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Abstract—This paper contains a relatively new synthesis 
method for non-linear objects, named backstepping. This method 
can be used to obtain the observer structure. The paper presents 
the structure of the speed observer which is a new proposition of 
observer backstepping with additional state variables marked Z. 
The rotor speed can be estimated in three different ways. The 
first is based on the adaptive approach, the second on the non-
adaptive approach, and the third on improvement of the adaptive 
approach. The stability of the Z-type observer is determined by 
the Lyapunov stability criteria. Despite this, stability analysis 
around the machine’s working point is undertaken. All the 
machine tests are prepared in the sensorless control system based 
on multi-scalar variables. The experimental results show the 
effectiveness of the proposed solution. The squirrel-cage model 
parameter estimation is not presented in this paper.  

Index Terms— Adaptive observers, AC machines, 
Backstepping. 

NOMENCLATURE 

“^” estimated values, 
“~” error of estimated values, 
isα,β stator current vector components, 
ψrα,β rotor flux vector components, 
usα,β stator voltage vector components, 
ωr rotor angular speed, 
Rr, Rs rotor and stator resistances, 
Lm mutual-flux inductance, 
Ls, Lr stator and rotor inductances, 
TL load torque, 
J machine torque of inertia, 
τ relative time, 
ˆ

r estimated rotor electrical speed, 

r rotor speed error, 

,r  rotor flux vector components error, 

,si  
  stator current vector components error, 

,Ẑ  additional observer state variables, 

vα,β speed observer stabilizing variables, 

,c   constant coefficients, 

x11, x12, x21, x22 multi-scalar variables. 
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I. INTRODUCTION

odern drive systems possess both a speed sensor and a 
speed observer. Control systems with a speed observer 
are called “sensorless”. The speed observer of the 

squirrel-cage machine is supposed to reconstruct the following 
state variables: the rotor flux vector and the stator current 
vector components. Sometimes, the rotor speed in the 
estimator can be treated as an additional parameter. Good 
performance estimators should reconstruct these state 
variables with steady state errors smaller than 1% and 
dynamic state errors smaller than 5%. The most popular 
observer is that based on Luenberger’s theory [1–3]. Recently, 
the Luenberger observer was extended to another form. In [2–
3], the Luenberger observer was extended to additional 
variables, which are, in this case, the state variables. The 
additional state variables are the product of the rotor angular 
speed and the proper flux vector components. 

The following large group of estimators is based on the 
Kalman filter [4–6]. The main disadvantage of using the 
Kalman filter is the large computational cost. To reduce the 
computing time, the gain matrix is computed off-line. 

The next group are observers based on fuzzy logic or 
neural network theory with the backstepping approach. These 
ideas of estimators are presented in [7–17]. Some of them 
have a hybrid structure, meaning there is a connection 
between the adaptive and neural network estimations. 

The fourth group of estimators are the adaptive observers 
using MRAS (model reference adaptive system) methods or 
the backstepping approach. The most popular MRAS idea is 
based on a current and voltage mathematical model of a 
machine [18]. 

This paper concerns the estimators of state variables and the 
rotor angular speed of an induction machine design for the 
adaptive backstepping concept [7–17, 19–35–38]. The primary 
estimator model extension leads to additional differentiation 
equations. When the adaptive backstepping method is applied, 
stabilizing elements can be obtained by the proper use of the 
Lyapunov function [19]. In [19], adaptive backstepping 
observer stability is proved and the stability range is given. 
The properties of the proposed Z-type observer will be 
compared to the adaptive observer backstepping. The primary 
advantages of the use of the Z-type observer will be shown in 
the following sections. 

The paper focuses on emphasizing the advantages of the 
proposed Z-type adaptive observer backstepping structure and 
comparing it to the standard adaptive observer backstepping. 

The main motivation of the paper is to show the new 
structure of observer backstepping which can work under very 
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low machine speeds (stable). This paper may lead to a new 
approach to estimators, namely the control theory approach 
based on the separation of the new variables in the control 
object, which will be treated as state variables describing the 
object state. The extended object model gives new possibilities 
for parameter or state variable estimation. 

All the discussions of theoretical issues are supported by 
simulation and experimental studies. 

II. THE BASIS OF INTEGRATOR BACKSTEPPING

According to the definition presented in [19] for the system 

( ) ( )x f x g x u   feedback control law exists such that 

( )u x  and positive radially unbounded function V(x).

