zawiesin ściernych o różnych lepkościach nośnika.

6.3. Wyniki badań chropowatości powierzchni po docieraniu

6.3.1. Badania wpływu warunków dawkowania zawiesiny ściernej na parametr chropowatości Rv

W celu oceny wpływu parametrów wymuszonego dawkowania na parametr chropowatości powierzchni Rv docieranych elementów z ceramiki Al₂O₃ przeprowadzono badania doświadczalne (na docierarce jednotarczowej Abralap 380). Celem głównym badań było określenie funkcji:

$$Rv = f(K, V_s, L_e)$$
(6.4)

Założono, że model matematyczny ma postać wielomianu drugiego stopnia z interakcjami:

$$Rv = b_0 + b_1 K + b_2 K^2 + b_3 V_s + b_4 V_s^2 + b_5 L_e + b_6 L_e^2 + b_7 K V_s + b_8 K L_e + b_9 V_s L_e$$
(6.5)

Celem badań było też potwierdzenie założenia, że wymuszony system przygotowania, dawkowania i nanoszenia zawiesiny pozwala na uzyskanie parametru chropowatości Rv na zbliżonym poziomie, co przy zastosowaniu konwencjonalnej metody dawkowania. Do badań zastosowano ten sam plan, co w eksperymencie dotyczącym ubytku liniowego. Warunki stałe docierania zachowano, jak przy poprzednim eksperymencie (tabela 6.2). Na podstawie ustalonego zakresu wartości czynników wejściowych utworzona została macierz planu w postaci zakodowanej (tabela 6.3).

Nr	K [%]	V₅ [ml/20 min]	L₀ [mPa·s]	Rv [μm]
1	15	10	23	3,4616
2	15	50	23	3,0876
3	15	50	23	3,0851
4	15	50	23	3,0967
5	15	50	23	3,0303
6	15	50	23	3,0716
7	15	50	23	3,0786
8	15	90	23	3,8043
9	5	50	23	4,2833
10	25	50	23	3,7032
11	21	74	29,5	3,5886
12	21	26	29,5	3,9819
13	9	74	29,5	4,2404
14	9	26	29,5	4,0603
15	15	50	34	3,3392
16	15	50	10,3	3,4198
17	21	74	16,5	3,7786
18	21	26	16,5	3,6503
19	9	74	16,5	4,0598
20	9	26	16,5	3,5118

Tabela 6.11. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów parametru chropowatości powierzchni Rv (podano wartości średnie z 3 pomiarów)

Wykorzystując program Statistica zbudowano wykresy przestrzenne przedstawiające wpływ czynników wejściowych (K, V_s, L_e), na parametr chropowatości powierzchni Rv (rys.6.10 ÷ 6.12).

Vs [ml/20min.]

K [%]

Rys. 6.10. Wykres powierzchniowy parametru chropowatości powierzchni Rv w funkcji czynników wejściowych K i Vs

Rys. 6.11. Wykres powierzchniowy parametru chropowatości powierzchniRvw funkcji czynników wejściowych Le i $V_{\rm s}$

Le [mPa•s]

Rys. 6.12. Wykres powierzchniowy parametru chropowatości powierzchni Rv w funkcji czynników wejściowych K i Le

Uzyskane wartości parametru chropowatości w badaniach mają wartości zbliżone do wartości parametru chropowatości Rv elementów docieranych z zastosowaniem konwencjonalnej metody dawkowania zawiesiny ściernej, [17] otrzymano:

Rv _{min} = 3,03 µm dla K = 15 %, V_s = 50 ml/20 min oraz L_e = 23 mPa·s, zaś Rv _{max} = 4,28 µm dla K = 5 %, V_s = 50 ml/20 min i L_e = 23 mPa·s.

W celu sprawdzenia istotności otrzymanych wyników przeprowadzono odpowiednią analizę statystyczną. Na podstawie danych zawartych w tabeli 6.11 przeprowadzono test SS dla pełnego modelu. Dla wyznaczonego równania regresji obliczono kolejno współczynniki korelacji wielokrotnej oraz współczynnik determinacji. Wyniki testu SS "pełnego" modelu przedstawiono w tabeli 6.12.

Tabela 6.12. Wyniki analizy modelu

	Test SS dia pełnego modelu										
Zależna zmienna	Wielokr. R	Wielokr. R2	Skorygow R2	SS Model	df Model	MS Model	SS Reszta	df Reszta	MS Reszta	F	р
Rv	0,978308	0,957086	0,914172	3,108230	9	0,345359	0,139368	9	0,015485	22,30237	0,000041

Następnie przeprowadzono jednowymiarowe testy istotności równania, Rv = f (K, Vs, Le), wyniki przedstawiono w tabeli 6.13.

	Jednowymiarowe testy istotności dla Rv Parametryzacja z sigma-ograniczeniami Dekompozycja efektywnych hipotez; błąd standardowy oceny : 0,1244									
Efekt	SS	Stopnie swobody	MS	F	р					
Wyraz wolny	0,952315	1	0,952315	61,4980	0,000026					
К	0,534598	1	0,534598	34,5229	0,000236					
K^2	1,775202	1	1,775202	114,6378	0,000002					
Vs	0,012954	1	0,012954	0,8365	0,384243					
Vs^2	0,731984	1	0,731984	47,2696	0,000073					
Le	0,045846	1	0,045846	2,9606	0,119426					
Le ²	0,279607	1	0,279607	18,0563	0,002145					
K*Vs	0,118012	1	0,118012	7,6209	0,022090					
K*Le	0,018136	1	0,018136	1,1711	0,307307					
Vs*Le	0,051092	1	0,051092	3,2994	0,102684					
Błąd	0,139368	9	0,015485							

Tabela 6.13. Jednowymiarowy test istotności równania parametru chropowatości Rv

Dla analizowanego równania regresji otrzymano F = 22,3024. Tej wartości odpowiada poziom istotności p-value = 0,000041. Niska wartość poziomu istotności świadczy o wysokiej istotności uzyskanego równania regresji. Błąd standardowy oceny testu wynosi 0,1244, co świadczy, że wszystkie parametry modelu zostały oszacowane wystarczająco dokładnie. Model oceniono za pozytywny. Analizę równania regresji rozszerzono o testowanie istotności współczynników równania (tabeli 6.14).

Tabela 6.14. Wartości współczynników regresji i poziom ich istotności

	Oceny parametrow									
	Parametryzacja	azsigma-ogr	aniczeniami							
	Rv	Rv	Rv	Rv	-95,00%	+95,00%	Rv	Rv	-95,00%	+95,00%
Efekt	Param.	Bł. std.	t	р	Gr.ufn.	Gr.ufn.	Beta (ß)	Bł.Std.ß	Gr.ufn.	Gr.ufn.
Wyraz wolny	5,908551	0,753443	7,84207	0,000026	4,204144	7,612957				
К	-0,244316	0,041581	-5,87562	0,000236	-0,338379	-0,150253	-2,87626	0,489524	-3,98364	-1,76888
K^2	0,010068	0,000940	10,70691	0,000002	0,007941	0,012195	3,61644	0,337767	2,85236	4,38052
Vs	-0,009111	0,009962	-0,91462	0,384243	-0,031647	0,013424	-0,42906	0,469112	-1,49026	0,63215
Vs^2	0,000404	0,000059	6,87529	0,000073	0,000271	0,000537	1,95172	0,283874	1,30955	2,59389
Le	-0,069490	0,040386	-1,72064	0,119426	-0,160849	0,021870	-0,92611	0,538237	-2,14369	0,29147
Le^2	0,002878	0,000677	4,24927	0,002145	0,001346	0,004410	1,75068	0,411995	0,81868	2,68267
K*Vs	-0,000986	0,000357	-2,76060	0,022090	-0,001793	-0,000178	-0,85824	0,310890	-1,56153	-0,15496
K*Le	-0,001427	0,001318	-1,08220	0,307307	-0,004409	0,001556	-0,50682	0,468326	-1,56625	0,55261
Vs*Le	-0,000599	0,000330	-1,81643	0,102684	-0,001344	0,000147	-0,80482	0,443078	-1,80713	0,19749

Na tej podstawie uzyskano model matematyczny, który jest wielomianem drugiego stopnia z trzema zmiennymi wejściowym (K, V_s, L_e):

$$Rv = 5,9086 - 0,2443K + 0,0100K^{2} - 0,0091V_{s} + 0,0004V_{s}^{2} - 0,0695L_{e} + 0,0029L_{e}^{2} - 0,0009KV_{s} - 0,0014KL_{e} - 0,0006VsL_{e}$$
(6.5)

Porównanie wyników rzeczywistych parametru Rv i przewidywanego Rvt przedstawiono w tabeli 6.15.

	Wartości obse Parametryzac	erwowane, przew ja z sigma-ograr	<i>v</i> idywane i reszty niczeniami
	Rv	Rv	Rv
	Obserw.	Przewid.	Reszty
1	3,46160	3,60470	-0,14310
2	3,08760	3,06785	0,01975
3	3,08510	3,06785	0,01725
4	3,09670	3,06785	0,02885
5	3,03030	3,06785	-0,03755
6	3,07160	3,06785	0,00375
7	3,07860	3,06785	0,01075
8	3,80430	3,82402	-0,01972
9	4,28330	4,31836	-0,03506
10	3,70320	3,83096	-0,12776
11	3,58860	3,48831	0,10029
12	3,98190	3,82737	0,15453
13	4,24040	4,17591	0,06449
14	4,06030	3,94723	0,11307
15	3,33920	3,54311	-0,20391
16	3,41980	3,38531	0,03449
18	3,65030	3,60172	0,04858
19	4,05980	4,10125	-0,04145
20	3,51180	3,49901	0,01279

Tabela 6.15. Porównanie wyników zaobserwowanych parametru Rv i przewidywanych Rvt

Następnie wprowadzono pojęcie parametru funkcji użyteczności (tabela 6.16). Wartość maksymalna parametru Rvt jaką otrzymano w wyniku optymalizacji to: Rvt = 4,4050 µm dla Rvużyt. = 1 (100%), zaś w przypadku, gdy Rvt = 2,7059 µm to Rvużyt. = 0 (0%).

Tabela 6.16. Parametry funkcji użyteczności parametru chropowatości powierzchni Rv

	Parametry funkcji użyteczności Ustawienia funkcji użyteczności dla każdej zmiennej zależnej										
	Niska Użytecz. Pośr. Użytecz. Wysoka Użytecz. s t										
Zm.	Wartość	Wartość	Wartość	Wartość	Wartość	Wartość	Param.	Param.			
Rv	2,705970	0,00	3,555490	0,500000	4,405020	1,000000	1,000000	1,000000			

Parametryzacja ta pozwala na lepszą interpretację wyników wygenerowanych przez program Statistica.

Kolejnym krokiem było przeprowadzenie optymalizacji. Znając równanie Rv = f (K, Vs, Le), na podstawie przeprowadzonego eksperymentu z zastosowaniem programu **PS/DS-P:** λ, można poszukiwać odpowiedzi na pytanie, jaki będzie przewidywany (teoretyczny) parametr Rv (tabela 6.17).

	Poziomy czynnika i przewidywane odpowiedzi										
	Czynnika	Przewid.	Użytecz.	-95% P	+95% P						
Czynnik	Poziom	Rv	Wartość	Rv	Rv						
К	4,683041	4,382271	0,986611	4,018919	4,745623						
К	9,683626	3,477750	0,454245	3,172100	3,783399						
К	14,68421	3,076750	0,218229	2,772862	3,380637						
К	19,68480	3,179271	0,278570	2,873842	3,484700						
К	24,68538	3,785314	0,635265	3,426663	4,143964						
Vs	8,732164	3,648172	0,554549	3,284820	4,011524						
Vs	28,73450	3,200796	0,291239	2,895146	3,506446						
Vs	48,73684	3,076750	0,218229	2,772862	3,380637						
Vs	68,73918	3,276032	0,335520	2,970604	3,581461						
Vs	88,74152	3,798644	0,643111	3,439993	4,157295						
Le	11,93080	3,284727	0,340638	2,939453	3,630001						
Le	17,59172	3,088521	0,225157	2,782912	3,394130						
Le	23,25263	3,076750	0,218229	2,772862	3,380637						
Le	28,91355	3,249414	0,319854	2,942790	3,556039						
Le	34,57446	3,606515	0,530031	3,240172	3,972857						

Tabela 6.17. Zestawienie odpowiedzi dotyczące przewidywanej wysokości parametru chropowatości Rv

Profile wartości aproksymowanych i teoretycznego ubytku liniowego w funkcji czynników wejściowych przedstawiono na rys. 6.13. W tym przypadku zmienną zależną jest parametr $Rv_t = Rv_{uzyt}$. a predyktory to K_t, V_{st}, L_{et}. Na rys. 6.14, 6.15, i 6.16 zamieszczono wykresy przestrzenne i warstwicowe $Rv_{uzyt} = f(K_t, V_{st}, L_{et})$.

Rys. 6.13. Profile wartości aproksymowanych i użytecznych badanych czynników Kt, Vst i Let, mających wpływ na wartość parametru chropowatości powierzchni Rv

Rv teorety czny

Vs [ml/20min]

Rys. 6.14. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rv względem czynników K i V_s

Rys. 6.15. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rv względem czynników K i Le

Rys. 6.16. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rv względem czynników V_s i L_e

K [%]

K [%]

W badaniach doświadczalnych parametr chropowatości powierzchni Rv przyjmował wartości:

Rv_{min} = 3,39 µm dla parametrów wejściowych K = 15 %, V_s = 50 ml/20 min, L_e = 34 mPa·s, natomiast Rv_{max} = 4,28 µm osiągnięto dla K = 5 %, V_s = 50 ml/20 min i L_e = 23 mPa·s.

Dokonując optymalizacji prognozy przewidywanych odpowiedzi ustalono, że parametr chropowatości powierzchni Rv_{tmin} wyniesie:

 Rv_{tmin} = 3,08 µm dla czynników wejściowych K = 14 %, V_s = 48,737 ml/20 min oraz L_e = 23 mPa·s.

Opracowany model matematyczny w postaci:

 $\begin{aligned} \mathsf{Rv} = 5{,}9086 - 0{,}2443\mathrm{K} + 0{,}0100\mathrm{K}^2 - 0{,}0091\mathrm{V_s} + 0{,}0004\mathrm{V_s}^2 - 0{,}0695\mathrm{L_e} + 0{,}0029\mathrm{L_e}^2 - \\ 0{,}0009\mathrm{K}\mathrm{V_s} - 0{,}0014\mathrm{K}\mathrm{L_e} - 0{,}0006\mathrm{V_s}\mathrm{L_e} \end{aligned}$

pozwala na przeprowadzenie optymalizacji, zaś wykonane badana potwierdziły, że wymuszony system przygotowania, dawkowania i nanoszenia zawiesiny pozwala na uzyskanie parametrów Rv na poziomie zbliżonym do tych, które otrzymano stosując konwencjonalnym systemie dawkowania.

6.3.2. Badania wpływu warunków dawkowania zawiesiny ściernej na parametr chropowatości Rp

W celu oceny wpływu parametrów wymuszonego dawkowania na parametr chropowatości powierzchni Rp docieranych elementów wykonanych z ceramiki Al₂O₃ przeprowadzono badania doświadczalne (na docierarce jednotarczowej Abralap 380). Celem głównym badania było określenie funkcji:

$$Rp = f(K, V_s, L_e) \tag{6.6}$$

Założono, że model matematyczny ma postać wielomianu drugiego stopnia z interakcjami:

$$Rp = b_0 + b_1K + b_2K^2 + b_3V_s + b_4V_s^2 + b_5L_e + b_6L_e^2 + b_7KV_s + b_8KL_e + b_9V_sL_e \quad (6.7)$$

Celem badań było też potwierdzenie założenia, że wymuszony system przygotowania dawkowania i nanoszenia zawiesiny pozwala na uzyskanie parametru chropowatości Rp na zbliżonym poziomie, co przy zastosowaniu konwencjonalnej metody dawkowania. Do badań zastosowano ten sam plan, co w eksperymencie dotyczącym ubytku liniowego. Warunki stałe docierania zachowano jak przy poprzednim eksperymencie (tabela 6.2). Na podstawie ustalonego zakresu wartości czynników wejściowych utworzona została macierz planu w postaci zakodowanej (tabela 6.3).

Nr	K [%]	V₅ [ml/20 min]	L₀ [mPa·s]	Rp [µm]
1	15	10	23	2,0363
2	15	50	23	2,1886
3	15	50	23	2,1841
4	15	50	23	2,1833
5	15	50	23	2,1815
6	15	50	23	2,1852
7	15	50	23	2,1887
8	15	90	23	2,2154
9	5	50	23	2,2943
10	25	50	23	2,3608
11	21	74	29,5	2,5869
12	21	26	29,5	2,1639
13	9	74	29,5	2,5391
14	9	26	29,5	2,0906
15	15	50	34	2,4887
16	15	50	10,3	2,4585
17	21	74	16,5	2,2891
18	21	26	16,5	2,2960
19	9	74	16,5	2,2995
20	9	26	16,5	1,7916

Tabela 6.18. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów parametru chropowatości Rp (podano wartości średnie z 3 pomiarów)

Wykorzystując program Statistica zbudowano wykresy przestrzenne przedstawiające wpływ czynników wejściowych (K, V_s, L_e), na parametr chropowatości powierzchni Rp (rys. $6.17 \div 6.19$).

K [%]

Rys. 6.17. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rp względem czynników wejściowych K i Vs

Rp [µm]

Vs [ml/20min.]

Rys. 6.18. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rp względem czynników wejściowych V_s i K

Rys. 6.19. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rp względem czynników wejściowych K i Le

Uzyskane wartości parametru chropowatości w badaniach mają wartości zbliżone do wartości parametru chropowatości Rp elementów docieranych z zastosowaniem konwencjonalnej metody dawkowania zawiesiny ściernej [17] otrzymano:

$$\begin{split} Rp_{min} = 1,79 \; \mu m \; dla \; K = 9 \; \%, \; V_s = 26 \; ml/20 \; min \; oraz \; L_e = 16,5 \; mPa \cdot s, \; zaś \\ Rp_{max} = 2,59 \; \mu m \; dla \; K = 21 \; \%, \; V_s = 74 \; ml/20 \; min \; i \; L_e = 29,5 \; mPa \cdot s. \end{split}$$

W celu sprawdzenia istotności otrzymanych wyników przeprowadzono odpowiednią analizę statystyczną. Na podstawie danych zawartych w tabeli 6.18 przeprowadzono test SS dla pełnego modelu. Dla wyznaczonego równania regresji obliczono kolejno współczynniki korelacji wielokrotnej oraz współczynnik determinacji. Wyniki testu SS "pełnego" modelu przedstawiono w tabeli 6.19.

Tabela 6.19. Wyniki regresji pełnego modelu

	Test SS dla pełnego modelu względem SS										
Zależna	Wielokr.	Wielokr.	Skorygow	SS	df	MS	SS	df	MS	F	р
zmienna	R	R2	R2	Model	Model	Model	Reszta	Reszta	Reszta		
Rp	0,915891	0,838857	0,677713	0,529611	9	0,058846	0,101738	9	0,011304	5,205653	0,010967

Następnie przeprowadzono jednowymiarowe testy istotności równania, Rv = f (K, V_s, L_e), wyniki przedstawiono w tabeli 6.20.

Tabela 6.20. Jednow	vmiarowv te	st istotności	równania	parametru Rp
	ynnarowy to	31 1310110301	rownania	parametrarity

	Jednowymiarowe testy istotności dla Rp Parametryzacja z sigma-ograniczeniami Dekompozycja efektywnych hipotez; błąd standardowy oceny: 0,1063										
Efekt	SS Stopnie MS F p swobody										
Wyraz wolny	0,134351	1	0,134351	11,88504	0,007304						
К	0,006787	1	0,006787	0,60036	0,458314						
K^2	0,026485	1	0,026485	2,34294	0,160210						
Vs	0,019470	1	0,019470	1,72236	0,221870						
Vs^2	0,010853	1	0,010853	0,96012	0,352761						
Le	0,049609	1	0,049609	4,38854	0,065661						
Le^2	0,138536	1	0,138536	12,25526	0,006716						
K*Vs	0,017193	1	0,017193	1,52096	0,248713						
K*Le	0,021071	1	0,021071	1,86400	0,205314						
Vs*Le	0,006360	1	0,006360	0,56265	0,472348						
Błąd	0,101738	9	0,011304								

Dla analizowanego równania regresji F = 5,2057. Tej wartości odpowiada poziom istotności p-value = 0,10967. Wysoka wartość poziomu istotności świadczy o niskiej istotności uzyskanego równania regresji. Błąd standardowy oceny testu wynosi 0,1063, co świadczy, że wszystkie parametry modelu zostały oszacowane wystarczająco dokładnie. Model oceniono negatywnie. Analizę równania regresji rozszerzono o testowanie istotności współczynników równania (tabeli 6.21).

	Oceny parametrów Parametryzacja z sigma-ograniczeniami												
	Rp Rp Rp -95,00% +95,00% Rp Rp -95,00% +95,00% Parson Plate - > - - -												
Efekt	Param.	Bł. sta.	τ	р	Gr.um.	Gr.um.	Beta (IS)	Br.Sta.is	Gr.um.	Gr.um.			
Wyraz wolny	2,219272	0,643739	3,44747	0,007304	0,763032	3,675512							
К	0,027527	0,035527	0,77483	0,458314	-0,052840	0,107895	0,73500	0,948593	-1,41087	2,880863			
K^2	0,001230	0,000803	1,53067	0,160210	-0,000588	0,003047	1,00185	0,654521	-0,47878	2,482485			
Vs	0,011170	0,008511	1,31239	0,221870	-0,008084	0,030424	1,19301	0,909040	-0,86338	3,249404			
Vs^2	-0,000049	0,000050	-0,97985	0,352761	-0,000163	0,000064	-0,53901	0,550089	-1,78339	0,705380			
Le	-0,072286	0,034506	-2,09489	0,065661	-0,150343	0,005772	-2,18494	1,042989	-4,54435	0,174463			
Le^2	0,002026	0,000579	3,50075	0,006716	0,000717	0,003334	2,79486	0,798359	0,98884	4,600868			
K*Vs	-0,000376	0,000305	-1,23327	0,248713	-0,001066	0,000314	-0,74297	0,602439	-2,10578	0,619841			
K*Le	-0,001538	0,001126	-1,36528	0,205314	-0,004086	0,001010	-1,23902	0,907517	-3,29196	0,813929			
Vs*Le	0,000211	0,000282	0,75010	0,472348	-0,000426	0,000848	0,64403	0,858591	-1,29824	2,586296			

Analiza statystyczna modelu matematycznego pozwoliła na ustalenie wartości współczynników równania regresji, ale nie są one statystycznie istotne. Tak oszacowane współczynniki równania regresji nie pozwalają na budowę adekwatnego równania prognozy parametru chropowatości powierzchni Rp. Należy sprawdzić możliwość budowy modelu matecznego opartego na parametrze chropowatości Rz.

W celu oceny wpływu parametrów wymuszonego dawkowania na parametr chropowatości Rz docieranych elementów wykonanych z ceramiki Al₂O₃ przeprowadzono badania doświadczalne (na docierarce jednotarczowej Abralap 380). Celem głównym badania było określenie funkcji:

$$Rz = f(K, V_s, L_e) \tag{6.7}$$

Założono, że model matematyczny ma postać wielomianu drugiego stopnia z interakcjami:

$$Rz = b_0 + b_1 K + b_2 K^2 + b_3 V_s + b_4 V_s^2 + b_5 L_e + b_6 L_e^2 + b_7 K V_s + b_8 K L_e + b_9 V_s L_e$$
(6.8)

Celem badań też było potwierdzenie założenia, że wymuszony system przygotowania dawkowania i nanoszenia zawiesiny pozwala na uzyskanie parametru chropowatości Rz na zbliżonym poziomie, co przy zastosowaniu konwencjonalnej metody dawkowania. Do badań zastosowano ten sam plan, co w eksperymencie dotyczącym ubytku liniowego. Warunki stałe docierania zachowano jak przy poprzednim eksperymencie (tabela 6.2). Na podstawie ustalonego zakresu wartości czynników wejściowych utworzona została macierz planu, w postaci zakodowanej (tabela 6.3).
Nr	K [%]	V _s [ml/20 min]	L₀ [mPa·s]	Rz [µm]
1	15	10	23	5,4954
2	15	50	23	5,2069
3	15	50	23	5,2567
4	15	50	23	5,225
5	15	50	23	5,2269
6	15	50	23	5,2869
7	15	50	23	5,2673
8	15	90	23	6,0191
9	5	50	23	6,5775
10	25	50	23	6,064
11	21	74	29,5	6,1754
12	21	26	29,5	6,1458
13	9	74	29,5	6,7796
14	9	26	29,5	6,1509
15	15	50	34	5,8279
16	15	50	10,3	5,8783
17	21	74	16,5	6,0677
18	21	26	16,5	5,9464
19	9	74	16,5	6,3593
20	9	26	16,5	5,3033

Tabela 6.22. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów parametru chropowatości Rz (podano wartości średnie z 3 pomiarów)

Wykorzystując program Statistica zbudowano wykresy przestrzenne przedstawiające wpływ czynników wejściowych (K, V_s, L_e), na parametr chropowatości powierzchni Rz (rys.6.20 ÷ 6.22).

Rz [µm]

Vs [ml/20min]

K [%]

Rys. 6.20. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rz względem czynników wejściowych K i Vs

Le [mPa•s]

Rz [µm]

K [%]

Rys. 6.21. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rz względem czynników wejściowych K i Le

Rys. 6.22. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rz względem czynników wejściowych Vs i Le

Uzyskane wartości parametru chropowatości w badaniach mają wartości zbliżone do wartości parametru chropowatości Rz elementów docieranych z zastosowaniem konwencjonalnej metody dawkowania zawiesiny ściernej [17] otrzymano:

 $\begin{aligned} & \text{Rz}_{\text{min}} = 5,21 \; \mu\text{m dla K} = 15 \; \%, \; V_{\text{s}} = 50 \; \text{ml}/20 \; \text{min}, \; L_{\text{e}} = 23 \; \text{mPa} \cdot \text{s} \\ & \text{Rz}_{\text{max}} = 6,78 \; \mu\text{m dla K} = 9 \; \%, \; V_{\text{s}} = 74 \; \text{ml}/20 \; \text{min i } L_{\text{e}} = 29,5 \text{mPa} \cdot \text{s}. \end{aligned}$

W celu sprawdzenia istotności otrzymanych wyników przeprowadzono analizę statystyczną. Na podstawie danych zawartych w tabeli 6.22 przeprowadzono test SS dla pełnego modelu. Dla wyznaczonego równania regresji obliczono kolejno współczynniki korelacji wielokrotnej, współczynnik determinacji. Wyniki testu SS "pełnego" modelu przedstawiono w tabeli 6.23.

