Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor - Publikacja - MOST Wiedzy

Wyszukiwarka

Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor

Abstrakt

Electrocatalytic gas sensors belong to the family of electrochemical solid state sensors. Their responses are acquired in the form of I-V plots as a result of application of cyclic voltammetry technique. In order to obtain information about the type of measured gas the multivariate data analysis and pattern classification techniques can be employed. However, there is a lack of information in literature about application of such techniques in case of standalone chemical sensors which are able to recognize more than one volatile compound. In this article we present the results of application of these techniques to the determination from a single electrocatalytic gas sensor of single concentrations of nitrogen dioxide, ammonia, sulfur dioxide and hydrogen sulfide. Two types of classifiers were evaluated, i.e. linear Partial Least Squares Discriminant Analysis (PLS-DA) and nonlinear Support Vector Machine (SVM). The efficiency of using PLS-DA and SVM methods are shown on both the raw voltammetric sensor responses and pre-processed responses using normalization and auto-scaling.

Cytowania

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 2 1

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Metrology and Measurement Systems nr 20, wydanie 3, strony 501 - 512,
ISSN: 0860-8229
Język:
angielski
Rok wydania:
2013
Opis bibliograficzny:
Kalinowski P., Woźniak Ł., Strzelczyk A., Jasiński P., Jasiński G.: Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor// Metrology and Measurement Systems. -Vol. 20, iss. 3 (2013), s.501-512
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/mms-2013-0043
Weryfikacja:
Politechnika Gdańska

wyświetlono 177 razy

Publikacje, które mogą cię zainteresować

Meta Tagi