According to [19-Lemma 2.8] the system ( ) ( )x f x g x u 

can be augmented by the integrator structure such that:

( ) ( ) ,x f x g x    (1) 

,u   (2) 

where   is the control in the system and u can be chosen as 

the virtual control. 
The first step in the backstepping procedure is to define the 

new tracking error between the virtual control ( )u x  and 

the desired  . The tracking error is defined as: 

( )z x   . (3) 

Calculation of the deviation derivatives of (3) gives: 

( )z x    . (4) 

Using (4) the system (1)–(2) can be transformed to the (x,ξ,z) 
coordinates. The system in (x,ξ,z) will be stable if the 
Lyapunov condition is satisfied: 

( , , ) 0V x z  . (5) 

From (5) the control variable u can be obtained. The control u 
guarantees the asymptotical stability of the system (1)–(2). 
The same procedure can be implemented with the speed 
observer. Assuming the only one measured value is the stator 
current vector components and the machine control variables 

( ,su   )  are known, the integrators take the form: 

, ,si    
  , (6) 

, , ,
ˆ

s s si i i       , (7) 

where ,ŝi   are the estimated stator current vector components.

In the next section the primary observer structure will be 
augmented by the integrators (6). The next step in the 
backstepping procedure is to determine which of the feedback 
coupling controls v (correction terms) can stabilize the 
observer structure such that the Lyapunov condition will be 
fulfilled (5). 

III. THE MATHEMATICAL MODEL OF THE INDUCTION MOTOR

The equations of the induction squirrel-cage machine,
written in a stationary (αβ) reference frame, have the 
following form [2–3]: 

2 2
s s r r m r m m r

s r r r s

r r

di R L R L R L L L
i u

d L w L w w w


   

   

  



     , (8) 

2 2
s s r r m r m m r

s r r r s

r r

di R L R L R L L L
i u

d L w L w w w



   

   

  



     , (9) 

r r mr
r r r s

r r

d R LR
i

d L L


  


 


    , (10) 

r r mr
r r r s

r r

d R LR
i

d L L



  


 


    , (11) 

1mr
r s r s L

r

Ld
( i i ) T

d JL J
   


 


   , (12) 

where: 
2

r s mw L L L   . 

IV. Z –TYPE SPEED OBSERVER BACKSTEPPING

A. State variables estimation using backstepping

The mathematical model (8)–(12) contains five differential
equations. In the backstepping procedure, Equation (12) can 
be omitted because the rotor angular speed is treated as an 
estimated parameter. 

Proceeding in accordance with the adaptive estimator with 
the integrator backstepping concept (presented in Section II), 
one can derive formulae for the observer, where only the state 
variables will be estimated, as well as the rotor angular speed 
as an additional estimation parameter. 

The estimated values will be indexed by “^” and their 
deviations (prediction errors [21, 28]) by “~”. 

Treating the stator current vector components s ,i   in (8)–

(9) as the measured values and stator voltage components

,su    as the known values, the standard exponential observer

structure is obtained:
2 2ˆ

ˆ ˆ ˆs s r r m r m m r
s r r r s

r r

di R L R L R L L L
i u v

d L w L w w w


    

   

  



      , (13) 

2 2ˆ
ˆ ˆ ˆs s r r m r m m r

s r r r s

r r

di R L R L R L L L
i u v

d L w L w w w



    

   

  



      , (14) 

ˆ
ˆ ˆ ˆr r mr

r r r s

r r

d R LR
i v

d L L


   


 


     , (15) 

ˆ
ˆ ˆ ˆr r mr

r r r s

r r

d R LR
i v

d L L



   


 


     . (16) 

where: ˆ
r  is the estimated angular rotor speed and the 

remaining errors are defined by: 
ˆ

r r r    , (17) 

, , ,
ˆ

r r r         . (18) 

In (13)–(14), the correction terms vα,β and vψα,β are added to 
the current and the flux subsystem. 

The standard exponential observer structure can be 
extended to additional variables that will be treated as the state 
variables. Such an approach was proposed in [2, 3].  

In this paper the same variables as in [2, 3] are named Z and 
determined as follows: 
ˆ ˆ ˆ

r rZ  , (19) 

ˆ ˆ ˆ
r rZ  . (20) 

Taking into account (19)–(20) in the structure (13)–(16), 
differentiating (19)–(20), the new Z-type structure is obtained: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 3

2 2ˆ
ˆˆs s r r m r m m r

s r s

r r

di R L R L R L L L
i Z u v

d L w L w w w


    

   





      , (21) 

2 2ˆ
ˆˆs s r r m r m m r

s r s

r r

di R L R L R L L L
i Z u v

d L w L w w w



    

   





      , (22) 

ˆ ˆˆr r mr
r s

r r

d R LR
Z i v

d L L


   





     , (23) 

ˆ
ˆˆr r mr

r s

r r

d R LR
Z i v

d L L



   





     , (24) 

ˆ ˆ ˆ ˆˆ ˆ ( )r mr r
r r s Z

r r

dZ R Ld R
Z i Z v

d d L L


    


 

 
     , (25) 

ˆ ˆ ˆ ˆˆ ˆ ( )r mr r
r r s Z

r r

dZ R Ld R
Z i Z v

d d L L



    


 

 
     , (26) 

where the new correction terms ,Zv    are added to the Z-

subsystem. In (25)–(26) it can be assumed that: 
ˆ ˆ

0r rd

d T

 




 


. The Z-type observer structure contains the 

three subsystems: the stator current subsystem giving (21)–
(22), the rotor flux vector giving (23)–(24) and the Z-type 
determined by (25)–(26). The current subsystem values are 
stabilized by vα,β. The flux vector subsystem controls are 
stabilized by vψα,β. In the Z-subsystem the stabilizing functions 

are ,Zv   . 