Tabela 6.23. Wyniki regresji pełnego modelu

	Test SS dla pełnego modelu												
Zależna	Wielokr.	Vielokr. Wielokr. Skorygow SS df MS SS df MS F p											
zmienna	R	R2	R2	Model	Model	Model	Reszta	Reszta	Reszta				
Rz	0,976365	0,953289	0,906578	4,384325	9	0,487147	0,214832	9	0,023870	20,40820	0,000059		

Następnie przeprowadzono jednowymiarowe testy istotności równania, Rv = f (K, V_s, L_e), wyniki przedstawiono w tabeli 6.24.

	Jednowymiar Parametryzao Dekompozyc	owe testy istol cja z sigma-og ja efektywnych	ności dla Rz raniczeniami hipotez; błąc	l standardowy	oceny: 0,1545
Ffekt	SS	Stopnie swobody	MS	F	р
Wyraz wolny	1,845040	1	1,845040	77,29479	0,000010
ĸ	0,438896	1	0,438896	18,38678	0,002026
K^2	2,296131	1	2,296131	96,19248	0,000004
Vs	0,000226	1	0,000226	0,00947	0,924613
Vs^2	0,592263	1	0,592263	24,81185	0,000758
Le	0,204412	1	0,204412	8,56350	0,016857
Le^2	0,847881	1	0,847881	35,52051	0,000213
K*Vs	0,225768	1	0,225768	9,45816	0,013238
K*Le	0,078160	1	0,078160	3,27436	0,103814
Vs*Le	0,021289	1	0,021289	0,89186	0,369633
Błąd	0,214832	9	0,023870		

 Tabela 6.24. Jednowymiarowy test istotności równania parametru Rz

Dla analizowanego równania regresji F = 20,40820. Tej wartości odpowiada poziom istotności p-value = 0,000059. Niska wartość poziomu istotności świadczy o wysokiej istotności uzyskanego równania regresji. Błąd standardowy oceny testu wynosi 0,1545, co świadczy, że wszystkie parametry modelu zostały oszacowane wystarczająco dokładnie. Model oceniono pozytywnie. Analizę równania regresji rozszerzono o testowanie istotności współczynników równania (tabeli 6.25).

Tabela 6.25.	Wartości	współczy	nników r	egresji i	poziom	ich	istotno	ści

	Oceny parame Parametryzac	etrów ja z sigma-ogr	aniczeniami							
	Rz	Rz	Rz	Rz	-95,00%	+95,00%				
Efekt	Param.	Bł. sta.	t	р	Gr.um.	Gr.uth.	Beta (Is)	Bł.Sta.is	Gr.um.	Gr.um.
Wyraz wolny	8,224198	0,935445	8,79175	0,000010	6,108073	10,34032				
К	-0,221370	0,051626	-4,28798	0,002026	-0,338155	-0,10458	-2,18996	0,510721	-3,34529	-1,03463
K^2	0,011450	0,001167	9,80778	0,000004	0,008809	0,01409	3,45619	0,352393	2,65902	4,25336
Vs	0,001204	0,012368	0,09731	0,924613	-0,026775	0,02918	0,04763	0,489425	-1,05953	1,15478
Vs^2	0,000363	0,000073	4,98115	0,000758	0,000198	0,00053	1,47525	0,296167	0,80527	2,14523
Le	-0,146732	0,050142	-2,92635	0,016857	-0,260161	-0,03330	-1,64327	0,561544	-2,91357	-0,37297
Le^2	0,005011	0,000841	5,95991	0,000213	0,003109	0,00691	2,56178	0,429835	1,58942	3,53413
K*Vs	-0,001363	0,000443	-3,07541	0,013238	-0,002366	-0,00036	-0,99752	0,324352	-1,73125	-0,26378
K*Le	-0,002962	0,001637	-1,80952	0,103814	-0,006664	0,00074	-0,88414	0,488605	-1,98944	0,22116
Vs*Le	-0,000386	0,000409	-0,94439	0,369633	-0,001312	0,00054	-0,43656	0,462264	-1,48227	0,60916

Na tej podstawie uzyskano model matematyczny, który jest wielomianem drugiego stopnia z trzema zmiennymi wejściowym (K, V_s, L_e):

 $Rz = 8,2242 - 0,2214K + 0,0115K^{2} + 0,0012V_{s} + 0,0004V_{s}^{2} - 0,1467L_{e} + 0,0050L_{e}^{2} - 0,0013KV_{s} - 0,0030KL_{e} -$

$$0,0004V_{s}L_{e}$$
 (6.9)

Porównanie wyników rzeczywistych parametru Rz i przewidywanego Rzt przedstawiono w tabeli 6.26.

	Wartości obse Parametryzac	erwowane, przewidywa cja z sigma-ograniczen	ane i reszty iami
	Rz	Rz Przewid	Rz Besztv
1	5 / 95/10	5 /18023	0.00617
2	5 20690	5 23618	-0.02928
3	5 25670	5 23618	0.02052
4	5.22500	5.23618	-0.01118
5	5,22690	5,23618	-0,00928
6	5,28690	5,23618	0,05072
7	5,26730	5,23618	0,03112
8	6,01910	6,14621	-0,12711
9	6,57750	6,52266	0,05484
10	6,06400	6,23978	-0,17578
11	6,17540	5,93979	0,23561
12	6,14580	6,05880	0,08700
13	6,77960	6,73317	0,04643
14	6,15090	6,06692	0,08398
15	5,82790	6,06287	-0,23497
16	5,87830	5,79003	0,08827
18	5,94640	5,90885	0,03755
19	6,35930	6,36231	-0,00301
20	5,30330	5,45493	-0,15163

Tabela 6.26. Porównanie wyników zaobserwowanych chropowatości Rz i przewidywanej

Następnie wprowadzono pojęcie parametru funkcji użyteczności (tabela 6.27). Wartość maksymalna parametru Rz_t jaką przewidziano w wyniku optymalizacji to: Rz_t = 6,81057 μ m = Rz_{użyt} = 1 (100%), zaś w przypadku, gdy Rz_t =4,7886 μ m = Rz_{użyt} = 0 (0%)

Tabela 6.27. Parametry funkcji użyteczności parametru chropowatości Rz

	Parametry funkcji użyteczności Ustawienia funkcji użyteczności dla każdej zmiennej zależnej												
	Niska	Użytecz.	Pośr.	Użytecz.	Wysoka	Użytecz.	S	t					
Zm.	Wartość	Wartość Wartość Wartość Wartość Wartość Param. Param.											
Rz	4,788650	0,00	5,799610	0,500000	6,810570	1,000000	1,000000	1,000000					

Parametryzacja ta pozwala na lepszą interpretacje wyników wygenerowanych przez program Statistica.

Kolejnym krokiem było przeprowadzenie optymalizacji. Znając równanie $Rz = f(K, V_s, L_e)$, na podstawie przeprowadzonego eksperymentu z zastosowaniem programu *PS/DS-P:* λ , można, poszukiwać odpowiedzi na pytanie, jaki będzie przewidywany (teoretyczny) parametr Rz (tabela 6.28).

	-				
	Poziom y czyni	nika i przewidy	wane odpowied	lzi	
	0	Durrautial	114.4		.05% D
	Czynnika	Przewia.	Uzytecz.	-95% P	+95% P
Czynnik	Poziom	Rz	Wartość	Rz	Rz
К	4,683041	6,586539	0,889199	6,135415	7,037663
К	9,683626	5,625537	0,413907	5,246054	6,005020
К	14,68421	5,237189	0,221838	4,859895	5,614484
К	19,68480	5,421495	0,312992	5,042287	5,800704
К	24,68538	6,178456	0,687369	5,733169	6,623742
Vs	8,732164	5,513755	0,358622	5,062631	5,964878
Vs	28,73450	5,230053	0,218309	4,850570	5,609536
Vs	48,73684	5,237189	0,221838	4,859895	5,614484
Vs	68,73918	5,535164	0,369210	5,155955	5,914372
Vs	88,74152	6,123976	0,660425	5,678690	6,569263
Le	11,93080	5,607963	0,405215	5,179284	6,036642
Le	17,59172	5,261990	0,234104	4,882558	5,641422
Le	23,25263	5,237189	0,221838	4,859895	5,614484
Le	28,91355	5,533561	0,368418	5,152868	5,914254
Le	34,57446	6,151105	0,673842	5,696269	6,605942

Tabela 6.28. Zestawienie odpowiedzi dotyczące przewidywanej wysokości parametru chropowatości Rz

Profile wartości aproksymowanych i teoretycznego ubytku liniowego w funkcji czynników wejściowych na rys.6.23. W tym przypadku zmienną zależną jest parametr $Rz_t = Rz_{uzyt}$, a predyktory to K_t, V_{st}, L_{et}. Na rys. 6.24, 6.25,i rys.6.26 zamieszczono wykresy przestrzenne i warstwicowe Rz_{uzyt} , f = (K_t, V_{st}, L_{et}).

Rys. 6.23. Profile wartości aproksymowanych i użytecznych badanych czynników K, Vs, Le, mających wpływ na wysokość parametru chropowatości powierzchni Rz

Rz teoretyczny

Vs [ml/20min]

K [%]

K [%]

Rys. 6.25. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rz względem czynników K i Le

Rys. 6.26. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rz względem czynników Vs i Le

W badaniach doświadczalnych parametr chropowatości powierzchni Rz przyjmował wartości:

Rz_{min} = 5,225 μm dla parametrów wejściowych K = 15 %, V_s = 50 ml/20 min, L_e = 23 mPa·s, natomiast Rz_{max} = 6,777 μm osiągnięto dla K = 9 %, V_s = 74 ml/ 20 min, L_e = 29,5 mPa·s.

Dokonując optymalizacji prognozy przewidywanych odpowiedzi ustalono, że parametr chropowatości powierzchni Rz_{tmin} wyniesie:

Rz_{tmin} = 5,237 μ m dla czynników wejściowych K = 14,6 %, V_s = 48,7 ml/20 min, L_e = 23,2 mPa·s.

Opracowano model matematyczny ma postaci:

 $\begin{aligned} \text{Rz} = 8,2242 - 0,2214\text{K} + 0,0115\text{K}^2 + 0,0012\text{V}_{\text{s}} + 0,0004\text{V}_{\text{s}}^2 - 0,1467\text{L}_{\text{e}} + 0,0050\text{L}_{\text{e}}^2 - 0,0013\text{K}\text{V}_{\text{s}} \\ &- 0,0030\text{K}\text{L}_{\text{e}} - 0,0004\text{V}_{\text{s}}\text{L}_{\text{e}} \end{aligned}$

pozwala na przeprowadzenie optymalizacji, zaś wykonane badania potwierdziły, że wymuszony system przygotowania, dawkowania i nanoszenia zawiesiny pozwala na uzyskanie parametrów Rz na poziomie zbliżonym do tych, które otrzymano przy konwencjonalnym systemie dawkowania [17].

6.3.4. Badania wpływu warunków dawkowania zawiesiny ściernej na korelacje podstawowych parametrów struktury geometrycznej powierzchni po docieraniu

W celu oceny wpływu wymuszonego dawkowania zawiesiny ściernej na parametry chropowatości dokonano pomiarów docieranych próbek ceramicznych metodą optyczną i laserową. Na rys. 6.27 ÷ 6.42 przedstawiono wyniki przykładowych pomiarów powierzchni (przy różnych parametrach dawkowania):

- rys. 6.27 \div 6.30, K = 15 %, V_s = 10 ml/20 min, L_e = 10,3 mPa·s,
- rys. 6.31 \div 6.34, K = 15 %, V_s = 90 ml/20 min, L_e = 23 mPa·s,
- rys. 6.35 \div 6.38, K = 5 %, V_s = 50 ml/20 min, L_e = 23 mPa·s,
- rys. 6.39 \div 6.42, K = 9 %, V_s = 26 ml/20 min, L_e = 16,5 mPa·s.

Elementy ceramiczne docierano przez 20 minut przy nacisku p = 0,044 MPa, prędkość obrotowa tarczy docierającej wynosi 60obr/min uzyskując ubytek liniowy próbek (U_I = 36 µm). Jak można zauważyć, powierzchnie są wygładzone, z pozostałą w wyniku docierania porowatością. Następnie sporządzono profile chropowatości 3D oraz wykresy nośności materiału.

Rys. 6.27. Widok powierzchni docieranej ceramiki Al₂O₃: a) obraz z mikroskopu skaningowego, b) zdjęcie optyczne (warunki dawkowania zawiesiny ściernej: K = 15 %, V_s = 10 ml/20 min, L_e = 10,3 mPa·s)

Rys. 6.28. Profil 3D powierzchni próbki ceramicznej Al₂O₃ po docieraniu (warunki dawkowania zawiesiny ściernej: K = 15 %, V_s = 10 ml/20 min, L_e = 10,3 mPa·s)

Rys. 6.29. Profile chropowatości powierzchni docieranej i krzywa rotacji materiału (warunki dawkowania zawiesiny ściernej: K = 15 %, V_s = 10 ml/20 min, L_e = 10,3 mPa·s)

Rys. 6.30. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 15 %, V_s = 10 ml/20 min, L_e = 10,3 mPa·s)

Analizując powyższy przypadek stwierdzono, że parametry chropowatości uzyskują następujące wartości:

- Rz = 5,28 μm, Rp = 2,096 μm, Rv = 3,162 μm,
- Sz = 17,844 μ m, Sp = 6,373 μ m, Sv = 11,471 μ m, Ssk =- 0,583, Sku = 9,226,
- Sk = 1,940 μm, Spk = 1,027 μm, Svk = 1,221 μm,
- Smr1 =1 0,782 %, Smr2 = 88,802 %,
- Vvv = 0,117 ml/m², Vvc = 0,956 ml/m², Vmp = 0,051 ml/m², Vmc = 0,700 ml/m².

Uzyskane parametry świadczą o tym, że przy zastosowaniu wymuszonego systemu dawkowania zawiesiny ściernej zachowując stałe warunki (p = 0,0446 MPa, t = 20min, V_d = 60 obr/min) oraz warunki dawkowania (K = 15 %, V_s = 10 ml/20 min, L_e= 10,3 mPa·s) osiągnięto stosunkowo niewielki ubytek liniowy (36 µm), ale dobrą nośność powierzchni.

Na (rys. 6.31 ÷ 6.34) przedstawiono kolejny przypadek, przy zastosowaniu innych parametrów dawkowania oraz z zachowaniem takich samych stałych warunków procesu. Powierzchnie elementów docierano uzyskując ubytek liniowy U_I = 190 μ m. Założone parametry dawkowania spowodowały pięciokrotne zwiększenie wydajności w porównaniu do poprzedniego przypadku.

Analizując powierzchnię elementu można stwierdzić, że jest wygładzona, choć posiada nadal porowatą strukturę.

Rys. 6.31. Widok powierzchni docieranej ceramiki AI_2O_3 : a) obraz z mikroskopu skaningowego, b) zdjęcie optyczne (warunki dawkowania zawiesiny ściernej: K = 15 %, V_s = 90 ml/20 min, L_e = 23 mPa·s)

Rys. 6.32. Profil falistości 3D powierzchni ceramicznej Al₂O₃ po docieraniu (warunki dawkowania zawiesiny ściernej: K = 15 %, V_s = 90 ml/20 min, L_e = 23 mPa·s)

Rys. 6.33. Profile chropowatości powierzchni i krzywa rotacji materiału (warunki dawkowania zawiesiny ściernej: K = 15 %, V_s = 90 ml/20 min, L_e = 23 mPa·s)

Rys. 6.34. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 15%, V_s = 90 ml/20 min, L_e = 23 mPa·s)

Analizując powyższy przypadek stwierdzono, że parametry chropowatości uzyskują następujące wartości:

- Rz = 6,382 μm, Rp = 2,724 μm, Rv = 3,658 μm,
- Sz = 17,206 μm, Sp = 7,241 μm, Sv = 9,96 μm, Ssk, = -0,615 , Sku = 5,728,
- Sk = 2,450 μm, Spk = 1,035 μm, Svk = 1,577 μm,
- Smr1 = 9,697 %, Smr2 = 88,216 %,
- Vvv = 1,153 ml/m², Vvc = 1,160 ml/m², Vmp = 0,052 ml/m², Vmc = 0,886 ml/m².

W tym przypadku (warunki dawkowania K = 15 %, V_s = 90 ml/20 min, L_e = 23 mPa·s) były przyczyną zwiększenia wydajności docierania elementów ceramicznych w powiązaniu z zachowaniem dobrych parametrów nośności.

Następny przykład (rys. 6.35 ÷ 6.38) dotyczy docierania elementów, gdzie uzyskano ubytek liniowy na poziomie U_I = 26µm. Przyjęte warunki dawkowania (K = 5 %, V_s = 50 ml/20 min, L_e = 23 mPa·s) spowodowały zmniejszenie wydajności obróbki (do poziomu 0,7 pierwszego przykładu). Powierzchnia ceramiczna Al₂O₃ po zakończonym procesie docierania wykazuje dobrą nośność, jest gładka, choć posiada charakterystyczne ślady typowe dla tej obróbki.

Rys. 6.35. Widok powierzchni docieranej ceramiki Al₂O₃: a) obraz z mikroskopu skaningowego, b) zdjęcie optyczne (warunki dawkowania zawiesiny ściernej: K = 5 %, V_s = 50 ml/20 min, L_e = 23 mPa·s)

Rys. 6.36. Profil falistości 3D powierzchni próbki ceramicznej Al₂O₃ (warunki dawkowania zawiesiny ściernej: K = 5 %, V_s = 50 ml/20 min, L_e = 23 mPa·s)

Rys. 6.37. Profile chropowatości powierzchni i krzywa rotacji materiału (warunki dawkowania zawiesiny ściernej: K = 5 %, V_s = 50 ml/20 min, L_e = 23 mPa·s)

Rys. 6.38. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 5 %, V_s = 50 ml/20 min, $L_e = 23 \text{ mPa} \cdot \text{s}$)

Analizując powyższy przypadek stwierdzono, że parametry chropowatości uzyskują następującą wartość:

- Rz = 6,05 μm, Rp = 2,243 μm, Rv = 3,814 μm,
- Sz = 12,945 μ m, Sp= 6,123 μ m, Sv = 6,822 μ m, Ssk = -0,326, Sku = 4,828,
- Sk = 2,064 μm, Spk = 0,978 μm, Svk = 1,230 μm,
- Smr1 = 10,237 %, Smr2 = 88,376 %,
- Vvv=0,123 ml/m², Vvc = 0,996 ml/m², Vmp = 0,049 ml/m², Vmc = 0,746 ml/m².

Ostatni przykład (rys. 6.39 \div 6.42) dotyczy docierania elementów, gdzie uzyskano ubytek liniowy na poziomie U_I = 25 μ m

Rys. 6.39. Widok powierzchni docieranej ceramiki Al₂O₃: a) obraz z mikroskopu skaningowego, b) zdjęcie optyczne (warunki dawkowania: K = 9%, V_s = 26 ml/20 min, L_e = 16,5 mPa·s)

Powierzchnia jest wygładzona i posiada charakterystyczne dla docierania ślady. W tym przykładzie zawartość ziaren ściernych wyniosła K = 9 %, ale znacząco obniżono dawkę do poziomu V_s = 26 ml/20 min, co spowodowało zmniejszenie wydajności obróbki (do poziomu 0,69 pierwszego przykładu).

Rys. 6.40. Profil 3D powierzchni próbki ceramicznej Al₂O₃ docieraniu (warunki dawkowania zawiesiny ściernej: K = 9 %, V_s = 26 ml/20 min, L_e = 16,5 mPa \cdot s)

Rys. 6.41. Profile chropowatości powierzchni i krzywa rotacji materiału (warunki dawkowania zawiesiny ściernej: K = 9 %, V_s = 26 ml/20 min, L_e = 16,5 mPa·s)

Rys. 6.42. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 9 % V_s = 26 ml/20 min, $L_e = 16,5$ mPa·s)

Analizując powyższy przypadek stwierdzono, że parametry chropowatości uzyskują następujące wartości:

- Rz = 8,749 μm, Rp = 2,843 μm, Rv = 5,906 μm,
- Sz = 13,463 μm, Sp =5,316 μm, Sv = 8,143 μm, Ssk = -0,717, Sku = 5,256,
- Sk = 2,339 μm, Spk = 0,969 μm, Svk =1,659 μm,
- Smr1 = 9,459 %, Smr2 = 86,867 %,
- Vvv =0,164 ml/m², Vvc = 1,107 ml/m², Vmp = 0,049 ml/m², Vmc = 0,866 ml/m².

Oceniając wpływ parametrów wymuszonego dawkowania zawiesiny na jakość powierzchni, należy rozpatrywać to w powiązaniu z wydajnością obróbki. Zagadnienie jest stosunkowo złożone, ponieważ trudno mieć jednoczesny wpływ na wiele parametrów chropowatości powierzchni ceramiki. Skupienie się na jednym parametrze chropowatości może spowodować pogorszenie innych, np. takich jak udział materiałowy. Istotne parametry powinny wynikać z relacji między określonymi parametrami 2D (jak rozmieszczenie wierzchołków) w kierunkach wzajemnie prostopadłych.

Szczególnie ważny jest kształt i rozmieszczenie obszarów styku kontaktujących się powierzchni. W celu oceny wpływu badanych warunków dawkowania zawiesiny na wybrane parametry chropowatości 2D dokonano ich zestawienia w tabeli 6. 29.

Nr	к	Vs	Le	Ra	Rq	Rt	Rv	Rz	Rp	Rku	Rsm	Rsk
1	15	10	23	0,9171	1,4636	6,5887	3,4616	5,4954	2,0363	4,0670	48,0559	-0,5857
2	15	50	23	0,6329	0,9371	7,0647	3,0876	5,2069	2,1886	4,3347	36,0138	-0,4355
3	15	50	23	0,6361	0,9372	7,0124	3,0851	5,2567	2,1841	4,3110	36,0850	-0,4386
4	15	50	23	0,6361	0,9333	7,0321	3,0967	5,2250	2,1833	4,3387	36,0429	-0,4366
5	15	50	23	0,6255	0,9353	7,0345	3,0303	5,2269	2,1815	4,3550	36,0934	-0,4375
6	15	50	23	0,6381	0,9329	7,0579	3,0716	5,2869	2,1852	4,3110	36,0811	-0,4357
7	15	50	23	0,6328	0,9381	7,0078	3,0786	5,2673	2,1887	4,3013	36,0246	-0,4350
8	15	90	23	0,8107	1,0716	8,8133	3,8043	6,0191	2,2154	9,5737	39,6956	-1,3440
9	5	50	23	0,6868	0,9582	10,0875	4,2833	6,5775	2,2943	9,7350	35,1398	-1,5710
10	25	50	23	0,7956	1,0345	7,3878	3,7032	6,0640	2,3608	4,1340	42,5203	-0,4247
11	21	74	29,5	0,7429	0,9713	7,7281	3,5886	6,1754	2,5869	3,9137	43,4665	-0,3703
12	21	26	29,5	0,7431	0,9649	7,8105	3,9819	6,1458	2,1639	4,5010	41,2469	-0,7273
13	9	74	29,5	0,7034	0,9077	8,8420	4,2404	6,7796	2,5391	5,4597	6,0630	-0,7630
14	9	26	29,5	0,7697	0,9941	7,7722	4,0603	6,1509	2,0906	4,5857	6,0630	-0,8240
15	15	50	34	0,7391	0,9583	7,4016	3,3392	5,8279	2,4887	3,6740	6,0630	-0,3223
16	15	50	10,3	0,6884	0,9023	7,1104	3,4198	5,8783	2,4585	3,6877	41,7411	-0,3997
17	21	74	16,5	0,6876	0,9030	8,0437	3,7786	6,0677	2,2891	5,3783	40,5722	-0,8247
18	21	26	16,5	0,7438	0,9833	7,3874	3,6503	5,9464	2,2960	4,4053	41,1710	-0,5543
19	9	74	16,5	0,7796	1,0073	8,1021	4,0598	6,3593	2,2995	4,3187	45,3597	-0,7023
20	9	26	16,5	0,6444	0,8546	6,2794	3,5118	5,3033	1,7916	4,8453	36,4907	-0,8787

Tabela 6.29. Zestawienie parametrów wyznaczonych dla układu 2D (wartości średnie)

Następnie przeprowadzono analizę wpływu czynników zmiennych na badane parametry chropowatości powierzchni (tabela 6.30 i 6.31)

Tabela 6.30. Wykonane testy istotności współczynników korelacji między zmiennymi: K, Vs, Le, Ra, Rq, Rt, Rv, Rz, Rp, Rku, Rsm, Rsk

	Oznaczone współczynniki korelacji są istotne z p < ,05000 N=20												
Zmienna	K	Vs	Le	Ra	Rq	Rt	Rv	Rz	Rp	Rku	Rsm	Rsk	
К	1,0000	,0000	,0000,	,1624	,0934	-,3196	-,2753	-,1400	,2478	-,3831	,4137	,4936	
	p=	p=1,00	p=1,00	p=,494	p=,695	p=,169	p=,240	p=,556	p=,292	p=,095	p=,070	p=,027	
Vs	,0000	1,0000	-,0000	-,1327	-,3321	,5067	,1548	,3405	,5705	,3670	-,0168	-,1783	
	p=1,00	p=	p=1,00	p=,577	p=,153	p=,023	p=,515	p=,142	p=,009	p=,111	p=,944	p=,452	
Le	,0000	-,0000	1,0000	,1516	,0989	,2006	,1111	,1779	,2301	-,0068	-,6051	,0624	
	p=1,00	p=1,00	p=	p=,524	p=,678	p=,396	p=,641	p=,453	p=,329	p=,977	p=,005	p=,794	
Ra	,1624	-,1327	,1516	1,0000	,8141	,1694	,4820	,4467	,0888	,0974	,1080	-,1955	
	p=,494	p=,577	p=,524	p=	p=,000	p=,475	p=,031	p=,048	p=,710	p=,683	p=,650	p=,409	
Rq	,0934	-,3321	,0989	,8141	1,0000	-,0955	,0673	-,0048	-,1729	,0187	,2716	-,0491	
	p=,695	p=,153	p=,678	p=,000	p=	p=,689	p=,778	p=,984	p=,466	p=,938	p=,247	p=,837	
Rt	-,3196	,5067	,2006	,1694	-,0955	1,0000	,7651	,8085	,4334	,7807	-,2067	-,7498	
	p=,169	p=,023	p=,396	p=,475	p=,689	p=	p=,000	p=,000	p=,056	p=,000	p=,382	p=,000	
Rv	-,2753	,1548	,1111	,4820	,0673	,7651	1,0000	,9318	,2194	,4897	-,2072	-,6820	
	p=,240	p=,515	p=,641	p=,031	p=,778	p=,000	p=	p=,000	p=,353	p=,028	p=,381	p=,001	
Rz	-,1400	,3405	,1779	,4467	-,0048	,8085	,9318	1,0000	,5563	,3976	-,2514	-,5023	
	p=,556	p=,142	p=,453	p=,048	p=,984	p=,000	p=,000	p=	p=,011	p=,083	p=,285	p=,024	
Rp	,2478	,5705	,2301	,0888	-,1729	,4334	,2194	,5563	1,0000	-,0464	-,2060	,2086	
	p=,292	p=,009	p=,329	p=,710	p=,466	p=,056	p=,353	p=,011	p=	p=,846	p=,383	p=,378	
Rku	-,3831	,3670	-,0068	,0974	,0187	,7807	,4897	,3976	-,0464	1,0000	,0130	-,9242	
	p=,095	p=,111	p=,977	p=,683	p=,938	p=,000	p=,028	p=,083	p=,846	p=	p=,956	p=,000	
Rsm	,4137	-,0168	-,6051	,1080	,2716	-,2067	-,2072	-,2514	-,2060	,0130	1,0000	,0210	
	p=,070	p=,944	p=,005	p=,650	p=,247	p=,382	p=,381	p=,285	p=,383	p=,956	p=	p=,930	
Rsk	,4936	-,1783	,0624	-,1955	-,0491	-,7498	-,6820	-,5023	,2086	-,9242	,0210	1,0000	
	p=,027	p=,452	p=,794	p=,409	p=,837	p=,000	p=,001	p=,024	p=,378	p=,000	p=,930	p=	

Tabela 6.31. Mapa istotności p dla współczynnika korelacji pomiędzy zmiennymi: K, Vs, Le, Ra, Rq, Rt, Rv, Rz, Rp, Rku, Rsm, Rsk

	Mapa p dla współczynników korelacji N=20 p<=											
Zmienna	K	Vs	Le	Ra	Rq	Rt	Rv	Rz	Rp	Rku	Rsm	Rsk
К												
Vs												
Le												
Ra												
Rq												
Rt												
Rv												
Rz												
Rp												
Rku												
Rsm												
Rsk												

Analizując wpływ warunków wymuszonego dawkowania zawiesiny ściernej podczas docierania na korelacje parametrów chropowatości (Ra, Rq, Rt, Rv Rz, Rp, Rku, Rsm, Rsk) stwierdzono, że parametry dawkowania mają one wpływ na niektóre z nich. Istotne statystycznie korelacje czynników badanych zachodzą dla par: K - Rsk (rys. 6.43), V_s - Rt (rys. 6.44), V_s - Rp (rys. 6.45), L_e - Rsm (rys. 6.46).

