Hydrophobic deep eutectic solvents in microextraction techniques–A review - Publikacja - MOST Wiedzy

Wyszukiwarka

Hydrophobic deep eutectic solvents in microextraction techniques–A review

Abstrakt

Over the past decade, deep eutectic solvents (DES) have been widely studied and applied in sample preparation techniques. Until recently, most of the synthesized DES were hydrophilic, which prevented their use in the extraction of aqueous samples. However, after 2015 studies on the synthesis and application of hydrophobic deep eutectic solvents (HDES) has rapidly expanded. Due to unique properties of HDES i.e. density, viscosity, acidity or basicity, polarity and volatility, good extractabilities for various target analytes, which could be altered by careful selection of the hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) components, HDES are promising alternatives to the traditional organic solvents employed in sample preparation. Moreover, the possibility HDES synthesis of non-toxic ingredients, makes HDES meet all the standards of green analytical chemistry. Practical applications of HDES in sample preparation include conventional liquid-liquid extraction, and several types of liquid-phase microextraction, as well as solid phase extraction. The present review covers a comprehensive summarizing of available literature data on the most important physicochemical properties of HDES playing a key role in aqueous sample preparation methods, their limitations as well as challenges in this area, and a perspective of their future are described.

Cytowania

  • 2 5 7

    CrossRef

  • 0

    Web of Science

  • 2 7 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 1036 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MICROCHEMICAL JOURNAL nr 152,
ISSN: 0026-265X
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Makoś P., Słupek E., Gębicki J.: Hydrophobic deep eutectic solvents in microextraction techniques–A review// MICROCHEMICAL JOURNAL -Vol. 152, (2020), s.104384-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.microc.2019.104384
Bibliografia: test
  1. A. Spietelun, Ł. Marcinkowski, M. de la Guardia, J. Namieśnik, Green aspects, developments and perspectives of liquid phase microextraction techniques, Talanta 119 (2014) 34-45, https://doi.org/10.1016/J.TALANTA.2013.10.050. otwiera się w nowej karcie
  2. M. Sajid, Magnetic ionic liquids in analytical sample preparation: a literature re- view, TrAC Trends Anal. Chem. 113 (2019) 210-223, https://doi.org/10.1016/J. TRAC.2019.02.007. otwiera się w nowej karcie
  3. S. Armenta, S. Garrigues, M. de la Guardia, The role of green extraction techniques in Green Analytical Chemistry, TrAC -Trends Anal. Chem. 71 (2015) 2-8, https:// doi.org/10.1016/j.trac.2014.12.011. otwiera się w nowej karcie
  4. F. Chemat, M.A. Vian, G. Cravotto, Green extraction of natural products: concept and principles, Int. J. Mol. Sci. 13 (2012) 8615-8627, https://doi.org/10.3390/ ijms13078615. otwiera się w nowej karcie
  5. N. Lorenzo-Parodi, W. Kaziur, N. Stojanović, M.A. Jochmann, T.C. Schmidt, Solventless microextraction techniques for water analysis, TrAC -Trends Anal. Chem. (2019), https://doi.org/10.1016/j.trac.2018.11.013. otwiera się w nowej karcie
  6. P. Makoś, A. Przyjazny, G. Boczkaj, Methods of assaying volatile oxygenated or- ganic compounds in effluent samples by gas chromatography-A review, J. Chromatogr. A. 1592 (2019) 143-160, https://doi.org/10.1016/J.CHROMA. 2019.01.045. otwiera się w nowej karcie
  7. J. An, M.J. Trujillo-Rodríguez, V. Pino, J.L. Anderson, Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems, J. Chromatogr. A. 1500 (2017) 1-23, https://doi.org/10.1016/J.CHROMA.2017.04.012. otwiera się w nowej karcie