The observer correction terms will be determined by the 
backstepping procedure in such a way as to satisfy the 
Lyapunov condition (5). The variables (19)–(20) are the new 
induction machine state variables which will be used to 
reconstruct the induction machine angular speed. 

Assuming the strict output-feedback form in which the 
stator current vector components are only measured using (21)
–(26) and the extended machine model (the dependences (21)–
(26) without “^” and the correction terms), the deviations 
model has the form: 

s r m m
r

r

di R L L
Z v

d L w w


  

 



  


 , (27) 

s r m m
r

r

di R L L
Z v

d L w w



  

 



  


 , (28) 

r r
r

r

d R
Z v

d L


  





   

  , (29) 

r r
r

r

d R
Z v

d L



  





   


 , (30) 

ˆˆ r m r
r r r r s Z

r r

dZ R L R
Z Z Z i Z v

d L L


        

      


     , (31) 

ˆˆ r m r
r r r r s Z

r r

dZ R L R
Z Z Z i Z v

d L L



        

     


     . (32)  

In accordance with the integrator backstepping approach 
(presented in Section II), the additional integrators of the 
current stator vector errors are used. The stator current errors 
are chosen rather than integrators because the stator current 
components are measured. The observer backstepping with the 

integrators has a simpler form than the one with the filters 
(presented in [19]) and a smaller observer order. 

For the stator current vector components the integrators are 
defined as follows (6): 

s

d
i

d










 , (33) 

s

d
i

d











 ,  (34) 

The first step in the backstepping procedure is to stabilize 
the integrators (and the system by the integrators). The 
stabilizing function should be chosen so as to satisfy the 
Lyapunov condition. The Lyapunov function is determined: 

2 2
1 ,

1
( ) ( )

2
V          . (35) 

The derivative of (35) takes the form: 
2 2 2

1 ,( ) ( ) ( ) 0s sV c c i c i c                                   .(36) 

The condition will be fulfilled if the stabilizing function ,  : 

si c        , (37) 

si c        . (38) 

The second step in the backstepping procedure is 
introducing the deviation variables “z”. The desired values are 

the stabilizing functions  ,   and the virtual control is 

s ,i  
 . The deviations are defined: 

sz i c      ,  (39)  

sz i c      .  (40)  

Using (39)–(40) the integrator dependences (33)–(34) take the 
form: 

d
z c

d


  





 


 ,  (41)  

d
z c

d



  





 


 . (42) 

Defining the deviations “z” and taking into account (41)–
(42) the back-step through the integrator was achieved [19]. 

Calculation of the (39)–(40) deviation derivatives gives: 

r m m
r s

r

R L L
z Z v c i

L w w
     

 

     , (43) 

r m m
r s

r

R L L
z Z v c i

L w w
     

 

     . (44) 

By selecting the following Lyapunov function: 

2 2 2 2

2 2 2 2

1
( , , , , , , , ) (

2

)

V z z Z Z z z

Z Z

           

   

     

 

    

   

     

  

,  (45) 

calculating the derivative and substituting the respective 
expressions, new correction terms can be determined. The 
Lyapunov function is determined for the dynamics of the 

,  , ,z   variables and for the rotor flux components. 

Calculating the derivatives (45) and substituting (29)–(32) and 
(43)–(44), one obtains: 
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2 2 2 2( ) (

) (

) ( ) ( )

ˆˆ(

r m mr
r r r

r r

r m m
s r

r

s r r

r m r
r r r r s

r r

R L LR
V c z c z z Z

L L w w

R L L
v c z c i z Z v

L w w

c z c i Z v Z v

R L R
Z Z Z Z i Z

L L

        

 

         

 

          

     

  

 

  

   

       

       

        

     

   

  

    

      )

ˆˆ( ).