Rys. 6.44. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rt

Rys. 6.45. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rp

Rys. 6.46. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rsm

Przeprowadzono także ocenę wpływu warunków wymuszonego dawkowania zawiesiny na wybrane parametry struktury geometrycznej chropowatości w układzie 3D (tabela 6.32).

Nr	к	Vs	Le	Sa	Sq	Sp	Sv	Ssk	Sku	Sz
1	15	10	23	0,993	1,298	6,779	12,545	-0,576	5,654	19,324
2	15	50	23	0,660	0,899	6,373	11,471	0,583	9,226	17,844
3	15	50	23	0,824	1,081	9,036	6,972	-0,137	4,469	16,008
4	15	50	23	1,180	1,558	8,850	11,549	-0,670	5,422	20,399
5	15	50	23	0,895	1,178	12,690	11,390	0,073	5,974	24,080
6	15	50	23	1,355	1,744	12,290	10,920	0,412	3,994	23,210
7	15	50	23	0,792	1,045	11,002	8,837	-0,103	5,701	19,840
8	15	90	23	1,256	1,639	7,784	12,104	-0,584	4,661	19,888
9	5	50	23	1,042	1,356	8,337	9,431	-0,564	4,385	17,767
10	25	50	23	0,881	1,180	8,531	12,386	-0,661	6,482	20,917
11	21	74	29,5	0,827	1,114	6,798	9,930	-0,821	7,972	16,728
12	21	26	29,5	0,721	0,930	9,455	6,178	0,321	4,675	15,634
13	9	74	29,5	0,817	1,114	10,812	11,212	-1,150	8,945	22,024
14	9	26	29,5	0,900	1,190	6,087	9,560	-0,529	4,837	15,647
15	15	50	34	1,134	1,505	11,508	11,474	-0,552	5,119	22,983
16	15	50	10,3	0,981	1,299	10,222	9,803	-0,614	5,023	20,025
17	21	74	16,5	0,888	1,159	8,107	9,007	-0,396	4,305	17,113
18	21	26	16,5	0,777	1,031	11,183	8,947	-0,455	5,658	20,130
19	9	74	16,5	0,790	1,034	7,424	13,226	-0,285	4,432	20,650
20	9	26	16,5	0,813	1,137	20,886	7,474	2,120	37,008	28,360

Tabela 6.32. Parametry struktury geometrycznej powierzchni ceramiki po docieraniu w układzie 3D(parametry amplitudowe)

Następnie przeprowadzono analizę korelacji wpływu czynników badanych na wybrane amplitudowe parametry chropowatości (tabela 6.33 i 6.34).

Tabela 6.33. Poziomy istotności dla testów istotności współczynników korelacji między zmiennymi: K, Vs, Le, Sa, Sq, Sp, Sv, Ssk, Sku, Sz

	Korelacje Oznaczone współczynniki korelacji są istotne z p < ,05000 N=20									
Zmienna	K	Vs	Le	Sa	Sq	Sp	Sv	Sz	Ssk	Sku
К	1,0000	,0000	,0000	-,1271	-,1436	-,1766	-,0800	-,2304	-,1481	-,2529
	p=	p=1,00	p=1,00	p=,593	p=,546	p=,456	p=,737	p=,328	p=,533	p=,282
Vs	,0000	1,0000	-,0000	,1861	,1885	-,2419	,3374	-,0451	-,3658	-,2448
	p=1,00	p=	p=1,00	p=,432	p=,426	p=,304	p=,146	p=,850	p=,113	p=,298
Le	,0000	-,0000	1,0000	,0786	,0817	-,2254	,0360	-,2105	-,2522	-,2024
	p=1,00	p=1,00	p=	p=,742	p=,732	p=,339	p=,880	p=,373	p=,283	p=,392
Sa	-,1271	,1861	,0786	1,0000	,9961	,0215	,3718	,2471	-,2039	-,2383
	p=,593	p=,432	p=,742	p=	p=0,00	p=,928	p=,106	p=,293	p=,388	p=,312
Sq	-,1436	,1885	,0817	,9961	1,0000	,0651	,3826	,2986	-,1842	-,1740
	p=,546	p=,426	p=,732	p=0,00	p=	p=,785	p=,096	p=,201	p=,437	p=,463
Sp	-,1766	-,2419	-,2254	,0215	,0651	1,0000	-,3435	,8227	,6865	,7631
	p=,456	p=,304	p=,339	p=,928	p=,785	p=	p=,138	p=,000	p=,001	p=,000
Sv	-,0800	,3374	,0360	,3718	,3826	-,3435	1,0000	,2513	-,4077	-,2783
	p=,737	p=,146	p=,880	p=,106	p=,096	p=,138	p=	p=,285	p=,074	p=,235
Sz	-,2304	-,0451	-,2105	,2471	,2986	,8227	,2513	1,0000	,4608	,6180
	p=,328	p=,850	p=,373	p=,293	p=,201	p=,000	p=,285	p=	p=,041	p=,004
Ssk	-,1481	-,3658	-,2522	-,2039	-,1842	,6865	-,4077	,4608	1,0000	,7526
	p=,533	p=,113	p=,283	p=,388	p=,437	p=,001	p=,074	p=,041	p=	p=,000
Sku	-,2529	-,2448	-,2024	-,2383	-,1740	,7631	-,2783	,6180	,7526	1,0000
	p=,282	p=,298	p=,392	p=,312	p=,463	p=,000	p=,235	p=,004	p=,000	p=

Tabela 6.34. Mapa istotności p dla współczynników korelacji pomiędzy zmiennymi: K, Vs, Le, Sa, Sq, Sp, Sv, Ssk, Sku, Sz

	Mapa p dl N=20 p<=	Mapa p dla wsp. korelacji N=20 p<=								
Zmienna	K	Vs	Le	Sa	Sq	Sp	Sv	Sz	Ssk	Sku
К										
Vs										
Le										
Sa										
Sq										
Sp										
Sv										
Sz										
Ssk										
Sku										

Analizując wpływ warunków wymuszonego dawkowania zawiesiny na korelacje parametrów chropowatości powierzchni Sa, Sq, Sp, Sv, Ssk, Sku oraz Sz, stwierdzono, że nie mają istotnego statystycznie znaczenia. Statystycznie istotne zachodzą korelacje pomiędzy następującymi parami parametrów: Sa - Sq (rys. 6.47), Sp - Sz (rys. 6.48), Ssk - Sku (rys. 6.49), Sku - Sp (rys. 6.50).

Rys. 6.48. Korelacja parametrów chropowatości powierzchni Sp i Sz

Rys. 6.49. Korelacja parametrów chropowatości powierzchni Ssk i Sku

Rys. 6.50. Korelacja parametrów chropowatości powierzchni Sku i Sp

Dokonano również pomiarów i analizę parametrów amplitudowych chropowatości powierzchni (tabela 6.35 ÷ 6.37).

Tabela 6.35. Parametry struktury geometrycznej powierzchni (parametry powierzchniowe amplitudowe)wyznaczone dla układu 3D

Nr	K	Vs	Le	Sk	Spk	Svk	Smr1[%]	Smr2[%]
1	15	10	23	2,502	1,112	1,446	10,530	89,193
2	15	50	23	3,476	1,386	1,966	9,994	88,480
3	15	50	23	3,096	1,228	1,821	9,641	87,880
4	15	50	23	2,447	1,115	1,383	10,278	89,072
5	15	50	23	2,770	1,168	1,904	9,130	87,039
6	15	50	23	2,623	1,101	1,630	9,651	87,735
7	15	50	23	2,397	1,194	1,330	10,452	88,840
8	15	90	23	2,685	1,101	1,593	9,375	87,911
9	5	50	23	2,482	1,147	1,492	10,095	88,235
10	25	50	23	2,750	1,285	1,549	10,776	89,078
11	21	74	29,5	2,706	1,215	1,573	10,328	88,620
12	21	26	29,5	2,535	1,085	1,561	10,189	88,699
13	9	74	29,5	2,915	1,317	1,566	10,445	88,900
14	9	26	29,5	2,886	1,309	2,067	9,065	86,348
15	15	50	34	2,664	1,227	1,551	10,605	88,950
16	15	50	10,3	2,662	1,268	1,677	10,488	88,805
17	21	74	16,5	2,506	1,087	1,622	10,125	88,245
18	21	26	16,5	2,684	1,304	1,562	11,220	89,111
19	9	74	16,5	2,945	1,258	1,765	9,587	87,975
20	9	26	16,5	2,320	1,015	1,647	9,528	86,933

	Korelacje Oznaczone współczynniki korelacji są istotne z p < ,05000 N=20											
Zmienna	K	Vs	Le	Sk	Spk	Svk	Smr1	Smr2				
K	1,0000	,0000	,0000	-,0437	,0138	-,2096	,4778	,4586				
	p=	p=1,00	p=1,00	p=,855	p=,954	p=,375	p=,033	p=,042				
Vs	,0000	1,0000	-,0000	,2211	,0917	-,0219	-,1576	,0397				
	p=1,00	p=	p=1,00	p=,349	p=,701	p=,927	p=,507	p=,868				
Le	,0000	-,0000	1,0000	,1341	,1051	-,0169	-,0360	,0310				
	p=1,00	p=1,00	p=	p=,573	p=,659	p=,943	p=,880	p=,897				
Sk	-,0437	,2211	,1341	1,0000	,7621	,7106	-,2005	-,1100				
	p=,855	p=,349	p=,573	p=	p=,000	p=,000	p=,397	p=,644				
Spk	,0138	,0917	,1051	,7621	1,0000	,4226	,2479	,1794				
	p=,954	p=,701	p=,659	p=,000	p=	p=,063	p=,292	p=,449				
Svk	-,2096	-,0219	-,0169	,7106	,4226	1,0000	-,6452	-,6993				
	p=,375	p=,927	p=,943	p=,000	p=,063	p=	p=,002	p=,001				
Smr1	,4778	-,1576	-,0360	-,2005	,2479	-,6452	1,0000	,9046				
	p=,033	p=,507	p=,880	p=,397	p=,292	p=,002	p=	p=,000				
Smr2	,4586	,0397	,0310	-,1100	,1794	-,6993	,9046	1,0000				
	p=,042	p=,868	p=,897	p=,644	p=,449	p=,001	p=,000	p=				

Tabela 6.36. Poziomy istotności dla testów istotności współczynników korelacji między zmiennymi: K, Vs, Le, Sk, Spk, Svk, Smr1, Smr2

Tabela 6.37. Mapa istotności p dla współczynników korelacji pomiędzy zmiennymi: K, Vs, Le, Sk, Spk, Svk, Smr1, Smr2

	Mapa p dla współczynników korelacji N=20 p<=								
Zmienna	K	Vs	Le	Sk	Spk	Svk	Smr1	Smr2	
К									
Vs									
Le									
Sk									
Spk									
Svk									
Smr1									
Smr2									

Analizując wpływ warunków wymuszonego dawkowania zawiesiny ściernej na korelacje parametrów chropowatości Sk, Spk, Svk, Smr1 oraz Smr2, stwierdzono, że mają one wpływ tylko na niektóre z nich. Istotne statystycznie korelacje czynników badanych zachodzą dla par: K - Smr1 (rys. 6.51), K - Smr2 (rys. 6.52), Smr1 - Smr2 (rys. 6. 53), Sk - Spk (rys. 6.54), Sk - Svk (rys. 6.54).

Rys. 6.51. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Smr1

Rys. 6.52. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Smr2

Rys. 6.53. Korelacja parametrów chropowatości powierzchni Smr1 i Smr2

Rys. 6.54. Korelacja parametrów chropowatości powierzchni Sk i Spk

Rys. 6.55. Korelacja parametrów chropowatości powierzchni Sk i Svk

Analizując powyższe zestawienia można stwierdzić, że parametr wejściowy K (udział wagowy ziaren w zawiesinie) silnie koreluje z dwoma parametrami chropowatości, to jest: Smr1 i Smr2. Inne parametry wejściowe, to znaczy V_s i L_e, mają nieistotny statystycznie wpływ na analizowane parametry chropowatości.

W następnej sekwencji badań dokonano pomiarów objętościowych chropowatości powierzchni (tabela 6. 38).

Tabela 6.38. Parametry struktury geometrycznej powierzchni (parametry objętościowe) - wyznaczone dla powierzchni 3D

Nr	к	Vs	Le	Vvv	Vvc	Vmp	Vmc
				[ml/m ²]	[ml/m ²]	[ml/m²]	[ml/m ²]
1	15	10	23	0,141	1,213	0,056	0,894
2	15	50	23	0,201	1,656	0,070	1,250
3	15	50	23	0,186	1,464	0,062	1,132
4	15	50	23	0,138	1,180	0,056	0,878
5	15	50	23	0,189	1,294	0,058	1,025
6	15	50	23	0,164	1,242	0,055	0,958
7	15	50	23	0,134	1,165	0,060	0,863
8	15	90	23	0,161	1,258	0,055	0,975
9	5	50	23	0,150	1,192	0,057	0,898
10	25	50	23	0,155	1,350	0,064	0,986
11	21	74	29,5	0,158	1,312	0,061	0,978
12	21	26	29,5	0,152	1,218	0,054	0,914
13	9	74	29,5	0,160	1,414	0,066	1,049
14	9	26	29,5	0,205	1,352	0,064	1,090
15	15	50	34	0,153	1,301	0,061	0,957
16	15	50	10,3	0,162	1,293	0,063	0,956
17	21	74	16,5	0,158	1,205	0,054	0,908
18	21	26	16,5	0,154	1,343	0,065	0,968
19	9	74	16,5	0,178	1,392	0,063	1,068
20	9	26	16,5	0,162	1,100	0,051	0,859

Następnie przeprowadzono analizę korelacji wpływu czynników badanych na wybrane objętościowe parametry chropowatości (tabela 6.39 i 6.40).

Tabela 6.39. Poziomy istotności dla testów istotności współczynników korelacji między zmiennymi: K, V_s, L_e, Vvv, Vvc, Vm, Vmc

	Korelacje Oznaczone współczynniki korelacji są istotne z p < ,05000 N=20							
Zmienna	K	Vs	Le	Vvv	Vvc	Vmp	Vmc	
K	1,0000	,0000	,0000	-,2392	,0417	,0210	-,0951	
	p=	p=1,00	p=1,00	p=,310	p=,862	p=,930	p=,690	
Vs	,0000	1,0000	-,0000	,0459	,1925	,1051	,1929	
	p=1,00	p=	p=1,00	p=,848	p=,416	p=,659	p=,415	
Le	,0000	-,0000	1,0000	,0248	,1301	,0941	,1425	
	p=1,00	p=1,00	p=	p=,917	p=,585	p=,693	p=,549	
Vvv	-,2392	,0459	,0248	1,0000	,6809	,4443	,8480	
	p=,310	p=,848	p=,917	p=	p=,001	p=,050	p=,000	
Vvc	,0417	,1925	,1301	,6809	1,0000	,8529	,9572	
	p=,862	p=,416	p=,585	p=,001	p=	p=,000	p=,000	
Vmp	,0210	,1051	,0941	,4443	,8529	1,0000	,7467	
	p=,930	p=,659	p=,693	p=,050	p=,000	p=	p=,000	
Vmc	-,0951	,1929	,1425	,8480	,9572	,7467	1,0000	
	p=,690	p=,415	p=,549	p=,000	p=,000	p=,000	р=	

Tabela 6.40. Mapa istotności p dla współczynników korelacji pomiędzy zmiennymi: K, Vs, Le, Vvv, Vvc,

Vm,	Vmc
vm,	vmc

	Mapa p dla N=20 p<=	Mapa p dla współczynników korelacji N=20 p<=								
Zmienna	K	Vs	Le	Vw	Vvc	Vmp	Vmc			
К										
Vs										
Le										
Vvv										
Vvc										
Vmp										
Vmc										

Analizując wpływ warunków wymuszonego dawkowania zawiesiny na korelacje parametrów chropowatości Vvv, Vvc, Vmp oraz Vmc, stwierdzono, że nie mają one istotnego statystycznie wpływu. Statystycznie istotne zachodzą korelacje pomiędzy następującymi parami parametrów: Vmc - Vvv (rys. 6.56), Vmc - Vvc (rys. 6.57), Vmc - Vmp (rys. 6.58), Vmp - Vvc (rys. 6.59), Vmp - Vvv (rys. 6.60).

Rys. 6.56. Korelacja parametrów chropowatości powierzchni Vmc i Vvv

Rys. 6.57. Korelacja parametrów chropowatości powierzchni Vmc i Vvc

Rys. 6.58. Korelacja parametrów chropowatości powierzchni Vmc i Vmp

Rys. 6.59. Korelacja parametrów chropowatości powierzchni Vmp i Vvc

Rys. 6.60. Korelacja parametrów chropowatości powierzchni Vmp i Vvv

Podsumowując wpływ czynników wejściowych: K, Vs, oraz Le na efekty docierania z zastosowaniem wymuszonego systemu dawkowania zawiesiny można stwierdzić że:

- 1. Parametry badane K, V_s oraz L_e mają wpływ na ubytek liniowy docieranych próbek ceramicznych (Al₂O₃).
- 2. Parametry wejściowe dawkowania zawiesiny ściernej mają wpływ na jakość procesu docierania, a więc na parametry chropowatości powierzchni po obróbce.
- Przyjmując parametry wejściowe: K, V_s i L_e, możemy wyznaczyć wartości parametru Rv i Rz chropowatości powierzchni:

$$\label{eq:rescaled} \begin{split} \mathsf{Rv} = 5{,}9086 - 0{,}2443\mathrm{K} + 0{,}0100\mathrm{K2} - 0{,}0091\mathrm{V_s} + 0{,}0004\mathrm{V_s^2} - 0{,}0695\mathrm{L_e} + \\ 0{,}0029\mathrm{L_e^2} - 0{,}0009\mathrm{KV_s} - 0{,}0014\mathrm{KL_e} - 0{,}0006\mathrm{V_sL_e} \end{split}$$

 $\begin{aligned} \mathsf{Rz} = 8,2242 - 0,2214\mathsf{K} + 0,0115\mathsf{K2} + 0,0012\mathsf{V}_{s} + 0,0004\mathsf{V}_{s}^{2} - 0,1467\mathsf{L}_{e} + \\ 0,0050\mathsf{L}_{e}^{2} - 0,0013\mathsf{K}\mathsf{V}_{s} - 0,0030\mathsf{K}\mathsf{L}_{e} - 0,0004\mathsf{V}_{s}\mathsf{L}_{e}. \end{aligned}$

4. Z przeprowadzonych analiz wynika, iż planując proces docierania należy, również brać pod uwagę korelacje występujące pomiędzy parametrami chropowatości docieranych próbek ceramicznych.

7. BADANIA UZUPEŁNIAJĄCE

Badania uzupełniające miały głównie na celu wyznaczenie wpływu warunków kinematycznych i lepkości mieszaniny składników płynnych dawkowanej zawiesiny ściernej na nierównomierność zużycia powierzchni roboczej tarczy docierającej podczas docierania jednotarczowego.

7.1. Wpływ lepkości mieszaniny składników płynnych w zawiesinie ściernej na kinematykę docierania

Realizując badania zasadnicze zauważono, iż prędkość obrotowa separatora podczas operacji docierania może być zmienna i gdyby docierarka była wyposażona w układ wymuszający ruch separatora, to można by tak dobierać prędkości ns i nt ,aby było to korzystne zarówno dla procesu docierania jak i ze względu na równomierność zużycia tarczy docierającej. W tej części badań postanowiono określić wpływ lepkości nośnika ziaren ściernych na kinematykę docierania. Przeprowadzone badania empiryczne pozwoliły na pozyskanie informacji dotyczących prędkości ns podczas zastosowania różnych lepkości nośnika (dla określonych ziaren ściernych). We wszystkich przeprowadzonych eksperymentach prędkość tarczy docierającej była stała i wynosiła nt = 60 obr/min. Postanowiono zbadać, czy lepkość nośnika ziarna będzie miała wpływ na wartość prędkości separatora ns ,co w rezultacie może przełożyć się na czas zamknięcia pętli. Parametry te parametry mogą mieć istotny wpływ na zużycie tarczy docierającej i występującą nierównomierność prędkości docierania.

Opracowany program MGN39-7. Exe pozwala na analize układu tworzacego pełny cykl ruchu kołowego elementu obrabianego, analizę kształtu trajektorii jaką przebędzie punkt centralny powierzchni docieranej lub sześć punktów rozmieszczonych na obwodzie elementu obrabianego, który jest walcem o średnicy od 8 do 20 mm. Aby móc dokonać analizy zużycia tarczy docierającej, podzielono powierzchnię roboczą docieraka na pięć pierścieni o tych samych polach powierzchni i na osiem sektorów, co przedstawiono na rys. 7.1 i 7.2. Program zlicza jak często analizowane punkty rozmieszczone na powierzchni obrabianej znajdą się w pięciu pierścieniach i oznaczonych sektorach docieraka. Daje nam to obraz udziału poszczególnych fragmentów narzędzia w procesie docierania elementów płaskich. Za współczynnik nierównomierności zużycia powierzchni roboczej tarczy docierającej przyjęto (Pmax - Pmin) / Pmax [w %]. Określa on maksymalną względną gęstość punktów tworzących trajektorie na powierzchni tarczy docierającej (maksymalną względną "nierównomierność zużycia tarczy"). W tabeli 7.1 przedstawiono zestawienie wyników pomiaru prędkości obrotowej docieraka i separatora przedmiotowego, na tej podstawie obliczono współczynnik k1 = ns/nt oraz przeprowadzono symulacje kinematyki docierania.

Rys. 7.1. Sposób podziału powierzchni roboczej tarczy docierającej na pierścienie

Rys. 7.2. Sposób podziału powierzchni roboczej tarczy docierającej na osiem sektorów

Nr	К	Vs	Le	nt	ns	$k_1 = n_s/n_t$
	[%]	[ml/20 min]	[mPa·s]	[obr/min]	[obr/min]	
1	15	10	23	60	50,0	0,883
2	15	50	23	60	47,0	0,783
3	15	50	23	60	47,4	0,790
4	15	50	23	60	47,3	0,780
5	15	50	23	60	47,3	0,780
6	15	50	23	60	47,2	0,787
7	15	50	23	60	47,4	0,790
8	15	90	23	60	45,0	0,750
9	5	50	23	60	54,7	0,912
10	25	50	23	60	45,0	0,790
11	21	74	29,5	60	44,9	0,748
12	21	26	29,5	60	47,7	0,795
13	9	74	29,5	60	48,6	0,810
14	9	26	29,5	60	52,7	0,878
15	15	50	34	60	42,7	0,712
16	15	50	10,3	60	47,3	0,800
17	21	74	16,5	60	42,1	0,702
18	21	26	16,5	60	41,7	0,695
19	9	74	16,5	60	43,4	0,723
20	9	26	16,5	60	49,9	0,832

Tabela 7.1. Zestawienie wyników pomiaru prędkości obrotowej docieraka i separatora dla różnych wartości lepkości nośnika ziaren ściernych

Do badań wpływu lepkości L_e mieszaniny składników płynnych w zawiesinie ściernej na kinematykę docierania wybrano z tabeli 7.1 przypadek nr 2, 15 i 16. Badano wpływ lepkości przy zachowaniu takich samych pozostałych parametrów wejściowych, to jest K = 15 % oraz V_s = 50 ml/20 min. W rozpatrywanych przypadkach w separatorze znajdowały się trzy elementy obrabiane (w ustalonym położeniu). W tabeli 7.2 przedstawiono odpowiednie dane wejściowe do obliczeń.