Z

r m r
r r r r s Z

r r

v

R L R
Z Z Z Z i Z v

L L



         

 

          

 (46) 

To ensure asymptotic stability, the Lyapunov condition (5) 
must be satisfied. This condition implies the vα,β stabilizing 
current vector subsystem: 

r m
r s

r

R L
v c i c z

L w
      



       , (47) 

r m
r s

r

R L
v c i c z

L w
      



       , (48) 

and the flux vector subsystem properly: 

v k Z    , (49) 

v k Z     , (50) 

where kψ is additionally introduced to vψα,β gain. 
Taking into account (47)–(50) in (46), one obtains: 

2 2 ˆˆ( ) (

ˆ) (

ˆ )

r
r r r r r

r

r m mr
r s Z r

r r

r m mr
r r r s Z

r r

R
V Z Z Z Z

L

R L LR
i Z z v Z Z

L L w

R L LR
Z Z i Z z v

L L w

     

     



     



    

 

  

       

     

     

      

  

   

. (51)

 

To satisfy condition (5) the Z-subsystem correction terms 
should be defined: 

mr
Z Z

r

LR
v k Z z

L w
  



 
   

 

 ,  (52) 

mr
Z Z

r

LR
v k Z z

L w
  



 
   

 

 . (53) 

Taking into account the terms (49)–(50) in (52)–(53) the 
new form is obtained: 

mr
Z Z

r

LR
v k v z

L w
  



 
  

 
,  (54) 

mr
Z Z

r

LR
v k v z

L w
  



 
  

 
, (55) 

where kZ is additionally introduced to vψα,β gain. 
The observer correction terms are strongly coupled to each 
other. The flux and Z-subsystem are coupled by (49)–(50) and 
the current subsystem is coupled by the error deviations (39)–
(40). Such an observer structure guarantees better control 
system properties, especially near the very low speed. This 
case will be studied in more depth in the next section. 

B. The adaptive method of rotor speed estimation 

The rotor angular speed can be treated as a parameter; 
therefore (51) should be rebuilt to the following form: 

1ˆ ˆ( ) ( ) ( )r m
r s s r r

r

R L
V Z Z Z Z i Z i Z Z Z

L
           



 
       

 

         . (56) 

To satisfy the Lyapunov condition, the estimated rotor 
angular speed should be determined from: 

1
ˆ ˆˆ ˆˆ ( ) ( )r m r m

r s s

r r

R L R L
Z Z i Z Z i

L L
      

 
    

 

   ,  (57) 

where γ1 is the constant gain γ1 > 0 and there is the assumption 

that in (17) 0rd d   . 

The method presented in this section is based on the 
adaptive approach. The gain γ1 should be properly chosen so 
that the estimation speed observer deviation will be zero. The 
speed observer convergence depends on the γ1 and cα,β gains. 
In (49)–(50) and (52)–(55) the constant tuning gains kψ, Z > 0 
and kψ<1 are introduced. The influence on the observer 
backstepping stability will be shown in Section V. 

The ,Z 
  deviations can be obtained from (31)–(32). On the 

other hand, the ,Z 
  deviations can be obtained as follows 

without additional differential equations: 
ˆ ˆ ˆ

r rZ Z     , (58) 

ˆ ˆ ˆ
r rZ Z     . (59) 

C. The non-adaptive method of rotor speed estimation 

The previous section contains the adaptive approach to the 
angular speed reconstruction. In this section, the non-adaptive 
approach will be shown. Taking into account (19)–(20), 
multiplying properly by the rotor flux vector components and 
then summing both sides, the estimated rotor speed can be 
achieved in the same manner as in [2, 3]: 

2 2

ˆ ˆˆ ˆ
ˆ

ˆ ˆ
r r

rr

r r

Z Z   

 

 


 





. (60) 

In order to distinguish the adaptive and non-adaptive 

approaches, the estimated speed is indexed ˆ
rr  but in the 

speed observer (21)–(26) ˆ ˆ
r rr   (when the non-adaptive 

approach is used). 

D. The improved adaptive method of rotor speed 
estimation 

In the adaptive estimation approach [18, 27, 36], the speed 
observer may have a problem with the low speed rotor reverse. 
The control system can be unstable. Therefore, the 
differentiated Lyapunov function will be rebuilt to the 
following form: 

2
1

1

ˆ ˆ( ) ( ) ( )

1

r m
s s

r

rr r

r rr

R L
Z Z Z Z i Z i Z Z Z

L
V

         

  

  


 
      

   
 

  
 

     

  
 

, (61) 

where 
ˆ ˆ

rr r rr    . (62) 

In (62) ˆ
rr  is given in (60). 

The estimated rotor angular speed can be obtained by the 
improved differential equation: 

1 2
ˆ ˆˆ ˆˆ ( ) ( )r m r m

r s s rr

r r

R L R L
Z Z i Z Z i

L L
        

 
     

 

    , (63) 
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Fig. 1. The sensorless control system scheme with multi-scalar variables  

 

where 2 1  . 