Tabela 7.2. Dane według planu (tabela 7.1 pozycja 2)

Prędkość obrotowa docieraka nt	60 c	br/min			
Prędkość obrotowa separatora n₅	47 c	br/min			
Parametr k ₁ = n _s /n _t	0,78	3			
Lepkość nośnika L _e	23 n	23 mPa⋅s			
Zawartość ziaren ściernych K	15 %				
Dawka zawiesiny ściernej V _s	50 ml/20 min				
Położenie elementów w separatorze	1.	R = 45 mm	$\beta_t = 0^{\circ}$		
(kąt β _t – jak na rys. 2.4)	2.	R = 45 mm	βt = 120°		
	3.	R = 45 mm	$\beta_t = 240^{\circ}$		

Na podstawie danych wejściowych z tabeli 7.2 wykreślono przy pomocy programu MGN39-7.Exe trajektorie dla trzech punktów środkowych kołowych elementów docieranych (rys. 7.3).

Rys. 7.3. Trajektorie punktów centralnych powierzchni docieranej dla k1 = 0,783 (czas symulacji 5 s)

Znając trajektorie punktów środkowych elementów, obliczono ekstremalne prędkości, docierania, co przedstawiono w tabeli 7.3.

Tabela 7.3. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania analizowanych elementów (dane z tabeli 7.2)

Czas ruchu: 5 s	Czas ruchu: 5 s									
Element	Długość	V _{min}	V _{max}							
	trajektorii	[mm/s]	[mm/s]							
	[mm]									
1	3142,95	567,05	689,58							
2	3153,59	567,05	689,58							
3	3150,57	689,58								
Współczynnik nier	ównomierności pręd	17,8								
(V _{max} - V _{min}) / V _{max} [V	w %]									

Program MGN39-7.Exe umożliwia również obliczenia "nierównomierności zużycia" tarczy docierającej w ustalonych pierścieniach i sektorach, co przedstawiono w tabeli 7.4 i na rys. 7.4.

Tabela 7.4. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej na podstawie danych z tabeli 7.1

Przypadek	Numer sektora								Lic	zba punktów		
nr 2									środkowych elementów,			
Numer	1	2	3	4	5	6	7	8	które pr	które przeszły przez dany		
pierścienia										pierścień		
									leżąc	y na powierzchni		
										docieraka		
5	190	173	225	194	140	193	214	161	1490			
4	182	182	156	166	236	181	168	194		1465		
3	180	178	100	160	146	134	109	155	5	1162		
2	131	149	182	133	171	137	162	161	1226			
1	260	254	274	284	248	292	284	264	2160			
P _{min}				P _{max}				1	P _{min}	P _{max}		
100 292								1162	2160			
Współczynnik nierównomierności									Współczynnik nierównomierności			
zużycia docieraka wyznaczony na									zużycia docieraka wyznaczony na			
podstawie analizy									podstawie analizy			
w przyjętych sektorach								w wyznaczonych pierścieniach				
65,8%									46,2%			

Rys. 7.4. Liczba punktów środkowych w pięciu pierścieniach dla k1 = 0,783

Na podstawie powyższej analizy można stwierdzić, iż najbardziej jest "obciążony" pierścień nr 1, ponieważ odpowiednio ma największa liczbę przecięć przez poruszający się element docierany. Świadczy to o względnie dużej nierównomierności zużycia tarczy docierającej. Badając wpływ lepkości przy zachowaniu takich samych parametrów wejściowych, to jest K = 15% oraz V_s = 50 ml/20 min przeanalizowano przypadek z tabeli 7.5.

Tabela 7.5. Dane wg. planu z tabeli 7.19 - pozycja 15					
Prędkość obrotowa docieraka nt	60 obr/min				
Prędkość obrotowa separatora n₅	42,7 obr/min				
Parametr k₁ = n₅/nt	0,712				
Lepkość nośnika Le	34 mPa·s				
Zawartość ziaren ściernych K	15 %				
Dawka zawiesiny ściernej V _s	50 ml/20 min				
Położenie elementów w separatorze	1.	R = 45 mm	$\beta_t = 0^{\circ}$		
(kąt β _t – jak na rys. 2.4)	2.	R = 45 mm	β _t = 120°		
	3.	R =45 mm	$\beta_t = 240^{\circ}$		

Na podstawie danych wejściowych z tabeli 7.5 wykreślono przy pomocy programu MGN39-7.Exe trajektorie trzech punktów środkowych kołowych elementów docieranych (rys 7.5).

Rys. 7.5. Trajektoria punktów centralnych powierzchni docieranej dla k1 = 0,712 (czas symulacji 5 s)

Znając trajektorie punktów środkowych elementów obliczono ekstremalne prędkości docierania, co przedstawiono w tabeli 7.6.

Tabela 7.6. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania (dla danych z tabeli 7.5)

Czas ruchu: 5 s						
Element	Długość	V _{min}	V _{max}			
	trajektorii	[mm/s]	[mm/s]			
	[mm]					
1	3148,08	546,79	709,84			
2	3188,69	546,79	709,84			
3	3127,63	546,79	709,84			
Współczynni	k nierównomierności	23				
(V	max - V _{min}) / V _{max} [w %]					

"Nierównomierności zużycia" tarczy docierającej w ustalonych pierścieniach i sektorach, przedstawiono w tabeli 7.7 i na rys. 7.6.
Przypadek				Liczba	punktów						
nr 15									środkowycł	n elementów,	
Numer	1	2	3	4	5	6	7	8	które przesz	ły przez dany	
pierścienia									pier	ścień	
									leżący na p	powierzchni	
									doci	eraka	
5	115	144	272	219	93	185	279	9 179	1486		
4	258	210	125	155	259	172	117	7 177	1473		
3	215	197	37	129	214	176	38	148	11	154	
2	123	134	202	142	159	128	202	2 142	12	232	
1	228	254	301	292	214	275	303	3 291	21	158	
	P _{min}			P _{max}					Pmin	P _{max}	
	37			303					11154	2158	
V	Nspółczynnik i	nierów	nomie	ernośc	i			Współo	zynnik nierów	nomierności	
z	aka wy		zużycia	a docieraka wy	znaczony na						
	podsta	wie ar	nalizy						podstawie ar	nalizy	
	w przyjęty	/ch se	ktorac	h				w wyznaczonych pierścieniach			
		87,	8%					46,5			

W tym przypadku w pierścieniu nr 1 występuje również największa liczba punktów. Ostatni omówiony przypadek dotyczy analizy danych zawartych w tabeli 7.8.

Tabela 7.8. Dane wg planu z tabeli 7.19 - pozycja 16

Prędkość obrotowa docieraka nt	60 0	obr/min			
Prędkość obrotowa separatora n _s	48 0	obr/min			
Parametr k ₁ = n _s /n _t	0,80	0,800			
Lepkość nośnika L₀	10,3 mPa·s				
Zawartość ziaren ściernych K	15 %				
Dawka zawiesiny ściernej V _s	50 ml/20min				
Położenie elementów w separatorze	1.	R = 45 mm	$\beta_t = 0^{\circ}$		
(kąt β _t – jak na rys. 2.4)	2.	R = 45 mm	β _t = 120°		
	3.	R = 45 mm	$\beta_t = 240^{\circ}$		

Na podstawie danych wejściowych z tabeli 7.8 wykreślono przy pomocy programu MGN39-7.Exe trajektorie dla trzech punktów środkowych kołowych elementów docieranych (rys 7.7).

Rys. 7.7. Trajektoria punktów centralnych powierzchni docieranej dla k₁ = 0,800 (czas symulacji 5 s)

Znając trajektorie punktów środkowych elementów, obliczono ekstremalne prędkości docierania, co przedstawiono w tabeli 7.9. Zestawienie wybranych wyników nierównomierności zużycia tarczy przedstawiono w tabeli 7.10 i na rys. 7.8.

Tabela 7.9. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania (dane z tabeli 7.8)

Czas ruchu: 5 s								
Element	Długość	V _{min}	V _{max}					
	trajektorii	[mm/s]	[mm/s]					
	[mm]							
1	3147,94	571,77	684,86					
2	3147,94	571,77	684,86					
3	3147,94	571,77	684,86					
Ws	spółczynnik nierównomierno	ości prędkości	16,5					
	(V _{max} - V _{min}) / V _{max} [W	%]						

Tabela 7.10. Zestawienie wybranych wyników obliczeń intensywności zużycia tarczy docierającej na podstawie danych z tabeli 7.1

Przypadek			N	umer	sekto	ra	Liczba punktów				
nr 16									środkowyci	h elementów,	
Numer	1	2	3	4	5	6	7	8	które przesz	zły przez dany	
pierścienia									pier	ścień	
p									leżący na	powierzchni	
									doci	ieraka	
5	190	189	188	188	189	188	189	188	1:	509	
4	180	180	180	180	180	180	180	180	1440		
3	144	144	144	144	144	144	144	144	1152		
2	157	156	156	156	156	156	156	157	1250		
1	269	269	269	269	269	269	269	269	2152		
	P_{min}					P _{max}	ax Pmin			P _{max}	
		144					269 1152 2152			2152	
Współc	zynni	k nier	ównor	nierno	ości		Współczynnik nierównomierności				
zużycia	a docie	eraka	wyzna	czony	v na		zuż	ycia d	locieraka wyzr	naczony na	
podstawie analizy								p	odstawie anal	lizy	
w przyjętych sektorach								w wyznaczonych pierścieniach			
46,5%								46,5%			

W tabeli 7.11 przedstawiono zbiorcze zestawienie przeprowadzonych symulacji.

Nr próby	K [%]	Vs [ml/20 min]	Le [mPa·s]	n _t [obr/ min]	n s [obr/ min]	k₁ = n _s /n _t	V _{min} [mm/s]	V _{max} [mm/s]	Współczynnik "nierównomierności zużycia docieraka" wyznaczony na podstawie analizy w sektorach	Współczynnik "nierównomierności zużycia docieraka" wyznaczony na podstawie analizy w pierścieniach
2	15	50	23	60	47,0	0,783	567,05	689,58	65,8%	46,2%
15	15	50	34	60	42,7	0,712	546,79	709,84	87,8%	46,5
16	15	50	10,3	60	48	0,800	571,77	684,86	46,5%	46,5%

Tabela 7.11. Zestawienie wyników symulacji

Na podstawie uzyskanych wyników symulacji można stwierdzić, że:

- 1. Lepkość nośnika ziaren ściernych ma wpływ na "nierównomierność zużycia docieraka", zarówno w sektorach jak i pierścieniach na analizowanej powierzchni roboczej narzędzia.
- 2. Na podstawie przeprowadzonych symulacji, można stwierdzić, że dla K = 15 %, V_s = 50 ml/20 min i L_e = 23 mPa·s "nierównomierność zużycia tarczy" w poszczególnych sektorach wynosi 65,8 %, zaś w analizowanych pierścieniach 46,2 %. Z punktu widzenia równomierności zużycia narzędzia są to warunki niekorzystne.
- W przypadku gdy K = 15 %, V_s = 50 ml/20 min i L_e = 34 mPa·s "nierównomierność zużycia tarczy docierającej" w poszczególnych sektorach jest na poziomie 87,8 %, zaś w analizowanych pierścieniach 46,5 %. Jest to wynik jeszcze mniej korzystny od opisanego powyżej.
- 4. Najkorzystniejszy współczynnik "nierównomierności" pomiędzy poszczególnymi sektorami i pierścieniami uzyskano dla K = 15%, V_s = 50 ml/20min i L_e = 10,3 mPa·s. "Nierównomierność zużycia tarczy" w sektorach wynosiła wtedy 46,5%, zaś w poszczególnych pierścieniach 46,5%. Z uwagi, iż w docieraniu jednotarczowym bazą obróbkową jest sama powierzchnia obrabiana, utrzymywanie względnie stałej intensywności zużycia kształtowego narzędzia na całej jego powierzchni czynnej jest problemem bardzo istotnym i wpływa na odchyłkę płaskości docieranej powierzchni.

7.2. Wpływ rozmieszczenia elementów docieranych w separatorze na kinematykę docierania

Rozmieszczenie elementów w separatorze oraz prędkości obrotowe separatora n_s, i tarczy docierającej n_t mają wpływ na standardową kinematykę docierania jednotarczowego powierzchni płaskich. W celu analizy tego problemu opracowano program komputerowy MGN39-7.Exe. Pozwoliło to na przeprowadzanie symulacji kinematyki dla warunków pracy docierarki Abralap 380. Przeprowadzono (kolejno) eksperymenty numeryczne w oparciu o następujące założenia:

- Rozmieszczenie elementów w separatorze ma układ zaplanowany i uporządkowany, prędkość obrotowa separatora jest równa prędkości obrotowej tarczy docierającej n_s = n_t.
- Rozmieszczenie elementów w separatorze ma charakter przypadkowy (niezaplanowany), zaś prędkość obrotowa separatora jest równa prędkości obrotowej tarczy docierającej n_s = n_t.
- Rozmieszczenie elementów w separatorze ma charakter zaplanowany i uporządkowany, a prędkość obrotowa separatora nie jest równa prędkości obrotowej tarczy docierającej n_s ≠ n_t.
- Rozmieszczenie elementów w separatorze ma charakter przypadkowy i (niezaplanowany), zaś prędkość obrotowa separatora nie jest równa prędkości obrotowej tarczy docierającej n_s ≠ n_t.

W tabeli 7.12 przedstawiono parametry wejściowe niezbędne do przeprowadzenia symulacji w programie MGN39-7.Exe. Symulację komputerową przeprowadzono zakładając, że będzie analizowana obróbka ośmiu kołowych elementów rozmieszczonych w jednym separatorze.

Tabela 7.12. Parametry wejściowe symulacji I (rozmieszczenie ośmiu elementów w separatorze w sposób zaplanowany dla n_s = n_t)

Prędkość obrotowa docieraka n _t	60 0	obr/min		
Prędkość obrotowa separatora n₅	60 d	obr/min		
Parametr k ₁ = n _s /n _t	1			
Odległość środka separatora od środka układu kinematycznego	100	mm		
Liczba elementów obrabianych	8			
Średnica elementu docieranego (średnia wartość)	17,8	32 mm		
Czas ruchu elementów docieranych	1 s			
Położenie elementów w separatorze	1.	R = 45 mm	$\beta_t = 0^o$	
(kąt β _t – jak na rys. 2.4)	2.	R = 45 mm	$\beta_t = 45^{\circ}$	
	3.	R = 45 mm	$\beta_t = 90^{\circ}$	
	4.	R = 45 mm	βt = 135°	
	5.	R = 45 mm	$\beta_t = 180^{\circ}$	
	6.	R = 45 mm	βt = 225°	
	7.	R = 45 mm	$\beta_t = 270^{\circ}$	
	8.	R = 45 mm	βt = 315°	

Program umożliwia wykreślenie trajektorii ruchu ośmiu punktów środkowych elementów docieranych, co przedstawiono na rys. 7.9. Obliczono również długości trajektorii ruchu punktów centralnych analizowanych elementów (tabela 7.13).

Rys. 7.9. Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w separatorze w sposób zaplanowany (dla k₁ = 1)

Czas ruchu: 1s									
Element	Długość trajektorii	V _{min}	V _{max}						
	[mm]	[mm/s]	[mm/s]						
1	628,31	628,27	628,36						
2	628,31	628,27	628,36						
3	628,31	628,27	628,36						
4	628,31	628,27	628,36						
5	628,31	628,27	628,36						
6	628,31	628,27	628,36						
7	628,31	628,27	628,36						
8	628,31	628,27	628,36						
	Współczynnik nierównomierności pręd	lkości	0,0						
	(V _{max} - V _{min}) / V _{max} [w %]								

Tabela 7.13. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych elementów (dla danych z tabeli 7.12)

Na podstawie otrzymanych wyników symulacji można stwierdzić, iż każdy punkt środkowy docieranego elementu rozmieszczonego w sposób zaplanowany (dla n_s = n_t) pokonał taką samą drogę osiągając stałą wartość prędkości. Program MGN39-7.Exe wygenerował również informacje dotyczące intensywności zużycia tarczy docierającej, co przedstawiono w tabeli 7.14.

Tabela 7.14. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej na podstawie
danych z tabeli 7.12

Nerver			NI.				Liozho nunktów					
Numer			N	umer	sekto	ra	Liczba puliktów					
pierścienia							środkowych elementów, które					
									przesty prze	z dopy pierócień		
									przeszty prze	z dany pierscien		
									powierzch	ni docieraka		
	1	2	3	4	5	6	7	8				
5	99	97	98	97	98	97	98	97		781		
4	98	97	98	97	98	97	98	98		781		
3	79	78	77	78	77	78	77	79	623			
2	84	84	84	84	84	84	84	84	672			
1	145	144	143	144	143	144	143	145	1	151		
	Pmi	n				Pr	P _{max} P _{min} P _{max}					
	77						145 623 1151					
Współ	czynnił	<pre>c nieró</pre>	wnomi	erności			Współczynnik nierównomierności					
zużyci	a docie	raka w	yznacz	ony na	l		zużycia docieraka wyznaczony na					
	pods	tawie a	nalizy						n e deterrite en ell			
14	v przvie	tych s	ektorac	•h					podstawie anali	zy		
	r przyję	iyon s	SKIUTAL	,11				w w	vyznaczonych pierś	cieniach		
		46,9%)						45,9%			

Analizując powyższe zestawienie można stwierdzić, iż z punktu widzenia zużycia tarczy docierającej zaplanowane rozmieszczenie elementów (według danych z tabeli 7.12) przy założeniu $n_s = n_t$, ma korzystny wpływ na rówmomierność zużycia tarczy docierającej w sektorach. Pozwala to również na zachowanie stałej prędkości docierania (dla wszystkich elementów).

Drugi eksperyment numeryczny dotyczy wpływu rozmieszczenia elementów docieranych w sposób przypadkowy (niezaplanowany), przy takim samym założeniu jak w poprzednim eksperymencie $n_s = n_t$. W tabeli 7.15 przedstawiono parametry wejściowe niezbędne do przeprowadzenia symulacji. Rozmieszczenie elementów w separatorze w sposób przypadkowy ma dać odpowiedz na pytanie, czy położenie elementów w separatorze (dla $n_s = n_t$) ma wpływ na długości trajektorii każdego z ośmiu elementów, oraz czy zostaną zachowane takie same wartości prędkości V_{min} i V_{max} (dla wszystkich elementów). Na rys. 7.10 przedstawiono trajektorie ośmiu punktów środkowych dla elementów docieranych rozmieszczonych w separatorze w sposób przypadkowy. Obliczono również długości trajektorii (tabela 7.16).

Tabela 7.15. Parametry wejściowe symulacji II (rozmieszczenie ośmiu elementów w separatorze wsposób przypadkowy i niezaplanowany, dla $n_s = n_t$)

Prędkość obrotowa docieraka n _t	60 c	obr/min		
Prędkość obrotowa separatora ns	60 obr/min			
Parametr k ₁ = n _s /n _t	1			
Odległość środka separatora od środka układu kinematycznego	100	mm		
Liczba elementów obrabianych	8			
Średnica elementu docieranego (średnia wartość)	17,82 mm			
Czas ruchu	1 s			
Położenie elementów w separatorze	1.	R = 15 mm	$\beta_t = 0^o$	
(kąt βı– jak na rys. 2.4)	2.	R = 45 mm	βt = 15°	
	3.	R = 32 mm	βt = 150°	
	4.	R = 45 mm	$\beta_t = 270^{\circ}$	
	5.	R = 20 mm	$\beta_t = 60^{\circ}$	
	6.	R = 50 mm	βt = 190°	
	7.	R = 12 mm	$\beta_t = 3^{\circ}$	
	8.	R = 27 mm	$\beta_t = 240^{\circ}$	

Rys. 7.10. Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w separatorze w sposób przypadkowy i niezaplanowany (dla k₁ = 1)

Tabela 7.16. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowa	nych
elementów (dane z tabeli 7.15)	

Czas ruch	u: 1 s		
Element	Długość trajektorii	V _{min}	V _{max}
	[mm]	[mm/s]	[mm/s]
1	628,31	628,30	629,33
2	628,31	628,27	628,36
3	628,31	628,28	628,35
4	628,31	628,27	628,36
5	628,31	628,27	628,36
6	628,31	628,29	628,34
7	628,31	628,28	628,35
8	628,31	628,29	628,34
	Współczynnik nierównomierności pręd	lkości	0
	(V _{max} - V _{min}) / V _{max} [w %]		

Na podstawie otrzymanych wyników symulacji można stwierdzić, iż każdy punkt środkowy docieranego elementu rozmieszczonego w sposób przypadkowy (niezaplanowany) dla $n_s = n_t$ pokonał taką samą drogę oraz osiągając niemal identyczne wartości V_{min} i V_{max} jak przy zaplanowanym rozmieszczeniu (dla $n_s = n_t$). Program MGN39-7.Exe wygenerował również informacje dla tego przypadku dotyczące intensywności zużycia tarczy docierającej, co przedstawiono w tabeli 7.17.

Tabela 7.17. Zestawienie wyników	obliczeń intensywności zużycia tarc	zy docierającej na podstawie
danvch z tabeli 7.15		

Numer			N	umer	sekto	ra			Liczba p	ounktów			
	1	2	3	4	5	6	7	8	środkowych elementów, któr				
									przeszły przez	dany pierścień			
									leżący na p	owierzchni			
									docie	eraka			
5	80	0	36	0	0	48	49	18	23	31			
4	11	87	94	189	134	135	40	58	74	18			
3	157	207	132	78	155	50	134	149	1064				
2	95	87	167	174	182	157	166	130	1158				
1	149	118	77	75	42	111	103	132	80)7			
	P _{mi}	n				Pr	nax		P _{min}	P _{max}			
	144	1					269		1152	2152			
Współcz	ynnik	nierć	wnor	nierno	ości		W	spółc	zynnik nierówno	mierności			
zużycia	docie	raka v	vyzna	czony	/ na		zι	ıżycia	docieraka wyzn	aczony na			
	podst	awie a	analiz	у					podstawie anali	zy			
w przyjętych sektorach						١	w wyz	naczonych pierś	cieniach				
		100%	\				80.1%						
		10070	,						00,170				

Porównując wyniki wpływu rozmieszczenia elementów w separatorze w sposób uporządkowany i przypadkowy (niezaplanowany) przy założeniu $n_s = n_t$ stwierdzono, że rozmieszczenie elementów w separatorze nie ma wpływu na prędkości docierania poszczególnych elementów, nie ma również wpływu na długości trajektorii ruchu elementów. Ma jednak wpływ na nierównomierność zużycia tarczy docierającej.

Trzeci eksperyment dotyczył wpływu rozmieszczenia elementów docieranych w sposób zaplanowany i uporządkowany, przy założeniu, że n_s ≠ n_t. W tabeli 7.18 przedstawiono parametry wejściowe niezbędne do przeprowadzenia tej symulacji. **Tabela 7.18**. Parametry wejściowe symulacji **III** (rozmieszczenie ośmiu elementów w separatorze w sposób zaplanowany, dla n_s ≠ n_t)

Prędkość obrotowa docieraka nt	60 obr/min				
Prędkość obrotowa separatora n₅	48 obr/min				
Parametr k ₁ = n _s /n _t	0,80	00			
Odległość środka separatora od środka układu kinematycznego	100	mm			
Liczba elementów obrabianych	8				
Średnica elementu docieranego (średnia wartość)	17,8	32 mm			
Czas ruchu	1 s				
Położenie elementów w separatorze	1.	R = 45 mm	$\beta_t = 0^{\circ}$		
(kąt β _t – jak na rys. 2.4)	2.	R = 45 mm	βt = 45°		
	3.	R = 45 mm	$\beta_t = 90^{\circ}$		
	4.	R = 45 mm	βt = 135°		
	5.	R = 45 mm	βt = 180°		
	6.	R = 45 mm	βt = 225°		
	7.	R = 45 mm	βt = 270°		
	8.	R = 45 mm	βt = 315°		

Zgodnie z założeniami eksperymentu rozmieszczono elementy równomiernie w separatorze. Program MGN39-7.Exe symulując ruch wykreślił trajektorie ośmiu punktów środkowych elementów, co zostało przedstawione na rys. 7.11. Obliczono również długości poszczególnych trajektorii (tabela 7.19).

Rys. 7.11.Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w separatorze w sposób zaplanowany (dla k₁ = 0,800)

Czas ruch	Czas ruchu: 1 s								
Element	Długość trajektorii	V _{min}	V _{max}	Współczynnik					
	[mm]	[mm/s]	[mm/s]	nierównomierności					
				prędkości					
				[%]					
1	618,98	571,77	684,86	16,5					
2	627,30	571,77	684,86	16,5					
3	637,27	571,77	684,86	16,5					
4	642,87	571,64	684,86	16,5					
5	640,35	571,77	684,86	16,5					
6	631,42	571,77	684,86	16,5					
7	621,75	571,77	684,86	16,5					
8	616,76	571,77	679,07	15,8					

 Tabela 7.19. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych

 elementów (dla danych z tabeli 7.18)

Analizując przeprowadzony eksperyment wpływu rozmieszczenia elementów w sposób zaplanowany na kinematykę docierania można zauważyć, iż w przypadku, kiedy $k_1 = n_s/n_t$ nie przyjmuje wartości jeden, a prędkość separatora jest mniejsza od prędkości tarczy docierającej, występuje nierównomierność prędkości docierania. Nierównomierność prędkości poszczególnych elementów jest taka sama.

Stwierdzono więc, iż rozmieszczenie elementów w separatorze w sposób zaplanowany dla $n_s \neq n_t$ ma wpływ na kinematykę docierania, powodując taką samą nierównomierność prędkości dla wszystkich rozmieszczonych ośmiu elementów w separatorze. Program MGN39-7.Exe wygenerował również informacje dotyczące intensywności zużycia tarczy docierającej, co przedstawiono w tabeli 7.20.

Tabela 7.20. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej na podstawie danych z tabeli 7.18

Numer			N	umer	sekto	ra			Liczba j	ounktów
pierścienia	1	2	3	4	5	6	7	8	środkowych	elementów,
									które przesz	ly przez dany
									piers	ścień
									leżący na p	owierzchni
									doci	eraka
5	115	100	83	102	101	101	102	73	7	77
4	61	102	119	101	83	83	101	132	73	82
3	119	67	60	67	96	96	67	56	6	28
2	70	85	105	86	73	73	86	92	6	70
1	148	147	132	145	146	146	145	142	11	51
	P _{min}				P _{max}				P _{min}	P _{max}
	56						148		628	1151
Współczynnik nierównomierności zużycia docieraka wyznaczony na podstawie analizy w przyjętych sektorach							Ws zuż w	półczy ycia d p wyzna	ynnik nierówno locieraka wyzn oodstawie anali aczonych piers	omierności aczony na zy ścieniach
	62	2,2%					45,4%			

Analizując współczynnik nierównomierności zużycia tarczy docierającej w pierścieniach i sektorach można stwierdzić, że rozmieszczenie elementów w separatorze w sposób zaplanowany dla n_s ≠ n_t ma wpływ na intesywność zużycia tarczy docierającej. Powoduje również powstanie nierównomierności predkości docierania i jest ona identyczna dla wszystkich ośmiu elementów znajdujących się w separatorze.

Czwarty eksperyment dotyczył wpływu rozmieszczenia ośmiu elementów w separatorze w sposób przypadkowy (niezaplanowany), dla $n_s \neq n_t$. W tabeli 7.21 przedstawiono parametry wejściowe niezbędne do przeprowadzenia symulacji **IV**.

Tabela 7.21. Parametry wejściowe symulacji **IV** (rozmieszczenie ośmiu elementów w separatorze w sposób przypadkowy dla $n_s \neq n_t$)

Prędkość obrotowa docieraka nt	60 obr/min					
Prędkość obrotowa separatora ns	48 c	48 obr/min				
Parametr k ₁ = n _s /n _t	0,88	33				
Odległość środka separatora od środka układu kinematycznego	100	mm				
Liczba elementów obrabianych	8					
Średnica elementu docieranego (średnia wartość)	17,8	17,82 mm				
Czas ruchu	1 s	1 s				
Położenie elementów w separatorze	1.	R = 15 mm	$\beta_t = 0^o$			
(kąt β _t – jak na rys. 2.4)	2.	R = 45 mm	βt = 15°			
	3.	R = 32 mm	βt = 150°			
	4.	R = 45 mm	$\beta_t = 270^{\circ}$			
	5	R = 20 mm	$\beta_t = 60^{\circ}$			
	6.	R = 50 mm	βt = 190°			
	7.	R = 12 mm	$\beta_t = 3^{\circ}$			
	8.	R = 27 mm	βt = 240°			

Trajektorie ruchu ośmiu punktów środkowych elementów docieranych przedstawiono na rys. 7.12. Obliczono również długości trajektorii ruchu punktów centralnych analizowanych elementów (tabela 7.22).

Rys. 7.12. Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w separatorze w sposób przypadkowy (niezaplanowany), dla k₁ = 0,833

Czas ruchu: 1 s			
Długość trajektorii	Vmin	V _{max}	Współczynnik
[mm]	[mm/s]	[mm/s]	nierównomierności
			prędkości
			[%]
625,82	612,61	644,02	4,9
622,84	581,19	675,44	14,0
635,23	599,62	661,82	9,4
624,63	581,19	675,44	14,0
635,25	586,43	670,20	12,25
628,46	607,37	649,26	6,5
628,58	600,04	656,59	8,6
637,09	575,95	880,67	15,4

Tabela 7.22. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych elementów (dla danych z tabeli 7.21)

Analizując przeprowadzony eksperyment wpływu rozmieszczenia elementów w sposób przypadkowy (niezaplanowany) na kinematykę docierania można zauważyć, iż w przypadku kiedy k₁ = n_s/n_t nie przyjmuje wartości jeden, a prędkość separatora jest mniejsza od prędkości tarczy docierającej, dochodzi do nierównomierności prędkości docierania (V_{min} i V_{max}). Nierównomierność prędkości poszczególnych elementów są różne, co ma niekorzystny wpływ na kinematykę docierania elementów, ponieważ każdy element jest docierany z różną V_{min} i V_{max}.

Program wygenerował również informacje dotyczące intensywności zużycia tarczy docierającej, co przedstawiono w tabeli 7.23.

Tabela 7.23. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej (na podstawie danych z tabeli 7.21)

Numer	Numer sektora								Liczba j	ounktów	
pierścienia	1	2	3	4	5	6	7	8	środkowych elementów,		
									które przesz	ly przez dany	
									piers	ścień	
									leżący na p	owierzchni	
									doci	eraka	
5	57	0	0	0	55	67	15	48	242		
4	19	77	81	176	110	30	169	19	681		
3	175	203	171	88	107	194	54	80	10	172	
2	107	77	154	172	185	184	168	247	12	294	
1	125	135	97	82	59	41	100	80	7	19	
	\mathbf{P}_{min}					Ρ	max		P _{min}	P _{max}	
	0						247		242	1294	
Współczy	nnik n	ierów	nomi	ernoś	ci		Ws	półczy	/nnik nierówno	omierności	
zużycia do	ociera	ka wy	znacz	zony i	na		zuż	ycia d	locieraka wyzn	aczony na	
podstawie analizy								р	odstawie anali	zy	
w pr	zyjęty	ch se	ktora	ch			w wyznaczonych pierścieniach			scieniach	
100 %							81,3 %				

Analizując współczynnik nierównomierności zużycia tarczy docierającej w pierścieniach i sektorach można stwierdzić, że rozmieszczenie przypadkowe (niezaplanowane) elementów w separatorze dla n_s ≠ nt ma wpływ na intesywność zużycia tarczy docierającej.

Na podstawie uzyskanych wyników przeprowadzonych czterech symulacji można stwierdzić, że:

- Każdy punkt środkowy docieranych elementów rozmieszczony w sposób zaplanowany dla n_s = n_t pokonał taką samą drogę równą 628,31 mm osiągając identyczną wartość prędkości V_{min} = 628,27 mm/s oraz V_{max} = 628,36 mm/s, a więc nierównomierność prędkości docierania wynosi 0%.
- Zaplanowane rozmieszczenie elementów przy założeniu n_s = n_t ma korzystny wpływ na nierówmomierność zużycia tarczy docierającej w pierścieniach, która wyności 45,9% jak i sektorach równa 46,9%.
- 3. Każdy punkt środkowy docieranego elementu rozmieszczonego w sposób przypadkowy (niezaplanowany) dla n_s = nt pokonał taką samą drogę osiągając niemal identyczne wartości V_{min} i V_{max}, jak przy zaplanowanym rozmieszczeniu dla n_s = nt.
- Przypadkowe (niezaplanowane) rozmieszczenie elementów w separatorze przy założeniu n_s = n_t ma niekorzystny wpływ na nierówmomierność zużycia tarczy docierającej w pierścieniach, która wynosi 80,1%, zaś w sektorach 100%.

- 5. Rozmieszczenie elementów w separatorze w sposób zaplanowany dla n_s ≠ nt ma wpływ na kinematykę docierania powodując taką samą nierównomierność prędkości wszystkich elementów znajdujących się w separatorze, równą 16,5%.
- Zaplanowane rozmieszczenie elementów w separatorze dla n_s ≠ n_t ma wpływ na intesywność zużycia tarczy docierającej.
- 7. Analizując przeprowadzony eksperyment wpływu rozmieszczenia elementów w sposób przypadkowy (niezaplanowany) na kinematykę docierania można zauważyć, iż w przypadku kiedy k₁ = n_s/n_t nie przyjmuje wartości jeden a prędkość separatora jest mniejsza od prędkości tarczy docierającej, to dochodzi do nierównomierności prędkości docierania V_{min} i V_{max}. Nierównomierności prędkości poszczególnych elementów są różne, co ma niekorzystny wpływ na kinematykę docierania elementów, ponieważ każdy element jest docierany z różną V_{min} i V_{max}.
- Analizując współczynnik nierównomierności zużycia tarczy docierającej w pierścieniach i sektorach można stwierdzić, że rozmieszczenie przypadkowe (niezaplanowane) elementów w separatorze dla n_s ≠ n_t ma wpływ na intesywność zużycia tarczy docierającej.
- Jeżeli prędkość n_s = n_t, to elementy o przekroju kołowym umieszczone w separatorze, niezależnie od ich lokalizacji w separatorze, przebywają tę samą drogę ze stałą prędkością. Jest to sytuacja bardzo korzystna ze względu na docieranie elementów, ale niekorzystna dla tarczy docierającej.
- Jeżeli różnica pomiędzy prędkościami n_s i n_t będzie duża, tym większa będzie różnica w długości trajektorii punktów środkowych docieranych elementów, co za skutkuje powstaniem nierównomierności prędkości docierania elementów.

7.3 .Wpływ prędkości obrotowej docieraka i separatora na kinematykę docierania

W celu oceny wpływu prędkości obrotowej docierak nt i separatora ns na kinematykę docierania przeprowadzono symulację przy użyciu programu T.Exe. Program został stworzony na potrzeby badań własnych i pozwala na analizę układu tworzącego pełen cykl ruchu elementu obrabianego oraz oblicza czas po jakim nastąpi zamknięcie pętli. Posiadając dane dotyczące wartości prędkości (nt – prędkość obrotowa tarczy docierającej, ns – prędkość obrotowa separatora), można obliczyć czas zamknięcia pętli punktu środkowego docieranego elementu kołowego. Algorytm programu T.Exe przedstawiono na rys.7.13.

Rys. 7.13. Schemat blokowy programu T.Exe

Wykorzystując program T.Exe przeprowadzono cztery symulacje, które mają pokazać, po jakim czasie nastąpi zamknięcie pętli punktu środkowego elementu kołowego osadzonego w separatorze.

Eksperymenty przeprowadzono dla założeń zawartych w tabeli 7.24.

Lp	n _t	n _s	k ₁ = n _s /n _t
	[obr/min]	[obr/min]	
1	60	55	0,916
2	60	50	0,883
3	60	47	0,783
4	60	60	1

Symulacja I.

Warunki symulacji I podano w tabeli 7.25.

Tabela 7.25. Obliczenia dotyczące czasu zamknięcia pętli (dane z tabeli 7.24, pozycja 1)

$\mathbf{n}_{t} = 60 \text{ [obr/min]}$						
n s = 55 [obr/min]						
Dzielnik liczby n _s = 55	5	11				
Wyniki dzielenia (n t = 60 przez dzielniki liczby n ₅=55)	12	5,45				
Wybór całkowitych wyników dzielenia (liczby nt = 60 przez dzielnik liczby ns =55)	5	12				
Wybór największego dzielnik liczby n _s = 55 (całkowity)	5	-				
Czas zamknięcia pętli Tc = 60 / całkowity dzielnik liczby n _s = 5	12 s	-				

Na rys. 7.14 przedstawiono trajektorie punktu centralnego elementu (dla $k_1 = 0,916$) czas zamknięcia pętli w tym przypadku nastąpił po12 s.

Rys. 7.14. Trajektoria punktu centralnego symulowanej powierzchni docieranej dla k₁ = 0,917 (czas po jakim nastąpiło zamknięcie pętli punktu środkowego to 12 s)

Symulacja II.

Warunki symulacji II podano w tabeli 7.26.

Tabela 7.26. Obliczenia dotyczące czasu zamknięcia pętli (dane z tabeli 7.24, pozycja 2)

n t = 60 [obr/min]				
n _s = 50 [obr/min]				
Dzielnik liczby n _s = 50	2	5	10	25
Wyniki dzielenia (liczby n _t = 60 przez	30	12	6	2,4
dzielniki liczby n _s =50)				
Wybór całkowitych wyników dzielenia	30	12	6	-
(liczby \mathbf{n}_{t} =60 przez dzielnik liczby \mathbf{n}_{s} = 50				
Wybór największego dzielnika liczby n_s =	10		-	
50 (całkowity)				
Czas zamknięcia pętli Tc = 60 / całkowity	6 s		-	
dzielnik liczby n _s = 10				

Na rys. 7.15 przedstawiono trajektorie punktu centralnego elementu (dla $k_1 = 0,883$), czas zamknięcia pętli wynosi w tym przypadku 6 s.

Rys. 7.15. Trajektoria punktu centralnego symulowanej powierzchni docieranej dla k₁ = 0,883 (czas po jakim nastąpiło zamknięcie pętli punktu środkowego to 6 s)

Symulacja III.

Warunki symulacji III podano w tabeli 7.27.

Tabela 7.27. Obliczenia dotyczące czas zamknięcia pętli (dane z tabeli 7.24, pozycja 3)

n _t = 60 [obr/min]						
n _s = 47 [obr/min]						
Dzielnik liczby n _s = 47	1	47				
Wyniki dzielenia (n _t = 60 przez dzielniki	brak					
liczby n _{s)}						
Wybór całkowitych wyników dzielenia	brak					
(liczby \mathbf{n}_t przez dzielnik liczby \mathbf{n}_s)						
Wybór największego dzielnika liczby n _s 1						
(całkowity)						
Czas zamknięcia pętli Tc = 60 / całkowity	Czas zamknięcia pętli Tc = 60 / całkowity 60 s					
dzielnik liczby n s						

Na rys. 7.16 przedstawiono trajektorie punktu centralnego elementu (dla $k_1 = 783$), czas zamknięcia pętli wynosi w tym przypadku 60 s.

Rys. 7.16.Trajektoria punktu centralnego symulowanej powierzchni docieranej dla k₁ = 0,783 (czas po jakim nastąpiło zamknięcie pętli punktu środkowego to 60 s)

Symulacja IV.

Warunki symulacji IV podano w tabeli 7.28.

Tabela 7.28. Czas zamknięcia pętli (dane z tabeli 7.24, pozycja 4)

n _t = 60 [obr/min]	
n s = 60 [obr/min]	
Czas zamknięcia pętli Tc = 60 / całkowity	1 s
dzielnik liczby n ₅	

Na rys. 7.17 przedstawiono trajektorie punktu centralnego elementu (dla $k_1 = 0,998$), czas zamknięcia pętli wynosi w tym przypadku 1 s.

Rys. 7.17. Trajektoria punktu centralnego symulowanej powierzchni docieranej dla k₁ = 1 (czas po jakim nastąpiło zamknięcie pętli punktu środkowego to 1 s)

Analizując powyższe przypadki można stwierdzić, iż czas zamknięcia pętli jest różny i zależy od prędkości obrotowej separatora i prędkości obrotowej tarczy docierającej. Widoczna jest również różnica w przebiegu trajektorii punktów środkowych powierzchni docieranych, ponieważ przebieg zależy od wartości współczynnika $k_1 = n_s/n_t$.

W tabeli 7.29 przedstawiono kilka przypadków obliczeń zamknięcia pętli dla zadanych ns i nt. Zaletą symulacji z użyciem programu T.Exe jest to, że możemy symulować teoretyczny przebieg zamknięcia pętli. Na podstawie przeprowadzonych symulacji można tak dobrać prędkość tarczy docierającej i separatora wymagany (separator z wymuszonym ruchem obrotowym), aby uzyskać najkorzystniejsze warunki realizacji procesu docierania zarówno dla tarczy jak i elementów docieranych.

Lp	nt	n _s	Czas zamknięcia pętli
	[obr/min]	[obr/min]	[s]
1	10	10	6
2	20	20	3
3	30	30	2
4	40	40	1,5
5	50	50	1.2

Tabela 7.29. Przykłady wyników obliczeń czsu zamknięcia pętli

Na podstawie uzyskanych wyników symulacji można stwierdzić, że:

- W przypadku, kiedy prędkość separatora i tarczy docierającej są różne i niewielokrotne, a stosunek n_s/nt jest liczbą wymierną, to trajektorie stają się zamkniętymi po określonym czasie ruchu.
- Czas pełnego cyklu zależy od tego, czy prędkość separatora i prędkość docieraka mają wspólne dzielniki.
- 3. Jeżeli podczas docierania mamy wpływ nie tylko na prędkość n_t, ale i na n_s (system kinematyczny z wymuszonym ruchem separatora), to jest możliwe zaplanowanie ruchu tak, aby powstawały zamknięte trajektorie ruchu punktów środkowych docieranych elementów.
- 4. Program T.Exe może służyć jako narzędzie wspomagające planowanie operacji docierania.

7.4. Wpływ rozmieszczenia losowego elementów docieranych w separatorze na kinematykę docierania

Rozmieszczenie elementów w separatorze jak również wartość prędkość obrotowej n_s i n_t oraz czas zamknięcia pętli Tc mają zasadniczy wpływ na zużycie tarczy docierającej. Na podstawie przeprowadzonych w poprzednim rozdziale symulacji zaproponowano zastosowanie alternatywnego podejścia w kwestii rozmieszczania elementów. Symulacje przeprowadzone w poprzednim rozdziale dowiodły, że rozmieszczenie ma wpływ na kinematykę docierania jak również na intensywność zużycia tarczy. Aby zminimalizować nierówne zużywanie tarczy zaproponowano, by przy pomocy programu komputerowego wyznaczyć (wylosować) takie ułożenie elementów w separatorze, żeby intensywność zużycia tarczy docierającej była, korzystna.

Dla potrzeb przeprowadzenia tych badań opracowano kolejny program o symbolu MGN4.8-N.Exe. Umożliwia on losowanie najlepszego ułożenia ośmiu elementów w separatorze spośród zaproponowanych N eksperymentów. Program wymaga wprowadzenia następujących danych wejściowych:

- 1. odległość separatora od środka tarczy docierającej (80 115 mm),
- 2. średnica elementu o przekroju kołowym (8 20 mm),
- 3. prędkość obrotowa tarczy docierającej nt (1 60 obr/min),
- 4. prędkość obrotowa separatora ns (1 60 obr/min),
- 5. krok czasowy $\Delta t (0, 1 0, 002)$,
- 6. program określa czas jednego cyklu ruchu na:
 - a) jeden obrót tarczy docierającej,
 - b) jeden obrót separatora,
 - c) oraz czas zdefiniowany przez operatora,
- 7. propozycja liczby losowań rozmieszczania elementów.

W następnym kroku program dokonuje symulacji w celu otrzymania najlepszego układu elementów w separatorze. W tym programie rozmieszczenie elementów tworzy 8 - ramienna gwiazda z krokiem co 45 stopni. Odległości elementów obrabianych są losowane i przyjmują wartości od 10 do 60 mm (z krokiem co 10 mm), co zostało przedstawione na rysunku 7.18.

Rys. 7.18. Przykładowy schemat rozmieszczenia ośmiu elementów tworzących 8 - ramienną gwiazdę z krokiem co 45 stopni (odległości elementów obrabianych są losowane i przyjmują wartości od 10 do 60 mm, z krokiem co 10 mm)

W celu zademonstrowania nowej metody rozmieszczenia elementów w separatorze przeprowadzono eksperyment przy użyciu opracowanego programu statystycznego MGN4.9-N.Exe, dla którego dane wejściowe zostały zawarte w tabeli 7.30. Wykorzystano również program T.Exe, przy pomocy którego obliczono czas zamknięcia pętli. Umożliwi to pozyskanie informacji, po jakim czasie dla założonych prędkości n_s i n_t pętla zostanie zamknięta.

Tabela 730. Parametry wejściowe	e (symulacja kinematyki p	orzy użyciu programu	MGN4.8-N.Exe)
---------------------------------	---------------------------	----------------------	---------------

Liczba losowań	4
Prędkość obrotowa docieraka nt	60 obr/min
Prędkość obrotowa separatora ns	50 obr/min
Parametr $k_1 = n_s/n_t$	0,883
Odległość środka separatora od środka układu kinematycznego	100 mm
Liczba elementów obrabianych	8
Średnica elementu docieranego (średnia wartość)	17,82 mm
Czas zamknięcia pętli	6 s
Czas ruchu	6 s

Po przeprowadzeniu eksperymentu program w czterech losowaniach wygenerował rozmieszczenia dla 8 elementów, co zostało przedstawione w tabeli 7.31.

Położenie elementów w	Odległość od	β _t kąt przesunięcia z
separatorze	środka separatora	krokiem 45°
(kąt β _t – jak na rys. 2.4)	R1 = 30 mm	$\beta_t = 0^{\circ}$
	R2 = 50 mm	$\beta_t = 45^{\circ}$
	R3 = 20 mm	$\beta_t = 90^{\circ}$
	R4 = 40 mm	β _t = 135°
	R5= 20 mm	βt = 180°
	R6= 50 mm	β _t = 225°
	R7= 40mm	βt = 270°
	R8= 50 mm	$\beta_t = 315^{\circ}$

Tabela 7.31. Wygenerowane przez program MGN4.8-N.Exe położenie elementów

Wylosowane rozmieszczenie elementów w separatorze przedstawiono na rys. 7.19.

Rys. 7.19. Rozmieszczenie elementów w separatorze zaproponowane przez program MGN4.8-N.Exe (dane z tabeli 7.31)

Program wygenerował również inne wyniki, które zostały zawarte w tabelach 7.32 i 7.33.

Tabela 7.32. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania

	Czas ruchu: 6	s		
Element	Długość	V _{min}	V _{max}	Współczynnik
	trajektorii	[mm/s]	[mm/s]	nierównomierności
	[mm]			prędkości w sektorach [%]
1	3710,60	587,76	648,42	9,4
2	3714,85	587,76	670,37	15,6
3	3709,27	587,76	638,28	6,3
4	3712,46	587,76	659,90	12,7
5	3709,27	587,76	638,28	6,3
6	3714,85	587,76	670,37	15,5
7	3712,46	587,76	658,57	12,3
8	3714,85	587,76	670,37	15,6

labela 7.33. Zestawienie wyników obliczeń	ń intensywności zużycia tarczy docierającej
--	---

Numer	umer Numer sektora								Liczba p	ounktów
pierścienia	1	2	3	4	5	6	7	8	środkowych które przesz pierś leżący na powiel	elementów, ly przez dany scień rzchni docieraka
5	4	3	3	4	5	3	3	5	53	30
4	12	10	10	11	9	10	10	11	8	3
3	14	15	16	14	15	16	15	16	121	
2	16	18	17	15	16	16	17	16	131	
1	16	15	15	15	14	16	16	16	123	
P _{min}				Ρ	max		P _{min}	P _{max}		
3						18		30	131	
Współo	zynnik	(nieró	wnom	iernoś	ci		١	Vspóło	czynnik nierównor	nierności
zużycia docieraka wyznaczony na podstawie analizy w przyjętych sektorach)	zużycia docieraka wyznaczony na podstawie analizy w wyznaczonych pierścieniach				
83 %								77,1 %		

Przełożyło się to na otrzymane wyniki "nierównomierności zużycia tarczy docierającej" w sektorach i pierścieniach. Należy więc eksperyment zwiększyć o większą liczbę losowań, aby program mógł wygenerować lepsze rozwiązanie ułożenia elementów tak, aby zużycie tarczy docierającej było jak najbardziej równomierne na całej powierzchni roboczej. Opracowano również nową wersję programu tj. program MGN4.9-7N.Exe, który posiada nowe możliwości. Po wprowadzeniu wartości prędkości obrotowej tarczy docierającej nt i separatora ns automatycznie wybiera on czas eksperymentu, równy czasowi pełnego cyklu oraz krok czasowy Δt . W tym programie rozmieszczenie elementów tworzy również 8 - ramienna gwiazda z krokiem co 45 stopni. Odległości elementów obrabianych są losowane i przyjmują wartości od 10 do 60 mm z krokiem co 10 mm. Program umożliwia wprowadzenie określonych ustawień, co zostało przedstawione na przykładzie kolejnego eksperymentu (dane wejściowe zawarto w tabeli 7. 34).

Tabela 7.34. Parametry wejściowe (symulacja kinematyki przy użyciu programu MGN4.9-7N.Exe)

Liczba losowań	4
Prędkość obrotowa docieraka n _t	60 obr/min
Prędkość obrotowa separatora n _s	57 obr/min
Parametr k ₁ = n _s /n _t	0,950
Odległość środka separatora od środka układu kinematycznego	100 mm
Liczba elementów obrabianych	8
Średnica elementu docieranego (średnia wartość)	17,82 mm
Czas zamknięcia pętli	20 s

Tabela 7.35. Wygenerowane przez program MGN4.8-N.Exe położenie elementów

Położenie elementów w	Odległość od	β _t kąt przesunięcia z
separatorze	środka separatora	krokiem 45°
(kąt β _t – jak na rys. 2.4)	R1 = 20 mm	$\beta_t = 0^{\circ}$
	R2 = 40 mm	$\beta_t = 45^{\circ}$
	R3 = 60 mm	$\beta_t = 90^{\circ}$
	R4 = 40 mm	β _t = 135°
	R5= 50 mm	βt = 180°
	R6= 30 mm	$\beta_t = 225^{\circ}$
	R7= 60 mm	β _t = 270°
	R8= 60 mm	β _t = 315°

Wylosowane rozmieszczenie elementów w separatorze przedstawiono na rys. 7.20

Rys. 7.20. Rozmieszczenie elementów w separatorze zaproponowane przez program MGN4.9-7N.Exe (dla danych z tabeli 7. 35)

Program wygenerował również inne informacje, które zostały zwarte w tabelach 7.36 i 7.37.

	Czas ruchu: 20 s			
Element	Długość trajektorii	V _{min}	V _{max}	Współczynnik
	[mm]	[mm/s]	[mm/s]	nierównomierności
				prędkości w sektorach
				[%]
1	12533,64	620,38	632,95	2,0
2	12534,58	614,10	639,23	3,9
3	12536,16	607,82	645,52	5,8
4	12534,58	614,10	639,23	3,9
5	12535,29	610,96	642,37	4,9
6	12534,03	617,24	636,09	3,0
7	12536,16	607,82	645,52	5,8
8	12536,16	607,82	645,52	5,8

Tabela 7.37. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej

Numer			N	umer	sekto	tora Liczba punktów					
pierścienia	1	2	3	4	5	6	7	8	środkowych elementów, które przeszły przez dany pierścień leżący na powierzchni docieraka		
5	41	39	41	39	39	41	39	41	32	20	
4	82	84	87	84	84	87	84	87	676		
3	127	120	115	120	120	115	120	115	971		
2	124	126	131	126	126	131	126	131	10	17	
1	128	131	125	131	131	125	131	125	10	24	
	P _{mir}	ı				P _{max}			P _{min}	P _{max}	
	39						131		320	1024	
Współcz	ynnik	nieró	wnom	nierno	ści		W	spółcz	zynnik nierówno	mierności	
zużycia docieraka wyznaczony na podstawie analizy w przyjętych sektorach							zużycia docieraka wyznaczony na podstawie analizy w wyznaczonych pierścieniach				
	7	70,2 %)						68,8 %		

Analizując powyższe wyniki eksperymentów można stwierdzić że:

- 1. Program MGN4.8-N.Exe określa czas jednego cyklu ruchu na:
- a) jeden obrót tarczy,
- b) jeden obrót separatora,
- c) oraz czas zdefiniowany przez operatora, a następnie losuje rozmieszczenie elementów w separatorze.
- Program MGN4.9-7N.Exe po wprowadzeniu wartości prędkości obrotowej tarczy docierającej i separatora, automatycznie wybiera czas symulacji równy czasu pełnego cyklu Tc.
- 3. Program może przeprowadzać N prób w celu uzyskania możliwe korzystnego z punktu intensywności zużycia tarczy rozmieszczenia ośmiu elementów.
- Współczynnik nierównomierności zużycia powierzchni tarczy WNP = (Pmax- Pmin) / Pmax
 [w%] można określić jako "maksymalną względną gęstość punktów tworzących trajektorie na powierzchni tarczy" lub "maksymalną względną nierównomierność zużycia tarczy".
- Jeżeli w wyniku symulacji rozmieszczenia elementów docieranych uzyskany zostanie współczynnik nierównomierności na poziomie 47 %, należy uznać to za wynik zadawalający. Zwiększenie symulowanych prób powyżej 100 tysięcy nie poprawia równomierności zużycia tarczy docierającej.