Finally, the Z-type speed observer backstepping structure 
is built using eight differential equations: (21)–(26), (41)–(42) 
with the correction terms (49)–(50), (54)–(55) and the 
estimated speed observer formula (57), (60) or (63). 

The sensorless control system structure is presented in fig. 
1. All the variables and structure blocks are presented in the 
Appendix section. 

V. STABILITY ANALYSIS OF THE SPEED OBSERVER 

The presented backstepping approach is based on the 
Lyapunov function CLF (control of Lyapunov function) [19]. 
The correction terms (49)–(50), (54)–(55) are chosen in such a 
manner to satisfy the Lyapunov condition (5). This condition 
guarantees the asymptotic stability of the observer system if 
the constant gains are cα,β, γ1,2 > 0. If these gains are cα,β, 
γ1,2>> 0, then the observer is stiff [19] but the estimated rotor 
speed has more oscillations. The oscillations can lead to the 
observer working unstably. The gains move the system 
trajectory (the real poles) near to zero on the real axis (Re) or 
keep it away from the zero point (each real pole must be < 0 
for the system to be stable). These observer gains influence the 
speed observer convergences. In the non-linear system 
literature, the backstepping observer convergence is proved by 
the Lassale-Yoshizawa theorem or Barbalat’s Lemma [19]. 
These convergence theories are based on sets theory. If the set 
of solutions of the backstepping observer is bounded and the 
Lyapunov condition (5) is satisfied, then each solution is 
converged to the positive bounded solution set. 

The other situation is with the kψ,Z gains. The kψ,Z should be 
kψ,Z>0 but only kψ<1.0 p.u. The kψ must be smaller than 1.0 

because for each 1.0k   the flux subsystem is unstable. 

In order to examine the impact of the observer gains, the 
non-linear system is linearized near the equilibrium point. The 
linearized system has the general form [40]: 

0 0 0( ) ( ) ( ), ( ) ( ) ( )n

d
x t x t u t x t x t x t

dt
       A B   (64) 

where A, B are the Jacobian matrices. 
In the estimator presented in Section IV.A, B can be 

linearized near the equilibrium point and the matrix A is 
defined as: 

3 4

3 4

1 12

1 12

3 5 3 8

3 5 3 9

10 11

( ) 0 0 0 0 0

( ) 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0 0 0 0

0 00 1 0 0 0

0 0 0 0 00 0

Z r Z

Z r Z
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L
 , 2

r m

r

R L
a

L
 , 3

mL
a

w

 , 2
4 1a c c     , 

5 (1 )r
Z

r

R
a k

L
  , 8 2

ˆ
sd qa a i Z  , 9 2

ˆ
d sqa Z a i  , 

10 1 2
ˆ( )q sda Z a i  , 11 1 2

ˆ( )d sqa Z a i   , 12 ( 1)a k  . 

The estimator system is oriented with the rotor flux vector 

r


, so rd r 


 and 0rq   and the stator current vector 

components and ωψ can be treated as follows: 

rd
sd

m

i
L


 , 

5

L
sq

rd

T
i

a
 , 2

sq

r

rd

i
a 



 
  

 
. 

The stability analysis for the adaptive speed observer is 
presented in Figs. 2 to 7. In Fig. 2 the eigenvalues of the 
linearized observer system while the rotor speed is changing 
from -1.0 to 1.0 p.u are shown. 

For adaptive cases (Figs 2 to 4) for ωr=0 the eigenvalues 
are zero or near to zero. For this working point, the speed 
observer has the state variable oscillations (but is still stable). 

The adaptive speed observer is unstable for the gains 
cβ<0.1 (Fig. 4).  

 

 
Fig. 2. The spectrum of matrix A of the linearized observer system for cα=1.0, 
and cβ=0.1 p.u. while the rotor speed is changing from -1.0 to 1.0 p.u. and 
γ1=0.1 p.u., kψ=0.9, kZ=1.0 p.u., adaptive rotor speed estimation (57) 
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Fig. 3. The spectrum of matrix A of the linearized observer system for cα=1.0, 
and cβ=0.1 p.u. while the load torque is changing from 0 to 0.7 p.u., ωr=0.02 
and γ1=10, kψ=0.9, kZ=1.0 p.u., adaptive rotor speed estimation (57) 
 

 
Fig. 4. The spectrum of matrix A of the linearized observer system for kψ=0.9, 
kZ=1.0, cα=1.0 p.u. while the cβ is changing from 0.01 to1.0 and the rotor 
speed from -1.0 to 1.0 p.u., adaptive rotor speed estimation (57) 

 

 
Fig. 5. The spectrum of matrix A of the linearized observer system for cα=1.0, 
and cβ=1 p.u. while the rotor speed is changing from -1.0 to 1.0 p.u. and, 
kψ=0.9, kZ=1.0 p.u., non-adaptive or improved adaptive estimation 

 
Fig. 6. The spectrum of matrix A of the linearized observer system for cα=1.0, 
and cβ=0.1 p.u. while the load torque is changing from 0 to 0.7 p.u., ωr=0.02 
and γ1=1, kψ=0.9, kZ=1.0 p.u., non-adaptive or improved adaptive estimation 

 
Fig. 7. The spectrum of matrix A of the linearized observer system for kψ=0.9, 
kZ=1.0, cα=1.0, γ1=1 p.u. while the cβ is changing from 0.01 to 2.0 and the 
rotor speed from -1.0 to 1.0 p.u., non-adaptive or improved adaptive 
estimation 

 
The second analysis case is the non-adaptive estimation 

method or improved adaptive speed estimation. For this case, 
the estimated speed is from (60) or (63). In (63) the adaptive 
and non-adaptive approach is applied. It has been named 
“improved” because the speed observer has better properties 
than only the adaptive. The analysis for this case is shown in 
Figs. 5 to 7. Figs. 2–4 and 5–7 can be compared with each 
other. The non-adaptive estimation or improved adaptive 
estimation methods are better than the purely adaptive method. 
For each analysis case in Figs 5–7, the eigenvalues of the 
linearized observer system are near to zero but are not actually 
zero. For these cases, the eigenvalues are more negative than 
for the adaptive method. The kψ gain value change is not 
presented in Figs. 1–7. This value is constant kψ=0.9 and 
should always be kψ<1.0. The kψ must be smaller than 1.0 
because if it is not, the observer flux subsystem is unstable. If 
kψ=1.0 then the flux subsystem differential equation structure 
is changed. In (23) the positive coupling occurs from the 
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element ˆ ˆ
r r (for ˆ ˆ 0r r   ). In (24) the negative coupling 

occurs from ˆ ˆ
r r   (for ˆ ˆ 0r r   ). Accordingly, the flux 

subsystem has a different form than the mathematical model 
and for 1.0k   the speed observer backstepping is unstable. 

The kz gain value was kz=1.0 p.u. for both cases. 
In the next sections the experimental results for the non-

adaptive speed estimation method will be shown (due to their 
better speed observer properties than adaptive estimation). 

VI. EXPERIMENTAL RESULTS 

All tests were carried out in a 5.5 kW drive system. The 
motor drive system parameters are given in Table II. The 
control system was implemented in an interface with a DSP 
Sharc ADSP21363 floating point signal processor and Altera 
Cyclon 2 FPGA. The signal processor had 3 Mb SRAM, 333 
MHz, 666 MIPS, 2GFLOPS. The transistor switching 
frequency was 10 kHz. 

The Runge Kutta IV integration method was implemented 
with the speed observer. The control system calculations were 
about 15 µs without code machine optimization. 

 

 
Fig. 8. Machine is starting up to 1.0, and the nominal load torque is applied 
(Te~0.7 p.u.) 
 
 
 
 

 

Based on stability analysis, and because of the poor 
properties of the Z-observer with the adaptive speed 
estimation approach from (57), the “clean” adaptive approach 
in the experimental investigations will not be taken into 
account. 

The experimental section is divided into three subsections 
(Drive starting and speed reversal, Load rejection behaviour 
and Robustness against parameter detuning). Figs 8–16 

present: estimated rotor speed ˆ
r , measured speed r , rotor 

flux module 2 2
r r r     , estimated electromagnetic 

torque ˆ
eT  and referenced load torque Te_set, stator current 

vector components errors. 

A. Drive starting and speed reversal 

The drive starting from standstill with rated torque is 
shown in fig.8, while the speed reversal from 1.pu to - 1.pu is 
described in fig. 9. In fig. 10 the machine is starting up to 2.5 
p.u. The speed was limited to 2.5 p.u. because of the 
mechanical resonance problem in the drive system. In fig. 11, 
very slow speed reversing from 0.01 to -0.01 is shown. The 
multi-scalar variables x12, x21 and the rotor speed error are 
presented. 
 

 
Fig. 9. Machine is reversing from 1.0 to -1.0, without load torque command 
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Fig. 10. Machine is starting up to 2.5, without load torque command  

 

 
Fig. 11. Experimental transients: estimated rotor speed, rotor speed error, x12, 
x21  

B. Load rejection behaviour 

In this section, the control system behaviour on the load 
torque command is tested. In fig. 12, load torque is on and off 
and the referenced speed is zero. The control system worked 
stably.  