7.5. Wpływ podstawowych warunków dawkowania wymuszonego zawiesiny ściernej na ubytek masowy docieranych elementów ceramicznych

W celu oceny wpływu parametrów wymuszonego dawkowania na ubytek masowy docieranych elementów wykonanych z ceramiki Al₂O₃ przeprowadzono badania na docierarce jednotarczowej Abralap 380.Celem badań było określenie funkcji:

$$U_{\rm m} = f\left(K, V_{\rm s}, L_{\rm e}\right) \tag{7.1}$$

gdzie:

K – procentowa (wagowa) zawartość ziaren ściernych w nośniku,

Vs - dawka zawiesiny ściernej [ml/20 min],

Le - lepkość nośnika ziaren ściernych [mPa·s].

Założono, że model matematyczny ma postać wielomianu drugiego stopnia z interakcjami:

$$U_{m} = b_{0} + b_{1}K + b_{2}K^{2} + b_{3}V_{s} + b_{4}V_{s}^{2} + b_{5}L_{e} + b_{6}L_{e}^{2} + b_{7}KV_{s} + b_{8}KL_{e} + b_{9}V_{s}L_{e}$$
(7.2)

Warunki stałe docierania jednotarczowego zamieszczono w tabeli 6.2. Na podstawie ustalonego zakresu wartości czynników wejściowych utworzona została macierz planu, którego widok w postaci zakodowanej podano w tabeli 6.3. Badania przeprowadzono zgodnie z macierzą planu dla S = 3 czynników wejściowych (K, V_s, L_e). W tabeli 7.38 przedstawiono wyniki eksperymentów.

Tabela 7.38. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów ubytku masowego próbek ceramicznych (podano wartości średnie z 3 pomiarów)

Nr	K [%]	Vs [ml/20 min]	Le [mPa·s]	U _m [g]
1	15	10	23	0,0458
2	15	50	23	0,1537
3	15	50	23	0,1538
4	15	50	23	0,1543
5	15	50	23	0,1541
6	15	50	23	0,1555
7	15	50	23	0,1517
8	15	90	23	0,1874
9	5	50	23	0,0298
10	25	50	23	0,1031
11	21	74	29,5	0,0805
12	21	26	29,5	0,0342
13	9	74	29,5	0,0581
14	9	26	29,5	0,0171
15	15	50	34	0,0679
16	15	50	10,3	0,0695
17	21	74	16,5	0,1167
18	21	26	16,5	0,0870
19	9	74	16,5	0,0377
20	9	26	16,5	0,0287

Wykorzystując program Statistica zbudowano wykresy przestrzenne i warstwicowe przedstawiające wpływ poszczególnych składników badanych na wielkość ubytku masowego. Na ich podstawie zbudowano wykresy powierzchniowe (rys. 7.21 ÷ 7.23). Na rysunkach tych zaznaczono kilka punktów charakterystycznych

Rys. 7.21. Wykres powierzchniowy wartości ubytku masowego próbek ceramicznych w funkcji czynników wejściowych K, i V_s

K[%]

Rys. 7.22. Wykres powierzchniowy wartości ubytku masowego próbek ceramicznych w funkcji czynników wejściowych Le i Vs

Rys. 7.23. Wykres powierzchniowy wartości ubytku masowego próbek ceramicznych w funkcji czynników wejściowych K i Le

K[%]

Analizując wykresy (rys. 7.21 ÷ 7.23) można zauważyć, iż największy ubytek masowy w zrealizowanych badaniach doświadczalnych (U_m = 0,1874 g) osiągnięto przy następujących wartościach parametrów wejściowych: K = 15 [%], V_s = 90 [ml/20 min] oraz L_e = 23 [mPa·s].

W celu sprawdzenia istotności statystycznej otrzymanych wyników przeprowadzono odpowiednią analizę. Na podstawie danych zawartych w tabeli 7.38 przeprowadzono test SS dla pełnego modelu. Dla wyznaczonego równania regresji obliczono kolejno współczynniki korelacji wielokrotnej oraz współczynnik determinacji. Wyniki testu SS pełnego modelu przedstawiono w tabeli 7.39.

Tabela 7.39	. Wyniki	analizy	modelu
-------------	----------	---------	--------

	Test SS dla pelnego modelu											
Zależna Zm.	Wielokr. R	Wielokr. R2	Skorygow R2	SS Model	df Model	MS Model	SS Reszta	df Reszta	MS Reszta	F	р	
Um	0,958941	0,919568	0,847180	0,052405	9	0,005823	0,004584	10	0,000458	12,70323	0,000226	

Następnie przeprowadzono jednowymiarowe testy istotności równania U_m = f (K, Vs, Le). Wyniki analizy przedstawiono w tabeli 7.40.

	Jednowymiarowe testy istotności dla U _m									
	Parametryzacja z sigma-ograniczeniami Dekompozycja efektywnych hipotez; błąd standardowy oceny: 0,0214									
	SS	Stopnie	MS	F	р					
Efekt		swobody								
Wyraz wolny	0,012981	1	0,012981	28,32070	0,000337					
К	0,014987	1	0,014987	32,69670	0,000193					
K^2	0,019182	1	0,019182	41,84720	0,000072					
Vs	0,001597	1	0,001597	3,48474	0,091496					
Vs^2	0,005061	1	0,005061	11,04167	0,007710					
Le	0,012388	1	0,012388	27,02673	0,000402					
Le^2	0,016998	1	0,016998	37,08234	0,000117					
K*Vs	0,000084	1	0,000084	0,18435	0,676767					
K*Le	0,001196	1	0,001196	2,60837	0,137375					
Vs*Le	0,000295	1	0,000295	0,64412	0,440881					
Błąd	0,004584	10	0,000458							

Dla analizowanego równania regresji F = 12,70323. Tej wartości odpowiada poziom istotności p-value = 0,000226. Wartość poziomu istotności świadczy o wysokiej istotności zbudowanego równania regresji. Błąd standardowy oceny testu wynosi 0,0214, co świadczy, że wszystkie parametry modelu zostały oszacowane wystarczająco dokładnie. Model oceniono za pozytywny. Analizę równania regresji rozszerzono o testowanie istotności współczynników równania (tabela 7.41).

Tabela 7.41. Wartości współczynników regresji i poziom ich istotności

	Oceny parametr	Oceny parametrów Parametryzacja z sigma-ograniczeniami										
	Um Param.	Um Bł. std.	Um t	Um p	-95,00% Gr.ufn.	+95,00% Gr.ufn.	Um Beta (ß)	Um Bł.Std.ß	-95,00% Gr.ufn.	+95,00% Gr.ufn.		
Efekt												
Wyraz wolny	-0,658470	0,123733	-5,32172	0,000337	-0,934164	-0,382777						
К	0,040693	0,007116	5,71810	0,000193	0,024836	0,056549	3,76557	0,658535	2,29826	5,23288		
K^2	-0,001031	0,000159	-6,46894	0,000072	-0,001386	-0,000676	-2,92224	0,451734	-3,92877	-1,91571		
Vs	0,003189	0,001708	1,86675	0,091496	-0,000617	0,006996	1,18042	0,632343	-0,22852	2,58937		
Vs^2	-0,000033	0,000010	-3,32290	0,007710	-0,000055	-0,000011	-1,26194	0,379771	-2,10812	-0,41576		
Le	0,033836	0,006509	5,19872	0,000402	0,019334	0,048338	3,52968	0,678951	2,01688	5,04247		
Le ²	-0,000707	0,000116	-6,08953	0,000117	-0,000966	-0,000449	-3,36097	0,551926	-4,59074	-2,13120		
K*Vs	0,000023	0,000053	0,42936	0,676767	-0,000095	0,000140	0,16760	0,390352	-0,70216	1,03736		
K*Le	-0,000313	0,000194	-1,61504	0,137375	-0,000746	0,000119	-0,84063	0,520497	-2,00036	0,31911		
Vs*Le	0,000039	0,000049	0,80257	0,440881	-0,000069	0,000147	0,39541	0,492681	-0,70235	1,49317		

Na tej podstawie uzyskano model matematyczny, który jest wielomianem drugiego stopnia z trzema zmiennymi (K, V_s, L_e):

$$U_m = -0,6585 + 0,0407K - 0,0010K^2 + 0,0032V_s - 0,000033V_s^2 + 0,0338L_e - 0,0070L_e^2 + 0,000023KV_s - 0,0003KL_e + 0,000039V_sL_e$$
(7.3)

Znając równanie regresji, obliczono wartości teoretyczne ubytku masowego U_{mt} . Porównanie wyników rzeczywistych U_m i przewidywanego U_{mt} przedstawiono w tabeli 7.42.

	Wartości obse Parametryzac	Wartości obserwowane, przewidywane i reszty Parametryzacja z sigma-ograniczeniami								
	Um Obserw.	U _{mt} Przewid.	U _{mt} Reszty							
1	0,04580	0,05675	-0,01095							
2	0,15370	0,15423	-0,00053							
3	0,15380	0,15423	-0,00043							
4	0,15430	0,15423	0,00007							
5	0,15410	0,15423	-0,00013							
6	0,15550	0,15423	0,00127							
7	0,15170	0,15423	-0,00253							
8	0,18740	0,14577	0,04163							
9	0,02980	0,01435	0,01545							
10	0,10310	0,08787	0,01523							
11	0,08050	0,10456	-0,02406							
12	0,03420	0,03250	0,00170							
13	0,05810	0,07840	-0,02030							
14	0,01710	0,01934	-0,00224							
15	0,06790	0,05264	0,01526							
16	0,06950	0,05862	0,01088							
17	0,11670	0,13577	-0,01907							
18	0,08700	0,08801	-0,00101							
19	0,03770	0,06071	-0,02301							
20	0,02870	0,02595	0,00275							

 Tabela 7.42. Porównanie wyników zaobserwowanych ubytku masowego i wartości przewidywanych

Wprowadzono pojęcie parametru funkcji użyteczności (tabela 7.43). Wartość maksymalna parametru U_{mt}, jaką otrzymano w wyniku optymalizacji to:

Umt = 0,2038 µm dla Umużyt. = 1, a w przypadku, gdy:

 $U_{mt.} = -17,8390$ to $U_{muzyt} = 0$

Tabela 7.43. Parametry funkcji użyteczności

-										
	Parametry funkcji użyteczności Ustawienia funkcji użyteczności dla każdej zmiennej zależnej									
	Niska	Użytecz.	Pośr.	Użytecz.	Wysoka	Użytecz.	S	t		
Zm.	Wartość	Wartość	Wartość	Wartość	Wartość	Wartość	Param.	Param.		
Umużyt.	-0,015200	0,00	0,094330	0,500000	0,203860	1,000000	1,000000	1,000000		

Taka parametryzacja pozwoli na lepszą interpretacje wyników graficznych wygenerowanych przez program Statistica. Po przeprowadzeniu optymalizacji zestawienie wartości wejściowych (K_t, V_{st}, L_{et}) i odpowiadający im teoretyczny ubytek masowy U_{mt} elementów docieranych zamieszczono w tabeli 7.44.

	-										
	Poziomy czynnika i przewidywane odpowiedzi										
	Czynnika	Przewid.	Użytecz.	-95%CI	+95%Cl						
Czynnik	Poziom	Um	Wartość	Um	Um						
К	4,864082	0,010878	0,119045	-0,026814	0,048570						
к	9,932041	0,109098	0,567415	0,089372	0,128824						
К	15,00000	0,154347	0,773977	0,134901	0,173793						
К	20,06796	0,146626	0,738729	0,126900	0,166352						
К	25,13592	0,085934	0,461671	0,048242	0,123625						
Vs	9,456326	0,054949	0,320229	0,017258	0,092641						
Vs	29,72816	0,118253	0,609208	0,098527	0,137979						
Vs	50,00000	0,154347	0,773977	0,134901	0,173793						
Vs	70,27184	0,163232	0,814535	0,143506	0,182958						
Vs	90,54367	0,144907	0,730883	0,107216	0,182599						
Le	11,48885	0,077250	0,422030	0,042848	0,111651						
Le	17,20192	0,138885	0,703390	0,118932	0,158837						
Le	22,91500	0,154347	0,773977	0,134901	0,173793						
Le	28,62808	0,123638	0,633790	0,103663	0,143613						
Le	34,34115	0,046757	0,282830	0,008696	0,084818						

Tabela 7.44. Zestawienie odpowiedzi dotyczące przewidywanego ubytku masowego

Profile wartości aproksymowanych i teoretycznego ubytku masowego w funkcji czynników wejściowych przedstawiono na rys.7.24. W tym przypadku zmienną zależną jest $U_{mt} = U_{mużyt.}$, a predyktory to K_t, V_{st} i L_{et}. Na rys. 7.25, 7.26 i 7.27 zamieszczono wykresy przestrzenne U_{mużyt}. F = (K_t, V_{st}, L_{et}).

Rys. 7.24. Profile wartości aproksymowanych i teoretyczny ubytek masowy w funkcji czynników wejściowych Kt, Vst, Let

Rys. 7.25. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku masowego użytecznego w funkcji czynników K_t i V_{st}

Rys. 7.26. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku masowego użytecznego w funkcji czynników Kt i Let

Rys. 7.27. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku masowego użytecznego w funkcji czynników V_{st} i L_{et}

K_t[%]

K_t[%]

Analizując powyższe wykresy, można stwierdzić, jaki wpływ wywierają predyktory na zmienną objaśnianą. Dzięki tej metodzie można prognozować odpowiedzi dotyczące ubytku masowego w funkcji czynników wejściowych.

W badaniach doświadczalnych ubytek liniowy U_m przyjmował wartości:

 U_{mmin} = 0,0171 g - dla parametrów wejściowych: K = 9 %, V_s = 26 ml/20 min, L_e = 29,5 mPa·s U_{mmax} = 0,1874 g - dla parametrów wejściowych: K = 15 %, V_s = 90 ml/20 min, L_e = 23 mPa·s.

Dokonując optymalizacji przewidywanych odpowiedzi ustalono, że ubytek masowy U_{mtmax} wyniesie:

U_{mtmax} = 0,154 g - dla czynników wejściowych: K=15%, V_s = 70 ml/20 min], L_e= 22,9 mPa·s.

Na tej podstawie można stwierdzić, że:

- 1. U_{mtmax} = 0,154 g, czyli spadek o 17,8 %,
- 2. Oszczędność dawki V_s o 22,2%,
- 3. Należy zmienić lepkość zawiesiny (z 29,5mPa·s na 22,9mPa·s).

7.6. Wpływ sposobu dawkowania na zużycie zawiesiny ściernej

Przeprowadzając badania wpływu wymuszonego systemu dozowania i nanoszenia zawiesiny ściernej na efekty docierania, to jest ubytek liniowy i masowy, dokonano również pomiarów zużycia substancji ściernej. Wykonując badania wstępne stwierdzono, że zużycie zawiesiny w konwencjonalnym systemie dawkowania jest na poziomie 520 ml/20 min. Porównując wyniki konwencjonalnego systemu dozowania z wymuszonym układem nanoszenia (rys. 7.28) stwierdzono, że układ wymuszony pozwolił ograniczyć zużycie do poziomu 67,48 ml/20 min.

Rys. 7.28. Zużycie zawiesiny ściernej V₅ podczas konwencjonalnego i wymuszonego dawkowania w docieraniu jednotarczowym (K – udział wagowy ścierniwa w zawiesinie)

Jest ono około siedem razy mniejsze, niż przy zastosowaniu systemu konwencjonalnego Zastosowanie takiego oszczędnego systemu dawkowania wpływa korzystnie, co oczywiste, na ochronę środowiska, gdyż generuje mniej szkodliwych odpadów (szlamu), na które składają się, oprócz produktów zużycia tarczy docierającej i obrabianego materiału, składniki wykorzystywanej w obróbce zawiesiny ściernej (składniki płynne i mikroziarna ścierne).

8. PODSUMOWANIE I WNIOSKI KOŃCOWE

W wyniku badań eksperymentalnych zweryfikowane zostały postawione hipotezy dotyczące wpływu parametrów dawkowania zawiesiny ściernej na efekty docierania jednotarczowego powierzchni płaskich. Uzyskane wyniki badań potwierdziły, że zaprojektowany system wymuszonego mieszania, dozowania i nanoszenia zawiesiny ściernej w strefę obróbki pozwala na uzyskanie wymaganych efektów docierania elementów ceramicznych Al₂O₃, przy znacząco mniejszym wydatku zawiesiny ściernej (w porównaniu z konwencjonalnym systemem dozowania).

W sekwencji badań zasadniczych opracowano model matematyczny wpływu podstawowych (badanych) parametrów dawkowania wymuszonego na ubytek liniowy docieranych elementów U_I = f (K, V_s, L_e). Zbudowano wykresy powierzchniowe i warstwicowe ilustrujące wpływ badanych czynników na wyniki analizowanego procesu, ułatwiające optymalizację parametrów dawkowania.

Przeprowadzono także badania, które pozwoliły na określenie funkcji wpływu badanych parametrów dawkowania na wybrane parametry chropowatości powierzchni:

- Rv = f (K, Vs, Le),
- Rp = f (K, V_s, L_e),
- Rz = f (K, Vs, Le).

Dokonano również analizy wpływu warunków wymuszonego dawkowania zawiesiny ściernej na korelacje podstawowych parametrów chropowatości powierzchni po docieraniu ceramiki Al₂O₃:

- Ra, Rq, Rt, Rv Rz, Rp, Rku, Rsm, Rsk,
- Sa, Sq, Sp, Sv, Ssk, Sku, Sz,
- Sk, Spk, Svk, Smr1, Smr2,
- Vvv, Vvc, Vmp, Vmc.

W przeprowadzonych badaniach uzupełniających określono wpływ czynników kinematycznych i technologicznych, które mają istotny wpływ na przebieg i wyniki docierania jednotarczowego powierzchni płaskich, a w szczególności przeanalizowano:

- wpływ rozmieszczenia elementów docieranych w separatorze na kinematykę docierania,
- wpływ prędkości obrotowej docieraka i separatora na prognozowane zużycie powierzchni roboczej tarczy docierającej,
- wpływ lepkości mieszaniny składników płynnych w zawiesinie ściernej na kinematykę docierania jednotarczowego,
- losowe rozmieszczenie elementów docieranych w separatorze i jego wpływ na kinematykę docierania,
- wpływ badanych (podstawowych) warunków dawkowania wymuszonego zawiesiny ściernej na ubytek masowy obrabianych elementów ceramicznych.

Wyniki przeprowadzonych badań upoważniają do wysunięcia wniosków o charakterze teoretyczno-poznawczym, utylitarnym, jak również na wskazanie kierunków dalszych prac nad tematyką rozprawy.

8.1. Wnioski poznawcze

Wyniki badań eksperymentalnych i analiz umożliwiają także na sformułowanie wniosków szczegółowych o charakterze teoretyczno-poznawczym, a w szczególności że:

- 1 W wyniku przeprowadzonych badań stwierdzono, iż lepkość mieszaniny nośników płynnych w zawiesinie ściernej ma statystycznie istotny wpływ na efektywność docierania badanych elementów ceramicznych.
- 2 Lepkość nośnika ziaren ściernych w zawiesinie ma znaczący wpływ na stosunek prędkości obrotowej separatora przedmiotowego (pierścienia prowadzącego) i tarczy docierającej, czyli na współczynnik k1 = ns/nt, co z kolei ma wpływ na nierównomierność kształtowego zużycia tarczy.
- 3 Badane parametry dawkowania zawiesiny (K, V_s, L_e) mają istotny wpływ na ubytek liniowy docieranych próbek ceramicznych.
- 4 Opracowany innowacyjny system wymuszonego dawkowania i nanoszenia zawiesiny ściernej umożliwia całkowite pokrycie powierzchni roboczej tarczy docierającej w czasie jednego jej obrotu.
- 5 Analizując wpływ podstawowych warunków wymuszonego dawkowania zawiesiny ściernej (K, Vs, Le) na wybrane parametry chropowatości powierzchni ceramiki Al₂O₃ to jest Ra, Rq, Rt, Rv Rz, Rp, Rku, Rsm oraz Rsk podczas docierania stwierdzono że:
 - istotne statystycznie korelacje czynników badanych zachodzą dla następujących par: (K, Rsk) korelacja r = 0,49; (V_s ,Rt), korelacja r = 0,51; (V_s, Rp) korelacja r = 0,57; (L_e, Rsm) korelacja r = -0,61.
- 6 Oceniając wpływu badanych warunków wymuszonego dawkowania zawiesiny na wybrane parametry struktury geometrycznej chropowatości w układzie 3D (Sa, Sq, Sp, Sv, Ssk, Sku, Sz) stwierdzono, że:
 - nie mają istotnego statystycznie wpływu,
 - statystycznie istotne zaś zachodzą korelacje pomiędzy następującymi parami parametrów chropowatości powierzchni: (Sa, Sq), - korelacja r = 0,99; (Sp, Sz) - korelacja r = 0,82; (Ssk, Sku) - korelacja r = 0,75; (Sku, Sp) - korelacja r = 0,76.
- 7 Analizując wpływ warunków wymuszonego dawkowania zawiesiny ściernej (K, Vs, Le) na parametry powierzchniowe amplitudowe struktury geometrycznej powierzchni wyznaczone dla układu 3D (Sk, Spk, Svk, Smr1, Smr2) stwierdzono, że:
 - statystycznie istotny wpływ parametrów wejściowych zachodzi jedynie dla (K, Smr1) - korelacja r = 0,48 oraz (K, Smr2) - korelacja r = 0,46.

- Istotne statystycznie korelacje parametrów chropowatości zachodzą dla par:(Smr1, Smr2), korelacja r = 0,90, (Sk, Spk), korelacja r = 0,76, (Sk, Svk) korelacja r = 0,71.
- 8 Przeprowadzając ocenę wpływu warunków wymuszonego dawkowania zawiesiny na wybrane parametry objętościowe struktury geometrycznej powierzchni wyznaczone dla powierzchni 3D (Vvv, Vvc, Vmp, Vmc) stwierdzono, że:
 - nie mają one istotnego statystycznie wpływu,
 - statystycznie istotne korelacje zachodzą pomiędzy następującymi parami parametrów: (Vmc, Vvv) - korelacja r = 0,85; (Vmc, Vvc) - korelacja r = 0,96; (Vmc, Vmp) - korelacja r = 0,75; (Vmp, Vvc) - korelacja r = 0,85; (Vmp, Vvv) korelacja r = 0,44.

8.2. Wnioski o charakterze utylitarnym

- Sposób przygotowania zawiesiny ściernej oraz zapewnienie ciągłego mieszania podczas docierania elementów płaskich ma istotny wpływ na przebieg i efektywność procesu obróbki. Brak ciągłego mieszania w zasobniku zawiesiny ściernej skutkuje nadmierną sedymentacją ziaren ściernych i zakłóca skład dawkowanej zawiesiny w strefę obróbki.
- 2. Opracowany innowacyjny system dawkowania umożliwia nanoszenie zawiesin o różnej lepkości nośnika i ziarnistości ścierniwa w nośniku i pozwoli na znaczące zmniejszenie zużycia zawiesiny ściernej w porównaniu z konwencjonalnym (ciągłym) systemem dawkowania przyczyni się do zmniejszenia kosztów docierania powierzchni płaskich oraz zmniejsza ilości szkodliwych odpadów.
- 3. Wykonane badania symulacyjne wykazały, przy założeniu równości wartości prędkości obrotowej separatora i tarczy docierającej n_s = n_t, że elementy o przekroju kołowym (umieszczone w separatorze w sposób losowy), przebywają tę samą drogę ze stałą prędkością. Jest to sytuacja bardzo niekorzystna ze względu na nierównomierność zużycia tarczy, a dopuszczalna ze względu na przebieg procesu docierania elementów. Im różnica pomiędzy prędkościami n_s i n_t będzie większa, tym większa będzie różnica długości trajektorii poszczególnych docieranych elementów (zwiększenie nierównomierności prędkości docierania).
- 4. Opracowany program do analizy kinematyki docierania jednotarczowego umożliwił wykazanie, że jeśli prędkości obrotowe separatora i tarczy docierającej są różne a stosunek ns/nt jest liczbą wymierną, to trajektorie przedmiotów zamykają się po określonym czasie ruchu. Czas cyklu ruchu zależy od tego, czy prędkość obrotowa separatora i docieraka mają wspólne dzielniki.
- 5. Z przeprowadzonych analiz wynika, iż planując proces docierania należy również brać pod uwagę korelacje występujące pomiędzy parametrami chropowatości poszczególnych docieranych elementów ceramicznych.

8.3. Proponowane kierunki dalszych badań

Po wykonaniu badań i analiz własnych, ze względu na złożoność procesu dawkowania ścierniwa w docieraniu powierzchni płaskich, można również zaproponować kierunki dalszych prac, a w szczególności:

- 1. Przeprowadzenie badań skuteczności dozowania w sposób wymuszony zawiesin ściernych, które zawierają nanocząsteczki i nie mają skłonności do sedymentacji.
- Rozbudowanie układu o większą liczbę punktów nanoszenia zawiesiny ściernej na docierak, co ma znaczenie w przypadku docierarek jednotarczowych o dużej średnicy narzędzia.
- Opracowanie systemu, który monitorowałby wysokość naniesionej warstwy czynnika docierającego na powierzchni roboczej tarczy docierającej.
- Opracowanie systemu, który zapewni stałą temperaturę dozowanej zawiesiny ściernej i docieraka.
- 5. Wykonanie badań wpływu pozostałych warunków technologicznych docierania na efektywność i jakość obróbki oraz weryfikację eksperymentalną nierównomierności zużycia tarczy docierającej w wyniku zmian prędkości obrotowej separatorów i rozmieszczenia w nich elementów docieranych.