 
Fig. 12. The sensorless control load rejection behaviour. The reference speed 
is zero. The nominal load torque is turned on and off 
 

C. Robustness against parameter detuning 

In this section the robustness against IM parameter 
detuning is presented. In fig. 13, the stator resistance Rs is 
changed about 30% and the rotor resistance Rr is changed to 
about 50% of nominal value. The reference speed is zero. The 
nominal load torque is applied. This test shows that for zero 
speed and nominal torque command, if the IM parameters are 
detuned then the control system is stable but the properties are 
not sufficient. The electromagnetic torque occurs the limit 
(Te_limit) and the rotor speed is not properly stabilized. The 
speed observer is not robust if the IM parameters (Rs, Rr) 
change above 30% (at nominal load torque and zero speed 
operation). The stable work of the sensorless control system is 
guaranteed if the resistance changes are below 25% or if the 
25% nominal load torque is applied or the reference speed is 
different to the zero speed. This case is shown in fig. 14. The 
reference speed is 0.02 p.u. and the load torque and the 
resistance changes are the same as for the case presented in 
fig. 13. For the reference speed 0.02 p.u. the sensorless control 
system works stably for the resistance detuning and load 
nominal torque changes. 

In fig. 15 the IM main inductance Lm is changed about 
10% of the nominal value. The reference speed is zero. With 
changes of Lm below 15% the sensorless control system works 
stably.  
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Fig. 13. The IM parameters are changed: Rs to about 30% and Rr to about 50% 
of nominal values. The reference speed is zero 

 
Fig. 14. The IM parameters are changed: Rs to about 30% and Rr to about 50% 
of nominal values. The reference speed is 0.02 p.u. 

 
Fig. 15. The IM main inductance Lm is detuned about 10% 
 

 
Fig. 16. The IM main inductance Lm is detuned about 20% 
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In fig. 16 the reference speed is 0.02 p.u. and the IM main 
inductance Lm is detuned about 20%. The sensorless control 
system works stably. 

In experimental tests, the gains were chosen according to 
the method presented in Section V: cα=1, cβ=1, γ1=γ2=0.5, 
kΨ=0.85, kZ=1.0 p.u.  

The motor parameters are presented in Table II. More 
machine tests and the standard deviations of the estimated 
rotor speed and the stator current vector components are 
presented in Table I. 

 
Table I. The machine reverse tests 

 
 
 
 
 
 
 
 

σ – standard deviation; 
The machine tests: 

Test 1 –  ˆ 0.01... 0.01r    p.u. 

Test 2 –  ˆ 0.02... 0.02r    p.u; 

Test 3 –  ˆ 0.1... 0.1r    p.u; 

Test 4 –  ˆ 0.5... 0.5r    p.u; 

Test 5 –  ˆ 1... 1r    p.u.; 

Test 6 –  ˆ 0.1r   p.u., and Rs and Rr were chosen as 50% respect to their 

rated values, 

Test 7 –  ˆ 1.0r   p.u., and Rs and Rr were chosen as 50% respect to their 

rated values. 

In Tests 6 and 7, robust tests on the stator and rotor 
resistance changes were carried out. The stator and rotor 
resistances were changed to 50% of the nominal machine 
resistances. The rotor angular speed was estimated by the non-
adaptive approach, the speed estimation error was 0.05 p.u. 
(5%) in the stationary state, and the reference speed was 0.1 
p.u. (Test 6) and 1.0 p.u (Test 7). 

VII. CONCLUSIONS 

This paper describes the novel structure of the rotor angular 
speed observer, named Z, for an induction machine. This 
structure was obtained by use of backstepping synthesis and 
an adaptive mechanism. The proposed estimators are 
characterized by ease of selection of the gains and the small 
rotor angular speed error estimation < 0.03 p.u. in the dynamic 
states. This error value depends on a kind of machine working 
point. 

The author proposed the backstep through the integrator 
structure. The standard integrator backstepping structure, 
developed to the control system, was shown by the authors of 
the backstepping approach in [19]. In this paper, the integrator 
structure is used to obtain the Z-type adaptive observer 
backstepping. The Z-type observer structure has additional 
stabilizing elements in the differential equations which make it 
less oscillatory. In the Z-type observer, the rotor speed can be 
estimated in three ways: the adaptive, the non-adaptive, and 
the improved adaptive approaches. The “clean” adaptive with 

the Z-type observer structure cannot be used in drive 
applications because the error estimated speed is higher than 
5% near the zero speed.  

The main advantages of the proposed Z-type observer 
structure are: 
- The rotor speed is more accurately determined than in 

standard observer backstepping, especially at a low rotor 
speed; 

- The Z-type observer state variables have smaller 
oscillations than in standard observer [2-3] and observer 
backstepping [21-22]; 

- The stability is guaranteed by the Lyapunov criteria; 
- The Z-type and standard observers are relatively easy to 

tune using methods from Section V; 
- The sensorless control system with the Z-type observer 

backstepping works stably for the zero speed command 
and nominal load torque changes; 

- The Z-type observer is robust against IM resistance 
changes below 25% nominal value and main inductance Lm 
changes below 15% when the rotor speed is zero and the 
machine is nominally loaded. For rotor speeds higher than 
zero or load torques of about 50% nominal IM parameters 
can be more detuned than above values; 

- The proposed Z-type observer structure is more 
complicated than the standard observer backstepping but 
stability of the control system is provided over the whole 
speed range. 
The proposed methodology, based on the extended 

observer structure and adaptive backstepping, gives new 
possibilities for the development of observer theory in electric 
drive systems. 

The Z-type observer can be successfully used in industrial 
applications. 

APPENDIX 

The control system with the multi-scalar variables is shown 
in Fig. 17. The multi-scalar variables were proposed in [40] 
and defined [39]: 

11
ˆ

rx  , (65) 

12
ˆ ˆˆ ˆ

r s r sx i i      , (66) 

2 2
21

ˆ ˆ
r rx     , (67) 

22
ˆ ˆˆ ˆ

r s r sx i i      . (68) 

Test ( )r   ( )si    ( )si    

1 0.015621 0.015120 0.015512 
2 0.01101 0.012488 0.013201 
3 0.01020 0.01201 0.012063 
4 0.01010 0.00451 0.00512 
5 0.01311 0.00626 0.00718 
6 0.05103 0.02810 0.03156 
7 0.04109 0.02749 0.02910 

TABLE II 
THE SQUIRE-CAGE PARAMETERS AND REFERENCES UNIT 

Symbol             Quantity Values 

Rs stator resistance 2.92 Ω/0.045 p.u. 
Rr 

Lm 

Ls, Lr 
Lσ 

Pn 

In 
Un 
n 
f 
Ub=Un 

/ 3b nI I  

Pb 
Teb 

rotor resistance 
magnetizing inductance 

stator and rotor inductance 
leakage inductance 

nominal power 
nominal stator current (Y) 
nominal stator voltage (Y) 

nominal rotor speed 
nominal frequency 
reference voltage 
reference current 
reference power 
reference torque 

3.36 Ω/0.052 p.u. 
0.422 H/2.08 p.u. 
0.439 H/2.17 p.u. 
0.017 H/0.09 p.u. 
5.5 kW 
10.4 A 
400 V 
2940 rpm 
50 Hz 
400 V 
6.01 A 
1.6 kW 
7.65 Nm 
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The feedback linearizing controls (decoupling) are obtained, 
as follows: 

1 1 11 22 21

1
( )m

r i

w L
u m x x x

L T w




 
   

 
, (69) 

2
2 2 11 22 21

1 r m r m
s

r i r r

w R L R L
u m x x x i

L T w L L




 
    

 
, (70) 

where m1,2 are new introduced control variables and Ti is 
defined as: 

1 r s s r

i

R L R L

T w


 .  

The IM control variables are determined: 

2 1

21

r r

s

u u
u

x

 



 
 , (71) 

1 2

21

r r

s

u u
u

x

 



 
 . (72) 

The Z-type speed observer structure is as follows: 

11 12 13 14

ˆ
ˆˆ ˆ ( ) ( 1)s

s r s s

di
a i a a Z a u i c c c c

d


          

         , (73) 

11 12 13 14

ˆ
ˆˆ ˆ ( ) ( 1)

s

s r s s

di
a i a a Z a u i c c c c

d



          

         , (74) 

21 22

ˆ ˆˆˆ ˆ ˆ( 1)r
r s r r

d
a a i Z k k

d


     


 


      , (75) 

21 22

ˆ
ˆˆˆ ˆ ˆ( 1)

r

r s r r

d
a a i Z k k

d



     


 


      , (76) 

22 13

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )r
r r s r s

dZ d
Z a i a i c

d d


      


   

 
       , (77) 

22 13

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )r
r r s r s

dZ d
Z a i a i c

d d



      


   

 
       , (78) 

s

d
i

d










 , (79) 

s

d
i

d











 ,  (80) 

where 
2 2

11
s r r m

r

R L R L
a

L w


 , 12

r m

r

R L
a

L w

 , 13
mL

a
w

 , 14
rL

a
w

 , 21
r

r

R
a

L
 , 

22
r m

r

R L
a

L
 . 

The rotor speed derivative in (77)–(78) can be determined 
from (63): 

 1 22 22

ˆ ˆ ˆˆ ˆ( ) ( )r
s s

d
Z Z a i Z Z a i

d
     





     . (81) 

The speed can be estimated with an adaptive approach from 
(63) or a non-adaptive approach from (60): 

2 2

ˆ ˆˆ ˆ
ˆ

ˆ ˆ
r r

r

r r

Z Z   

 

 


 





. (82) 
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