Literatura

- [1] Ackoff R. 1960. Decyzje optymalne w badaniach stosowanych. PWN,
- [2] Ahrans, H. 1970. Analiza wariancji. PWN,
- [3] Barylski, A. 1990. Docierarki do płaszczyzn. Cz. III. Docierarki dwutarczowe. Mechanik (3), 75–80.
- [4] Barylski, A. 1992. Podstawy docierania jednotarczowego powierzchni płaskich. Zesz. Nauk. Politech. Gdań. Mech. (67)
- [5] Barylski, A. Deja, M. Stolarski, T. A. 1997. Computer simulation of kinematic systems of lapping machines. Trans. Eng. Sci. (17), 409–417.
- [6] Barylski, A. Deja, M. 1998. Computer Aided Quality Control of Plane Lapping. J. Balcan Tribol. Assoc. 4(1), 1–7.
- [7] Barylski, A. 1998. Teoretyczna analiza zużycia docieraka docierarki jednotarczowej. Technologii Budowy Maszyn,
- [8] Barylski, A. 2013. Obróbka powierzchni płaskich na docierarkach. Gdańsk: Wydawnictwo Politechniki Gdańskiej,
- [9] Barylski, A. Piotrowski, N. 2017. Optimization of kinematic parameters in singlesided lapping. Mechanik 90, 879–881.
- [10] Barylski, A. Gniot, M. 2018. Effect of the abrasive slurry dispensed in a manner forced for the performance of single-disk lapping of ceramic elements. Mechanik 91(8–9), 734–736.
- [11] Barylski, A. 2020. Analysis of flat compensatpr lapping in an assembly process. Technol. Autom. Montażu (2), 41–45.
- Barylski, A. Deja, M. Wear of a Tool in Double-Disk Lapping of Silicon Wafers, URL: https://www.researchgate.net/publication/267601927_Wear_of_a_Tool_in_Double
 -Disk Lapping of Silicon Wafers, [Dostep: 27-02-2021]
- [13] Barylski, A. Analiza kinematyki jednotarczowych docierarek laboratoryjnych -Publikacja - MOST Wiedzy, URL: https://mostwiedzy.pl/pl/publication/analizakinematyki-jednotarczowych-docierarek-laboratoryjnych,147653-1, [Dostęp: 28-02-2021]
- [14] Barylski, A. Bakoń, A. Preparaty na bazie nano- i mikrodiamentów do operacji docierania i polerowania. - Publikacja - MOST Wiedzy, URL: https://mostwiedzy.pl/pl/publication/preparaty-na-bazie-nano-i-mikrodiamentowdo-operacji-docierania-i-polerowania,128942-1, [Dostęp: 28-02-2021]
- [15] Barylski, A. Technological Problems in Lapping on Flat Surfaces of Ceramic Parts, URL: https://www.researchgate.net/publication/271961619_Technological_Problems_in
 - Lapping_on_Flat_Surfaces_of_Ceramic_Parts, [Dostęp: 28-02-2021]
- [16] Barylski, A. Deja, M. Shaping of the workpiece surface in single-disc lapping -Publikacja - MOST Wiedzy, URL: https://mostwiedzy.pl/pl/publication/shapingof-the-workpiece-surface-in-single-disc-lapping,126472-1, [Dostęp: 01-03-2021]
- [17] Barylski, A. Badania wpływu koncentracji ścierniwa i intensywności dawkowania zawiesiny na efekty docierania jednotarczowego - Publikacja - MOST Wiedzy, URL: https://mostwiedzy.pl/pl/publication/badania-wplywu-koncentracjiscierniwa-i-intensywnosci-dawkowania-zawiesiny-na-efekty-docieraniajedn,133029-1, [Dostęp: 02-03-2021]
- [18] Barylski, A. Analiza temperatury docierarki jednotarczowej Autobusy : technika, eksploatacja, systemy transportowe - Tom R. 19, nr 12 (2018) - BazTech - Yadda, URL: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-11724b23-4de4-42fa-9f21-3e99e248390e, [Dostęp: 02-03-2021]

- [19] Belkhir, N. Bouzid, D. Herold, V. 2009. Surface behavior during abrasive grain action in the glass laping proces. Appl. Surf. (255(18))
- [20] Box, G. E. P. Wilson, K. B. On the Experimental Attainment of Optimum Conditions on JSTOR, URL: https://www.jstor.org/stable/2983966?seq=1, [Dostęp: 01-03-2021]
- [21] Chang, Y. P. Hashimura, M. Dornfeld, D. A. 2000. An Investigation of Material Removal Mechanisms in Lapping with Grain Size Transition. J. Manuf. Sci. Eng. 122(3), 413–419.
- [22] Cong, W. Zhang, P. Pei, Z. J. 2009. Experimental Investigations on Material Removal Rate and Surface Roughness in Lapping of Substrate Wafers: A Literature Review. Key Eng. Mater. - KEY ENG MAT 404, 23–31.
- [23] Degner, W. Böttger, H. C. 1979. Handbuch Feinbearbeitung. Hanser Verlag,
- [24] Deja, M. List, M. Lichtschlag, L. Uhlmann, E. 2019. Thermal and technological aspects of double face grinding of Al2O3 ceramic materials. Ceram. Int. 45(15), 19489–19495.
- [25] Deshpaned, L. S. Raman, S. Sunanta, O. Agbaraji, C. 2008. Observations in the flat lapping of stainless steel and bronze. Univ. Okla. USA (265), (1-2).
- [26] Dobrzański, L. A. Pakuła, D. Staszuk, M. Dobrzańska-Danikiewicz, A. D. 2015. 2. Ogólna charakterystyka materiałów na narzędzia skrawające. (1), 61.
- [27] Evans, C. J. Paul, E. Dornfeld, D. Lucca, D. A. Byrne, G. Tricard, M. Klocke, F. Dambon, O. Mullany, B. A. 2003. Material Removal Mechanisms in Lapping and Polishing. CIRP Ann. 52(2), 611–633.
- [28] Federov, V. V. 1971. Teoria optymalnego eksperimenta. Nauka,
- [29] Feld, M. Barylski, A. 1980. Założenia do modelu pracy mikroziaren ściernych w procesie docierania. Prace Inst. Bud. Masz. WSI, Koszalin,
- [30] Feld, M. Barylski, A. 1982. Analiza aktualnego stanu docierania w przemyśle krajowym. Mechanik (1), 41–42.
- [31] Feld, M. Barylski, A. 1982. Obróbka wykańczająca docieraniem powierzchni czołowych elementów miedzianych dla uzyskania wymaganych warunków płaskości i chropowatości powierzchni maszyn. Instytut Technologii i Budowy Maszyn,
- [32] Feld, M. Barylski, A. 1990. Läppen ebener Flächen mit ZweimetallScheiben. Werkstatt Betr. 123(12), 933–936.
- [33] Finkelnburg, H. 1951. Läppen. Berl. Springer-Verl.
- [34] Fletcher, T. Gobena, F. Romero, V. 2004. Diamond Fixed Abrasive Lapping of Brittle Substrates. [W:] Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (2004), Paper OMC1, Optical Society of America, OMC1.
- [35] Gniot, M. Barylski, A. 2016. Hydrodynamic dosage abrasive slurry in reaching single disk lapping of flat surfaces. Mechanik (8–9), 1110–1111.
- [36] Gniot, M. Barylski, A. Migawa, K. 2017. Parameters of forced abrasive slurry in lapping flat surfaces. Mechanik 90(10), 894–896.
- [37] Gniot, M. Barylski, A. 2019. Lapping flat surfaces with forced dosing of abrasive suspension. MATEC Web Conf. 302, 01005.
- [38] Grabski, T. Wielowymiarowa analiza porównawcza w badaniach dynamiki zjawisk ekonomicznych - Zeszyty Naukowe / Akademia Ekonomiczna w Krakowie. Seria Specjalna, Monografie - Numer nr 61 (1984) - BazEkon - Yadda, URL: http://bazekon.icm.edu.pl/bazekon/element/bwmeta1.element.ekon-element-000171211101, [Dostęp: 01-03-2021]
- [39] Grösel, H. 1954. Läppen. Stuttgart: Das Insdustrieblatt. Stuttg. Insdustrieblatt

- [40] Grünwald, F. Schilling, G. 1979. Werkstoffabtrang und Raucheit beim Planläppen metallischer Werkstoffe. Feingerätetechnik,
- [41] Helwig, Z. 1972. Elementy rachunku ekonomicznego. PWN,
- [42] Hu, Z. Fang, C. Deng, W. Zhao, Z. Lin, Y. Xu, X. 2017. Speed ratio optimization for ceramic lapping with fixed diamond pellets. Int. J. Adv. Manuf. Technol. 90(9), 3159–3169.
- [43] Huang, S. Li, X. Yu, B. Jiang, Z. Huang, H. 2020. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. J. Mater. Process. Technol. 277, 116444.
- [44] Jianfeng Luo Dornfeld, D. A. 2003. Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification. IEEE Trans. Semicond. Manuf. 16(3), 469–476.
- [45] Kacalak, W. Królikowski, T. Szafraniec, F. Kunc, R. Remelska, H. 2010. Metodyka doboru parametrów mikro- i nonoszlifowania dla określonych wymagań dotyczących chropowatości powierzchni. 413–427.
- [46] Kacprzyński, B. 1974. Planowanie eksperymentów. PWN,
- [47] Khanov, A. Muratov, K. Gashev, E. 2016. Investigation of the Abrasive Lapping Process of Oxide Ceramics. Orient. J. Chem. 32, 391–398.
- [48] Kiefer, J. Match, A. 1961. Statatistics.
- [49] Kim, H.-M. Park, G.-H. Seo, Y.-G. Moon, D.-J. Cho, B.-J. Park, J.-G. 2015. Comparison between sapphire lapping processes using 2-body and 3-body modes as a function of diamond abrasive size. Wear 332–333, 794–799.
- [50] Klocke, F. 2009. Manufacturing Processes 2: Grinding, Honing, Lapping. Springer – Verl. Berl. Heidelb.
- [51] Kumar, M. R. P. Arun, B. S. Babu, R. A. 2013. Optimization of Process Parameters In Lapping of Stainless Steel. Int. J. Eng. Res. 2(9), 8.
- [52] Lai, Z. Hu, Z. Fang, C. Xiao, Z. Hsieh, P. Chen, M. 2019. Study on the Wear Characteristics of a Lapping Wheel in Double-Sided Lapping Based on the Trajectory Distribution. IEEE Trans. Semicond. Manuf. PP, 1–1.
- [53] Lai, Z. Hu, Z. Fang, C. Yu, Y. xiao, Z. Hsieh, P. Chen, M. 2020. Research on factors affecting wear uniformity of the wheels in the double-sided lapping. J. Manuf. Process. 50, 653–662.
- [54] Lee, T. Jeong, H. Lee, S. Kim, D. Kim, H. 2020. Effect of the Lapping Platen Groove Density on the Characteristics of Microabrasive-Based Lapping. Micromachines 11, 775.
- [55] Li, H. N. Axinte, D. 2016. Textured grinding wheels: A review. Int. J. Mach. Tools Manuf. 109, 8–35.
- [56] Lin, B. Jiang, X.-M. Cao, Z.-C. Huang, T. Li, K. 2020. Theoretical and experimental analysis of material removal and surface generation in novel fixed abrasive lapping of optical surface. J. Mater. Process. Technol. 279, 116570.
- [57] Lin, Y. X. Song, C. Shi, F. Li, S. Y. 2017. Modeling and simulation for effective removal rate of damage. [W:] Pacific Rim Laser Damage 2017: Optical Materials for High-Power Lasers, International Society for Optics and Photonics, 103392B.
- [58] Marciniak, M. Stefko, A. 1980. Racjonalny dobór koncentracji ziaren w zawiesinie ściernej przy docieraniu płaszczyzn. Mechanik (8)
- [59] Marinescu, I. D. Rowe, W. B. 2004. Tribology of Abrasive Machining Processes. Processes, William Andrew Publishing Ltd,
- [60] Marinescu, I. D. Ulmann, E. Doi, T. 2007. Handbook of Lapping and Polishing. Taylor & Francis Publishing House,
- [61] Misra, A. Finnie, I. 1987. A classification of three-body abrasive wear and design of new teste. (60), 111–121.

- [62] Molenda, J. Barylski, A. 2012. Al203 sealing elements lapping. J. KONES 19, 311– 318.
- [63] Molenda, J. Charchalis, A. Wpływ twardości materiału obrabianego na jakość powierzchni po docieraniu Logistyka Numer nr 3, CD 1 (2015) Biblioteka Nauki Yadda, URL: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ekon-element-000171420490, [Dostęp: 28-02-2021]
- [64] Nalimov, V. V. Czernowa, N. A. 1967. Statystyczne metody planowania doświadczeń eksperymentalnych. WNT,
- [65] Nalimov, V. V. 1971. Teoria eksperymentu. Nauka,
- [66] Nan-nan, Z. Sheng-bin, Z. Hong-jun, W. Xiu-juan, W. Jun, X. Yong-wei, Z. 2019. Research on the factors of diamond fixed-abrasive lapping pad self-condition. Ferroelectrics 549, 137–144.
- [67] Ozturk, S. Aydin, L. Kucukdogan, N. Celik, E. 2018. Optimization of lapping processes of silicon wafer for photovoltaic applications. Sol. Energy 164, 1–11.
- [68] Pawlus, P. Reizer, R. Wieczorowski, M. Krolczyk, G. 2020. Material ratio curve as information on the state of surface topography—A review. Precis. Eng. 65, 240– 258.
- [69] Piłatowska, M. 2006. Repetytorium ze statystyki. PWN, ISBN: 978-83-01-150440-2.
- [70] Polański, Z. 1977. Metody optymalizacji w technologii maszyn. PWN,
- [71] Ramadass, R. Sambasivam, S. 2018. Process Variables Optimization in Lapping of EN8 Material Using Taguchi Method. Eng. Math. 2, 50–55.
- [72] Rosczyk, B. Burkam, E. Titov, A. Onyenemezu, C. Benea, I. 2015. The effect of diamond powder characteristics on lapping of sintered silicon carbide. 963306.
- [73] Segal, S. Gurfil, P. 2009. Effect of Kinematic RotationTranslation Coupling on Relative Spacecraft Translational Dynamics. J. Guid. Control Dyn. - J GUID CONTROL DYNAM 32, 1045–1050.
- [74] Song, C. Shi, F. Zhang, W. Lin, Z. Lin, Y. 2020. High-Efficiency and Low-Damage Lapping Process Optimization. Materials 13(3)
- [75] Stachowiak, G. W. Batchelor, A. W. Engineering Tribology 3rd Edition, URL: https://www.elsevier.com/books/engineering-tribology/stachowiak/978-0-7506-7836-0, [Dostęp: 28-02-2021]
- [76] Szulc, S. Stefko, A. 1976. Obróbka powierzchniowa części maszyn. WNT,
- [77] Uhlmann, E. Ardelt, T. G. 1999. Influence of kinematics on the face grinding proces on lapping machines. Ann CIRP (49(1)), 281–284.
- [78] Wan, L. Dai, P. Li, L. Deng, Z. Hu, Y. 2019. Investigation on ultra-precision lapping of A-plane and C-plane sapphires. Ceram. Int. 45(9), 12106–12112.
- [79] Wang, J. Li, Z. Gao, H. Shu, D. Xiao, P. 2016. Process Optimization of Lapping Sapphire Substrate with Fixed Diamond Abrasive Pad. Key Eng. Mater. 693, 1090– 1097.
- [80] Wang, J. B. Li, Z. Zhu, Y. W. Jiang, B. C. Shi, P. C. 2018. 2018, Key Engineering Materials. Effect of Abrasive Particle Size on Lapping of Sapphire Wafer by Fixed Abrasive Pad, URL: https://www.scientific.net/KEM.764.106, [Dostęp: 08-11-2020]
- [81] Wang, W. Yao, P. Wang, J. Huang, C. Zhu, H. Zou, B. Liu, H. Yan, J. 2016. Crackfree ductile mode grinding of fused silica under controllable dry grinding conditions. Int. J. Mach. Tools Manuf. 109, 126–136.
- [82] Wen, D. Qi, H. Ma, L. Lu, C. Li, G. 2015. Kinematic and trajectory analysis of the fixed abrasive lapping process in machining of interdigitated micro-channels on bipolar plates. Precis. Eng. 44

- [83] Xu, C.-Q. Fang, C.-F. Zhao, Z.-X. 2020. Influence of pellet shape and size on the pattern performance of textured fixed-abrasive pads in single-sided lapping. J. Ind. Prod. Eng. 37, 1–10.
- [84] Yang, L. Wu, K. Lai, Y. 2018. Study on Precision Polishing of Alumina Ceramics. Mater. Sci. Forum 926, 64–69.
- [85] Yao, Z. Gu, W. Li, K. 2012. Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7. J. Mater. Process. Technol. 212(4), 969–976.
- [86] Zaleski, K. Matuszak, J. Politechnika Lubelska 2016. Podstawy obróbki ubytkowej. Politechnika Lubelska, ISBN: 978-83-7947-224-6.
- [87] Zhou, Z. Wen, D. Zhang, K. Lu, C. Yuan, J. 2008. Experimental investigation on the effect of abrasive grain size on the lapping uniformity of sapphire wafer. 19, 2549–2552.
- [88] Zhu, N. Zhang, S. Zhu, Y. Ling, S. Wang, Z. Li, J. 2017. Effects of nano mechanical properties on LiNbO3 fixed abrasive lapping. Integr. Ferroelectr. 182(1), 119–126.
- [89] Liu J.H., Pei Z.J., Fisher G.R.: Grinding wheels for manufacturing of silicon wafers: A literature review, International Journal of Machine Tools and Manufacture, 47 (1), 2007, s. 1-13.
- [90] Liu H-K., Chen C-C. A, Chen W-C.: Diamond lapping of sapphire wafer with addition of graphene in slurry, Procedia Engineering, 184, 2017, s.156-162.
- [91] Zong W.J., Li D., Cheng K., Sun T., Wang H.X., Liang Y.C.: The material removal mechanism in mechanical lapping of diamond cutting tools, International Journal of Machine Tools and Manufacture, 45(7-8), 2005, s. 783-788.
- [92] Materials | Special Issue : "3D" Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes, URL: https://www.mdpi.com/journal/materials/special_issues/surf_topog_manuf, [Dostęp: 28-02-2021]
- [93] Lapping Machines | Diamond Compound & Ultrasonic Cleaning Machines -Kemet, URL: https://www.kemet.co.uk/, [Dostęp: 28-02-2021]
- [94] Leader in Precision Machine Manufacturing Satisfying Most Industries, URL: https://www.stahliusa.com/, [Dostęp: 28-02-2021]
- [95] Węglik Krzemu | FRAM, URL: http://fram.net.pl/index.php/proszki-scierne/877-2/, [Dostęp: 28-02-2021]
- [96] Consumables Lapping, Grinding and Polishing, URL: https://www.peterwolters.com/consumables/, [Dostęp: 28-02-2021]
- [97] Narzędzia ścierne i szlifowanie PDF Darmowe pobieranie, URL: https://docplayer.pl/19181175-Cwiczenie-4-narzedzia-scierne-i-szlifowanie.html, [Dostęp: 02-03-2021]
- [99] Internetowy Sklep Elektroniczny AVT Sklep z Elektroniką, URL: https://sklep.avt.pl/?gclid=Cj0KCQiAvvKBBhCXARIsACTePW9CAdIlpWhTJA 4i_fbEwI3AtBWtYiNYzExlyCPdtj_EqxEMvo3bS8YaAmG4EALw_wcB, [Dostęp: 02-03-2021]
- [100] Urządzenia i cżęści dla myjni i przemysłu WASHSERVICE, URL: https://sklep.washservice.pl/, [Dostęp: 02-03-2021]
- [101] ORLEN OIL Oleje samochodowe, PLATINUM, dobierz olej, URL: https://www.orlenoil.pl/PL/NaszaOferta/Produkty/Strony/OLEJ_MASZYNOWY_ L-AN_68.aspx, [Dostęp: 02-03-2021]
- [102] Ceramika techniczna, specjalna i konstrukcyjna producent Ceramit, URL: https://www.ceramit.pl/, [Dostęp: 02-03-2021]

- [103] Aparatura Zakład Biomateriałów, URL: https://mech.pg.edu.pl/zakladbiomaterialow/aparatura, [Dostęp: 02-03-2021]
- [104] Lepkościomierze, wiskozymetry, URL: http://www.labindex.pl/lepkosciomierze/, [Dostęp: 02-03-2021]
- [105] Radwag Wagi Elektroniczne, URL: https://radwag.com/pl/Wsparcie,1,101-101,MQ1HC, [Dostęp: 02-03-2021]
- [106] Mitutoyo, Produkt: Mikrometr cyfrowy QuantuMike IP65, URL: https://shop.mitutoyo.pl/web/mitutoyo/pl_PL/mitutoyo/01.02.01.001/Mikrometr% 20cyfrowy%20QuantuMike%20IP65/\$catalogue/mitutoyoData/PR/293-140-30/index.xhtml, [Dostęp: 22-02-2021]
- [107] MarSurf CD series Mahr Metroloji, URL: https://www.mahr.de/tr/%C3%9Cr%C3%BCnler-ve-Hizmetler/%C3%9Cretim-Metrolojisi/%C3%9Cr%C3%BCnler/MarSurf---Kontur-%C3%96l%C3%A7me-%C3%9Cniteleri/MarSurf-CD-series/, [Dostęp: 22-02-2021]
- [108] Industrial 3D Laser Scanning Confocal Microscope VK-X Series | KEYENCE International Belgium, URL: https://www.keyence.eu/ss/products/measure-sys/vkx/, [Dostęp: 02-03-2021]
- [109] StatSoft Polska Lider w analityce danych, URL: https://www.statsoft.pl/, [Dostęp: 02-03-2021]

Wykaz rysunków

Rys.	1.1.	Czynniki wpływające na proces docierania	15
Rys.	1.2.	Ogólny podział odmian docierania	16
Rys.	1.3.	Ważniejsze czynniki dotyczące metalowego docieraka tarczowego	17
Rys.	1.4.	Ważniejsze czynniki dotyczące przedmiotu obrabianego	18
Rys.	1.5.	Ważniejsze czynniki dotyczące zawiesiny ściernej	19
Rys.	1.6.	Ważniejsze czynniki dotyczące warunków docierania i układu wymuszonego dawkowania	20

Rys. 2.1. Docieranie: a) dwuelementowe, b) trzyelementowe	
Rys. 2.2. Położenie mikroziaren ściernych w strefie obróbki(1-mikroziarna wgniecione w	powierzchnię
docieraka, 2-mikroziarna toczące się, 3- mikroziarna wgniecione w docierak, nie oddziałujące	e na przedmiot
obrabiany, 4-mikroziarna wgniecione w powierzchnię docieraną, 5-mikroziarna bierne,	6-mikroziarna
wgniecione w powierzchnię docieraną)	
Rys. 2.3. Układ wykonawczy docierarki jednotarczowej [13]	22
Rys. 2.4. Układ kinematyczny docierarki jednotarczowej: 1-docierak, 2-separator, 3-przedr	niot obrabiany
n – pierścieni prowadzących [13]	
Rys. 2.5. Rowkowana tarcza docierająca o średnicy 3800 mm [93]	
Rys. 2.6. Pierścienie prowadzące o średnicy wewnętrznej 140 mm i 578 mm [93]	
Rys. 2.7. Docierarka jednotarczowa Kemet - model 300 L [93]	
Rys. 2.8. Docierarka firmy Kemet - model 72 [93]	
Rys. 2.9. Docierarka jednotarczowa typu FLM firmy STAHLI [94]	
Rys. 2.10. Docierarka dwutarczowa DLM 705 firmy STAHLI [94]	
Rys. 2.11. Dawkowanie zawiesiny ściernej dozowanej w sposób ręczny bezpośrednio z poje	mnika 31
Rys. 2.12. Dozowanie past ściernych przy pomocy zintegrowanego z pojemnikiem aplikatora	32
Rys. 2.13. Dozowanie zawiesiny ściernej przy pomocy aplikatora ręcznego	
Rys. 2.14. Dawkowanie grawitacyjne zawiesiny ściernej na powierzchnię roboczą docieraka.	
Rys. 2.15. Dozowanie zawiesiny ściernej przy pomocy pompy podającej	
Rys. 2.16. Wymuszony sposób zbrojenia docieraka	
Rys. 2.17. Układ problematyki teorii eksperymentu (teoria badań doświadczalnych) z określeni	em możliwych
sprzężeń informacyjnych [70]	
Rys. 2.18. Podstawowe programy badań doświadczalnych [70]	
Rys. 2.19. Schemat kompozycji kodowych wartości czynników badanych: a) dla dowolneg	o czynnika x _k ,
b) dla trzech czynników x1,x2,x3 [70]	
Rys. 2.20. Wielkości charakteryzujące geometrię naroża ziarna ściernego: kąt naroża	β i promień
zaokrąglenia δ na rysunku α i γ oznaczają kąty przyłożenia i kąt natarcia [97]	
Rys. 2.21. Wymiary charakterystyczne ziarna ściernego [97]	

Rys. 5.3. Pompa wraz ze zbiornikiem na zawiesinę ścierną (1-pompa, 2-zbiornik, 3-przewód zasilający,
4-przewód powrotny)
Rys. 5.4. Osadzanie szlamu na wewnętrznej części obrabiarki Abralap 380 (1-odpływ substancji, 2-gęsty,
osad przywarty do ścian rynny spustowej, 3- narzędzie do usuwania osadu)
Rys. 5.5. Schemat wymuszonego systemu dozowania i nanoszenia zawiesiny ściernej – koncepcja I 52
Rys. 5.6. Układ pierwszy wymuszonego systemu dawkowania i nanoszenia zawiesiny ściernej
(1 - zespół nanoszenia, 2 - rozpylacz, 3 - elektrozawór wraz potencjometrami, 4 - licznik zużycia substancji
ściernej, 5 - zawór odcinający)
Rys. 5.7. Układ drugi wymuszonego systemu dawkowania i nanoszenia zawiesiny ściernej
(1 - zbiornik z zawiesiną ścierną, do którego dostarczane jest sprężone powietrze, 2 - hydrauliczny układ
napędowy systemu mieszania, 3 - silnik napędu mieszadła wewnętrznego, 4 - zbiornik oleju hydraulicznego,
5 - rozdzielacz hydrauliczny)
Rys. 5.8. Widok ogólny zmodyfikowanego układu wymuszonego dawkowania zawiesiny na tarczę
docierającą
Rys. 5.9. Elementy wymuszonego układu dozowania (1-kompresor, 2-napęd wirnika mieszadła, 3-regulator
ciśnienia wewnątrz zbiornika, 4-pokrywa zbiornika wraz z elementami mocującymi) 57
Rys. 5.10. Elektroniczny układ sterowania (1 - aluminiowa obudowa, 2 - wyświetlacz sterownika
elektrozaworu 3 - wyświetlacz sterownika, 4 - wyłącznik główny zasiania układu sterowania, 5 - włącznik
sterownika, 6 - włącznik sterownika, 7 - włącznik oświetlenia, 8 - włącznik elektrozaworu, 9 - włącznik
elektrozaworu)
Rys. 5.11. Programowany przekaźnik czasowy (1 - zasilanie układu, 2 - układ wyjściowy NC, 3 - układ
wyjściowy NO, 4 - cyfrowy, 5 - przycisk ustawienia czasu wyłączenia przekaźnika, 6 - przycisk ustawienia
czasu załączenia przekaźnika) [99] 58
Rys. 5.12. Zawór elektromagnetyczny 2/2 drożny bezpośredniego działania - MODEL:2V08-1/4,
(1 - cewka elektrozaworu, 2 - aluminiowy korpus, 3 - podejście gwintowe ¼", 4
- podejście elektryczne 230V) [100] 58
Rys. 5.13. Elektrozawór siłownika 5/2 MODEL: 4V210-1/4, (1 - cewka elektrozaworu 2 - aluminiowy korpus,
3 - złączka wtykowa prosta ¼", 4 - podejście elektryczne 230V) [100]
Rys. 5.14. Mini siłownik pneumatyczny CJPB 15x15 (1 – podejście sprężonego powietrza, 2 – mocowanie,
3 – tłoczysko siłownika [100]
Rys. 5.15. Zasilacz 12V 5A [99]
Rys. 5.16. Zintegrowany system dawkowania i nanoszenia zawiesiny (1 - Iglica dyszy natryskowej,
2 - regulator wielkości plamy nanoszonej na docierak,3 - dysza rozpylająca z gniazdem, 4 - siłownik
pneumatyczny sterujący iglicą, 5 - przyłącze doprowadzające sprężoną zawiesinę ścierną do systemu,
6 - zawór odcinający dopływ powietrza do rozpylacza, 7 - regulator powietrza dostarczanego
do układu)
Rys. 5.17. Układ nanoszący substancję ścierną na docierak (1 - kształt plamy, którą tworzy nanoszona
zawiesina ścierna, 2 - kierunek obrotu tarczy docierającej, 3 - nałożona warstwa zawiesiny)
Rys. 5.18. Eliptyczny kształt jaki przyjmuje strumień nakładanej warstwy, z możliwością umiejscowienia go
w roznych miejscach docieraka (1 - położenie rozpylacza, 2, 3, 4 - różne położenia plamy
1 jej wielkosc)
kys. 5.19. kształt zbliżony do okręgu jaki przyjmuje strumien nakładanej warstwy (1-regulator kształtu plamy
nanoszonej na tarczę docierającą, 2, 3, 4 - rozne położenia plamy zawiesiny ściernej)
kys. 5.20. Pokrycie powierzchni docieraka po zastosowaniu wymuszonego systemu przygotowania

Rys. 5.21. Układ przygotowania zawiesiny ściernej (1 - śruba mieszadła, 2 - smok, 3 - zasilanie substancją
ścierną aparatu nanoszącego, 4 - pokrywa zbiornika, 5 - zawór bezpieczeństwa, 6 - regulator ciśnienia
powietrza dostającego się do zbiornika mieszającego, 7 - manometr ciśnienia powietrza, 8 - regulator
prędkości obrotowej mieszadła, 9 - przyłącze sprężonego powietrza) 62
Rys. 5.22. Elementy docierane z ceramiki Al ₂ 0 ₃ [102]
Rys. 5.23. Użyty w badaniach węglik krzemu 98C F400/17 w 200 krotnym powiększeniu roboczym,
(mikroskop skaningowy JOEL JSM-7800F) [103]
Rys. 5.24. Mikroskop skaningowy JOEL JSM-7800F [103]
Rvs. 5. 25. Wiskozymetr rotacviny [104]
Rvs. 5.26. Widok wagi laboratorvinei Radwag Was 220/X [105]
Rys 5.27 Mikromierz cyfrowy [106]
Rys. 5.28. Referencyine stanowisko do pomiaru chropowatości i falistości MarSurf XR 20 z GD 120
firmy Mahr [107]
Rys 5.29 Mikroskon Jaserowy (Kevence 3D Laser Scanning Confocal Microscone
VK-X Series) [108]
Pvc. 5.30. Schemat parównawczy apalizawanych programów badawczych [37]
Rys. 6.1. Schemat doswiadczalnych badan laboratoryjnych [70]
Rys. 6. 2. Położenie elementów docieranych w separatorze (R - odległość od środka docieraka do środka
separatora, r - odległość środka separatora do środka przedmiotu obrabianego)
Rys. 6.3. Wykres powierzchniowy wartości ubytku liniowego próbek ceramicznych w funkcji czynników
wejściowych K i V _s
Rys. 6.4. Wykres powierzchniowy wartości ubytku liniowego próbek ceramicznych w funkcji czynników
wejściowych Le i Vs
Rys. 6.5. Wykres powierzchniowy wartości ubytku liniowego próbek ceramicznych w funkcji czynników
wejściowych K i Le
Rys. 6.6. Profile wartości aproksymowanych i teoretyczny ubytek liniowy w funkcji czynników wejściowych
Kt, Vst, i Let
Rys. 6.7. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku liniowego użytecznego w
funkcji czynników Kt i Vst
Rys. 6.8. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku liniowego użytecznego w
funkcji czynników Kt i Let
Rys. 6.9 Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku liniowego użytecznego w
funkcji czynników Vst i Let
Rys. 6.10. Wykres powierzchniowy parametru chropowatości powierzchni Rv w funkcji czynników
wejściowych K i V _s
Rys. 6.11. Wykres powierzchniowy parametru chropowatości powierzchni Rv w funkcji czynników
weiściowych L _e i V _s
Rys. 6.12. Wykres powierzchniowy parametru chropowatości powierzchni Ry w funkcji czynników
weiściowych K i L a
Rys. 6.13. Profile wartości aproksymowanych i użytecznych badanych czynników K. V.t i L., majacych
wpływ na wartość parametru chropowatości powierzchni Ry
Rys 6.14 Wykres powierzchniowy przewidywanaj wartości parametru chropowatości Py wzglodom
czynników K i V.
Rvs 6.15 Wykres powierzchniowy przewidywanaj wartości paramotru obropowatości Dy wzalodom
rtys. 0.10. wykres powierzonniowy przewidywanej wartości parametru chropowatości KV Względem
czynnikow n i Le

Rys. 6.16. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rv względem
Czymnikow vsi Le
czypników wojściowych K i V
Pys. 6.18. Wykres powierzchniowy wysokości parametry chronowatości powierzchni Pp. względem
$c_{zvnników}$ wejściowych V ₂ i K
Rys 6.19 Wykres powierzchniowy wysokości parametry chronowatości powierzchni Rp względem
czynników wejściowych K i Le
Rys. 6.20. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rz względem
czynników wejściowych K i V_s 109
Rys. 6.21. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rz względem
czynników wejściowych K i L _e
Rys. 6.22. Wykres powierzchniowy wysokości parametry chropowatości powierzchni Rz względem
czynników wejściowych Vs i Le
Rys. 6.23. Profile wartości aproksymowanych i użytecznych badanych czynników K, Vs, Le, mających wpływ
na wysokość parametru chropowatości powierzchni Rz 114
Rys. 6.24. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rz względem
czynników K i V _s
Rys. 6.25. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rz względem
czynników K i L _e
Rys. 6.26. Wykres powierzchniowy przewidywanej wartości parametru chropowatości Rz względem
czynników V _s i L _e
Rys. 6.27. Widok powierzchni docieranej ceramiki Al ₂ O ₃ : a) obraz z mikroskopu skaningowego,
b) zdjęcie optyczne (warunki dawkowania zawiesiny ściernej: K = 15 %, Vs = 10 ml/20min,
L _e = 10,3 mPa·s)
Rys. 6.28. Profil 3D powierzchni próbki ceramicznej Al ₂ O ₃ po docieraniu (warunki dawkowania zawiesiny
ściernej: K = 15 %, V₅ = 10 ml/20 min, L₂ = 10,3 mPa·s)
Rys. 6.29. Profile chropowatości powierzchni docieranej i krzywa rotacji materiału (warunki dawkowania
zawiesiny ściernej: K = 15 %, V _s = 10 ml/20 min, L _e = 10,3 mPa·s)
Rys. 6.30. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 15 %, V_s
= 10 ml/20 min, L_e = 10,3 mPa·s)
Rys. 6.31. Widok powierzchni docieranej ceramiki Al ₂ O ₃ : a) obraz z mikroskopu skaningowego,
b) zdjęcie optyczne (warunki dawkowania zawiesiny sciernej: K = 15 %, V _s = 90 ml/20 min,
$L_e = 23 \text{ mPa·s}$
Rys. 6.32. Profil falistosci 3D powierzchni ceramicznej Al ₂ O ₃ po docieraniu (warunki dawkowania zawiesiny
sciernej: K = 15 %, V _s = 90 mi/20 min, L _e = 23 mPa·s)
kys. 6.33. Profile chropowatosci powierzchni i krzywa rotacji materiału (warunki dawkowania zawiesiny ściernej: K = 15 %, V _s = 90 ml/20 min, L _e = 23 mPa·s)
Rys. 6.34. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 15%, V _s = 90 ml/20 min,
L _e = 23 mPa·s)
Rys. 6.35. Widok powierzchni docieranej ceramiki Al ₂ O ₃ : a) obraz z mikroskopu skaningowego,
b) zdjęcie optyczne (warunki dawkowania zawiesiny ściernej: K = 5 %, V₅ = 50 ml/20 min, Le = 23 mPa⋅s)
Rys. 6.36. Profil falistości 3D powierzchni próbki ceramicznej AI_2O_3 (warunki dawkowania zawiesiny ściernej:

Rys. 6.37. Profile chropowatości powierzchni i krzywa rotacji materiału (warunki dawkowania zawiesiny ściernej: K = 5 %, Vs = 50 ml/20 min, Le = 23 mPa·s)...... 121 Rys. 6.38. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 5 %, V_s = 50 ml/20 min, Rys. 6.39. Widok powierzchni docieranej ceramiki Al₂O₃: a) obraz z mikroskopu skaningowego, Rys. 6.40. Profil 3D powierzchni próbki ceramicznej Al₂O₃ docieraniu (warunki dawkowania zawiesiny Rys. 6.41. Profile chropowatości powierzchni i krzywa rotacji materiału (warunki dawkowania zawiesiny Rys. 6.42. Krzywa udziału materiałowego po docieraniu (warunki dawkowania: K = 9 % Vs = 26 ml/20 min, Rys. 6.43. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rsk...... 126 Rys. 6.44. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rt 126 Rys. 6.45. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rp 126 Rys. 6.46. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Rsm...... 127 Rys. 6.47. Korelacja parametrów chropowatości powierzchni Sa i Sq 129 Rys. 6.48. Korelacja parametrów chropowatości powierzchni Sp i Sz 129 Rys. 6.49. Korelacja parametrów chropowatości powierzchni Ssk i Sku...... 129 Rys. 6.50. Korelacja parametrów chropowatości powierzchni Sku i Sp 130 Rys. 6.51. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Smr1 132 Rys. 6.52. Korelacja czynnika wejściowego K i parametru chropowatości powierzchni Smr2 132 Rys. 6.53. Korelacja parametrów chropowatości powierzchni Smr1 i Smr2...... 132 Rys. 6.54. Korelacja parametrów chropowatości powierzchni Sk i Spk...... 133 Rys. 6.55. Korelacja parametrów chropowatości powierzchni Sk i Svk...... 133 Rys. 6.56. Korelacja parametrów chropowatości powierzchni Vmc i Vvv...... 135 Rys. 6.57. Korelacja parametrów chropowatości powierzchni Vmc i Vvc...... 136 Rys. 6.58. Korelacja parametrów chropowatości powierzchni Vmc i Vmp 136 Rys. 6.59. Korelacja parametrów chropowatości powierzchni Vmp i Vvc...... 136 Rys. 6.60. Korelacja parametrów chropowatości powierzchni Vmp i Vvv...... 137

Rys. 7.1. Sposób podziału powierzchni roboczej tarczy docierającej na pierścienie	139
Rys. 7.2. Sposób podziału powierzchni roboczej tarczy docierającej na osiem sektorów	139
Rys. 7.3. Trajektorie punktów centralnych powierzchni docieranej dla $k_1 = 0,783$ (czas symulacji 5	s) 141
Rys. 7.4. Liczba punktów środkowych w pięciu pierścieniach dla k1 = 0,783	143
Rys. 7.5. Trajektoria punktów centralnych powierzchni docieranej dla k_1 = 0,712 (czas symulacji 5	s) 144
Rys. 7.6. Liczba punktów środkowych w pięciu pierścieniach dla k1 = 0,712	145
Rys. 7.7. Trajektoria punktów centralnych powierzchni docieranej dla k_1 = 0,800 (czas symulacji 5	s) 146
Rys. 7.8. Liczba punktów środkowych w pięciu pierścieniach dla $k_1 = 0,800$	148
Rys. 7.9. Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w separ	ratorze w
sposób zaplanowany (dla $k_1 = 1$)	150
Rys. 7.10. Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w sep	paratorze
w sposób przypadkowy i niezaplanowany (dla k₁ = 1)	153
Rys. 7.11.Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w sep	paratorze
w sposób zaplanowany (dla k ₁ = 0,800)	155

Rvs. 7.12. Trajektorie ośmiu punktów centralnych docieranych elementów rozmieszczonych w separatorze
w sposób przypadkowy (niezaplanowany) dla $k_1 = 0.833$ 158
Rvs 7.13 Schemat blokowy programu T Exe
Rys. 7.14. Trajektoria punktu centralnego symulowanej powierzchni docieranej dla $k_1 = 0.917$ (czas no jakim
r_{3} rate in a particular particular contraining of symptotic power 20 mm decisional of dia $r_{1}^{2} = 0,0.17$ (ozas po jarkini nastaniło zamkniecje netli nunktu środkowego to 12 s)
Rvs. 7 15. Trajektoria punktu centralnego symulowanej powierzchni docieranej dla $k_1 = 0.883$ (czas po jakim
r_{3} r_{1} r_{3} r_{1} r_{3} r_{3
Rvs. 7 16 Trajektoria punktu centralnego svmulowanej powierzchni docieranej dla $k_1 = 0.783$ (czas po jakim
$\frac{1}{166}$
Rvs. 7.17. Trajektoria punktu centralnego svimulowanej powierzchni docieranej dla $k_{i} = 1$ (czas po jakim
r_{3} r_{1} r_{2} r_{3} r_{3
Rvs. 7.18. Przykładowy schemat rozmieszczenia ośmiu elementów tworzących 8 – ramienna dwiazde z
(vys. 7.10. 1 rzykładowy schemat tozmieszczenia osmia cienieniow tworzących o - ramienią gwiazuć z
10 do 60 mm z krokiom co 10 mm)
To do ou min, 2 kicklem co to min)
(dane z tabeli 7 31)
Quarte z tabell 7.5 r)
(d_1, d_2) (d. $d_2)$ (d. $d_3)$) (d. d_4) (d. $d_$
ula danych z tabeli 7. 55)
k_{i}
wejsciowych K, i vs. Dys. 7.22. Wykres powierzchniowy wartości ubytku masowago próbek ceramicznych w funkcji czynników
weiściowych L i V.
wojociówych zej vs. Rys. 7.23. Wykres powierzchniowy wartości ubytku masowado próbek ceramicznych w funkcji czynników
Aveiściowaych K i L.
wejsciowych i trzewiatach wytoka proksymowanych i teoretyczny ubytek masowy w funkcji czynników wejściowych
Rys. 7.25. Wykres nowierzchniowy i warstwicowy teoretycznej wartości ubytku masowego użytecznego
v funkcji czypników K.i V.
Rvs. 7.26. Wykres powierzchniowy i warstwicowy teoretycznej wartości ubytku masowego użytecznego
v funkcji czypników K. i L.
With Kill Czyminkow Kill Let
w funkcji czypników V., i L.,
w runnoji ozymilikow vsti Let
Tys. 1.20. Zuzyole zawiesiny solennej vs. podozas konwencjonalnego i wymuszonego udwkowalila
W docieraniu jednotarczowym (K – udział wadowy ścierniwa w zawiesinie) 184

Wykaz tabel

Tabela 2.1. Równanie ruchu dowolnego punktu P [13]	23
Tabela 2.2. Liczba elementów, które mogą być umieszczone w pierścieniach prowadzących w docierarkac	ch
firmy Kemet [93]	28
Tabela 2.3. Wymiary pierścieni prowadzących w docierarkach jednotarczowych firmy Kemet [93]	28
Tabela 2.4. Układ wartości czynnika badanego x1 dla elementarnego programu PS/Dk-21 [70]	10
Tabela 2.5. Układ wartości czynników badanych x1, x2, x3, dla programu PS/DK-23 przy założeniu: r =	1,
n1 = n2 = n3 = 2 i = 3 [70]	11
Tabela 2.6. Wartości charakteryzujące program PS/DSP: α [70]	14
Tabela 2.7. Wartości charakteryzujące program PS/DSP: λ [70]	15

Tabela 5.1. Zestawienie stałych warunków docierania	62
Tabela 5. 2. Lepkość nośnika zawiesiny ściernej	63
Tabela 5.3. Zestawienie analizy wyników ubytku masowego (czas docierania t = 10 min)	64
Tabela 5.4. Zestawienie analizy wyników ubytku liniowego (czas docierania t = 10 min)	65
Tabela 5.5. Zestawienie analizy wyników ubytku masowego (czas docierania t = 20 min)	66
Tabela 5.6. Zestawienie analizy wyników ubytku liniowego (czas docierania t = 20 min)	67
Tabela 5.7. Właściwości ceramiki Al ₂ O ₃	68
Tabela 5.8. Średnie wymiary próbek przed docieraniem	69
Tabela 5.9. Stosowane udział procentowe ziaren ściernych i wartości lepkość	nośnika
(w różnych konfiguracjach)	70
Tabela 5.10. Dane techniczne urządzenia Radwag Was 220/X [105]	73
Tabela 5.11. Dane techniczne mikrometru cyfrowego Mitutoyo-Quantunike [106]	73
Tabela 5.12. Dane techniczne urządzenia MarSurf XR 20 z GD 120	74

Tabela 6.1. Plan eksperymentu PS/DS-P: λ i wartości czynników badanych	2
Tabela 6.2. Stałe warunki docierania 8	4
Tabela 6.3. Zastosowany program badań (PS/DS-P: λ)	6
Tabela 6.4. Warunki wymuszonego dawkowania zawiesiny ściernej i wielkości ubytku liniowego próbe	۶k
ceramicznych (podano wartości średnie z 3 pomiarów)8	7
Tabela 6.5. Wyniki analizy modelu	9
Tabela 6.6. Jednowymiarowe testy istotności równania UI = f (K, Vs, Le)	9
Tabela 6.7. Wartości współczynników regresji i poziom ich istotności 9	0
Tabela 6.8. Porównanie ubytków liniowych zaobserwowanych i przewidywanych	0
Tabela 6.9. Parametry funkcji użyteczności 9	1
Tabela 6.10. Zestawienie odpowiedzi dotyczące przewidywanego ubytku liniowego próbek	1
Tabela 6.11. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów paramete	ru
chropowatości powierzchni Rv (podano wartości średnie z 3 pomiarów)9	6
Tabela 6.12. Wyniki analizy modelu	8
Tabela 6.13. Jednowymiarowy test istotności równania parametru chropowatości Rv	8
Tabela 6.14. Wartości współczynników regresji i poziom ich istotności 9	8
Tabela 6.15. Porównanie wyników zaobserwowanych parametru Rv i przewidywanych Rvt 9	9
Tabela 6.16. Parametry funkcji użyteczności parametru chropowatości powierzchni Rv	9
Tabela 6.17. Zestawienie odpowiedzi dotyczące przewidywanej wysokości parametr	ru
chropowatości Rv10	0

Tabela 6.18. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów parametru
chropowatości Rp (podano wartości średnie z 3 pomiarów) 105
Tabela 6.19. Wyniki regresji pełnego modelu 107
Tabela 6.20. Jednowymiarowy test istotności równania parametru Rp
Tabela 6.21. Jednowymiarowy test istotności równania
Tabela 6.22. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów parametru
chropowatości Rz (podano wartości średnie z 3 pomiarów) 109
Tabela 6.23. Wyniki regresji pełnego modelu 111
Tabela 6.24. Jednowymiarowy test istotności równania parametru Rz
Tabela 6.25. Wartości współczynników regresji i poziom ich istotności 111
Tabela 6.26. Porównanie wyników zaobserwowanych chropowatości Rz i przewidywanej 112
Tabela 6.27. Parametry funkcji użyteczności parametru chropowatości Rz
Tabela6.28.Zestawienieodpowiedzidotycząceprzewidywanejwysokościparametru
chropowatości Rz 113
Tabela 6.29. Zestawienie parametrów wyznaczonych dla układu 2D (wartości średnie) 124
Tabela 6.30. Wykonane testy istotności współczynników korelacji między zmiennymi: K, Vs, Le, Ra, Rq, Rt,
Rv, Rz, Rp, Rku, Rsm, Rsk
Tabela 6.31. Mapa istotności p dla współczynnika korelacji pomiędzy zmiennymi: K, Vs, Le, Ra, Rq, Rt, Rv,
Rz, Rp, Rku, Rsm, Rsk
Tabela 6.32. Parametry struktury geometrycznej powierzchni ceramiki po docieraniu w układzie
3D (parametry amplitudowe)
Tabela 6.33. Poziomy istotności dla testów istotności współczynników korelacji między zmiennymi: K, Vs,
Le, Sa, Sq, Sp, Sv, Ssk, Sku, Sz
Tabela 6.34. Mapa istotności p dla współczynników korelacji pomiędzy zmiennymi: K, Vs, Le, Sa, Sq, Sp,
Sv, Ssk, Sku, Sz
Tabela 6.35. Parametry struktury geometrycznej powierzchni (parametry powierzchniowe amplitudowe)
wyznaczone dla układu 3D 130
Tabela 6.36. Poziomy istotności dla testów istotności współczynników korelacji między zmiennymi: K, Vs,
Le, Sk, Spk, Svk, Smr1, Smr2
Tabela 6.37. Mapa istotności p dla współczynników korelacji pomiędzy zmiennymi: K, Vs, Le, Sk, Spk, Svk,
Smr1, Smr2
Tabela 6.38. Parametry struktury geometrycznej powierzchni (parametry objętościowe) - wyznaczone dla
powierzchni 3D 134
Tabela 6.39.Poziomy istotności dla testów istotności współczynników korelacji między zmiennymi: K, V_s ,
Le, Vvv, Vvc, Vm, Vmc
Tabela 6.40. Mapa istotności p dla współczynników korelacji pomiędzy zmiennymi: K, Vs, Le, Vvv, Vvc, Vm,
Vmc
Tabela 7.1. Zestawienie wyników pomiaru prędkości obrotowej docieraka i separatora dla różnych wartości
lepkości nośnika ziaren ściernych
Tabela 7.2. Dane według planu (tabela 7.1 pozycja 2)
Tabela 7.3. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania analizowanych
elementów (dane z tabeli 7.2)

Tabela 7.6. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania (dla danych
z tabeli 7.5)
Tabela 7.7. Zestawienie wybranych wyników obliczeń intensywności zużycia tarczy docierającej
na podstawie danych z tabeli 7.1
Tabela 7.8. Dane wg planu z tabeli 7.19 - pozycja 16146
Tabela 7.9. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania
(dane z tabeli 7.8)
Tabela 7.10. Zestawienie wybranych wyników obliczeń intensywności zużycia tarczy docierającej
na podstawie danych z tabeli 7.1
Tabela 7.11. Zestawienie wyników symulacji 148
Tabela 7.12. Parametry wejściowe symulacji I (rozmieszczenie ośmiu elementów w separatorze w sposób
zaplanowany dla $n_s = n_t$)
Tabela 7.13. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych
elementów (dla danych z tabeli 7.12)
Tabela 7.14. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej na podstawie danych
z tabeli 7.12
Tabela 7.15. Parametry wejściowe symulacji II (rozmieszczenie ośmiu elementów w separatorze w sposób
przypadkowy i niezaplanowany, dla n _s = n _t)
Tabela 7.16. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych
elementów (dane z tabeli 7.15)
Tabela 7.17. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej na podstawie danych
z tabeli 7.15
Tabela 7.18. Parametry wejściowe symulacji III (rozmieszczenie ośmiu elementów w separatorze w sposób
zaplanowany, dla n₅ ≠ nt)
Tabela 7.19. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych
elementów (dla danych z tabeli 7.18) 156
Tabela 7.20. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej na podstawie danych
z tabeli 7.18
Tabela 7.21. Parametry wejściowe symulacji IV (rozmieszczenie ośmiu elementów w separatorze w sposób
przypadkowy dla $n_s \neq n_t$)
Tabela 7.22. Zestawienie wyników obliczeń długości trajektorii i prędkości w docieraniu analizowanych
elementów (dla danych z tabeli 7.21) 159
Tabela 7.23. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej (na podstawie danych
z tabeli 7.21)
Tabela 7.24. Analiza symulacji zamknięcia pętli dla czterech ustawień ns/nt 163
Tabela 7.25. Obliczenia dotyczące czasu zamknięcia pętli (dane z tabeli 7.24, pozycja 1) 163
Tabela 7.26. Obliczenia dotyczące czasu zamknięcia pętli (dane z tabeli 7.24, pozycja 2) 164
Tabela 7.27. Obliczenia dotyczące czas zamknięcia pętli (dane z tabeli 7.24, pozycja 3) 165
Tabela 7.28. Czas zamknięcia pętli (dane z tabeli 7.24, pozycja 4)
Tabela 7.29. Przykłady wyników obliczeń czsu zamknięcia pętli
Tabela 730. Parametry wejściowe (symulacja kinematyki przy użyciu programu MGN4.8-N.Exe) 169
Tabela 7.31. Wygenerowane przez program MGN4.8-N.Exe położenie elementów
Tabela 7.32. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania
Tabela 7.33. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej
Tabela 7.34. Parametry wejściowe (symulacja kinematyki przy użyciu programu MGN4.9-7N.Exe) 172
Tabela 7.35. Wygenerowane przez program MGN4.8-N.Exe położenie elementów

Tabela 7.36. Zestawienie wyników obliczeń długości trajektorii i prędkości docierania	173
Tabela 7.37. Zestawienie wyników obliczeń intensywności zużycia tarczy docierającej	173
Tabela 7.38. Warunki wymuszonego dawkowania zawiesiny ściernej i wyniki pomiarów ubytku masc	wego
próbek ceramicznych (podano wartości średnie z 3 pomiarów)	175
Tabela 7.39. Wyniki analizy modelu	177
Tabela 7.40. Jednowymiarowe testy istotności równania U _m = f (K, Vs, Le)	178
Tabela 7.41. Wartości współczynników regresji i poziom ich istotności	178
Tabela 7.42. Porównanie wyników zaobserwowanych ubytku masowego i wartości przewidywanych .	179
Tabela 7.43. Parametry funkcji użyteczności	179
Tabela 7.44. Zestawienie odpowiedzi dotyczące przewidywanego ubytku masowego	180