  8. I. Pacheco-Fernández, V. Pino, Green solvents in analytical chemistry, Curr. Opin. Green Sustain. Chem. 18 (2019) 42-50, https://doi.org/10.1016/J.COGSC.2018. 12.010. otwiera się w nowej karcie
  9. C.F. Poole, S.K. Poole, Extraction of organic compounds with room temperature ionic liquids, J. Chromatogr. A. 1217 (2010) 2268-2286, https://doi.org/10. 1016/J.CHROMA.2009.09.011. otwiera się w nowej karcie
  10. J. Liu, G. Jiang, J. Liu, J.Å. Jönsson, Application of ionic liquids in analytical chemistry, TrAC Trends Anal. Chem. 24 (2005) 20-27, https://doi.org/10.1016/J. TRAC.2004.09.005. otwiera się w nowej karcie
  11. Y. Wang, Y. Sun, B. Xu, X. Li, R. Jin, H. Zhang, D. Song, Magnetic ionic liquid- based dispersive liquid-liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography, J. Chromatogr. A. 1373 (2014) 9-16, https://doi.org/10.1016/J.CHROMA.2014.11.009. otwiera się w nowej karcie
  12. H. Yu, J. Merib, J.L. Anderson, Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents, J. Chromatogr. A. 1463 (2016) 11-19, https://doi.org/10.1016/J.CHROMA.2016.08.007. otwiera się w nowej karcie
  13. M.J. Trujillo-Rodríguez, O. Nacham, K.D. Clark, V. Pino, J.L. Anderson, J.H. Ayala, A.M. Afonso, Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons, Anal. Chim. Acta. 934 (2016) 106-113, https://doi.org/10.1016/J.ACA.2016.06.014. otwiera się w nowej karcie
  14. T. Wasilewski, J. Gębicki, W. Kamysz, Prospects of ionic liquids application in electronic and bioelectronic nose instruments, TrAC -Trends Anal. Chem. 93 (2017) 23-36, https://doi.org/10.1016/j.trac.2017.05.010. otwiera się w nowej karcie
  15. A. Romero, A. Santos, J. Tojo, A. Rodríguez, Toxicity and biodegradability of imidazolium ionic liquids, J. Hazard. Mater. 151 (2008) 268-273, https://doi.org/ 10.1016/J.JHAZMAT.2007.10.079. otwiera się w nowej karcie
  16. Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108-7146, https://doi.org/10.1039/c2cs35178a. otwiera się w nowej karcie
  17. B. Tang, H. Zhang, K.H. Row, Application of deep eutectic solvents in the ex- traction and separation of target compounds from various samples, J. Sep. Sci. 38 (2015) 1053-1064, https://doi.org/10.1002/jssc.201401347. otwiera się w nowej karcie
  18. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their ap- plications, Chem. Rev. 114 (2014) 11060-11082, https://doi.org/10.1021/ cr300162p. otwiera się w nowej karcie
  19. V. Abbott, Capper A.P., Davies G., Rasheed D.L., R.K. Tambyrajah, Novel solvent properties of choline chloride /Urea mixtures, Chem. Commun. 0 (2003) 70-71 https://doi.org/10.1021/ja048266j. otwiera się w nowej karcie
  20. C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic deep eu- tectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135-142, https://doi.org/10.1016/J.FLUID.2017.04.002. otwiera się w nowej karcie
  21. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, R.K. Ibrahim, M.A. Hashim, Lead removal from water by choline chloride based deep eutectic solvents functiona- lized carbon nanotubes, J. Mol. Liq. 222 (2016) 883-894, https://doi.org/10. 1016/J.MOLLIQ.2016.07.074. otwiera się w nowej karcie
  22. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim, Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic re- moval from water, Appl. Surf. Sci. 389 (2016) 216-226, https://doi.org/10.1016/ J.APSUSC.2016.07.079. otwiera się w nowej karcie
  23. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A. Hashim, Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water, Chemosphere 167 (2017) 44-52, https://doi. org/10.1016/J.CHEMOSPHERE.2016.09.133. otwiera się w nowej karcie
  24. L.F. Zubeir, D.J.G.P. Van Osch, M.A.A. Rocha, F. Banat, M.C. Kroon, Carbon di- oxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents, J. Chem. Eng. Data. 63 (2018) 913-919, https://doi.org/10.1021/acs.jced.7b00534. otwiera się w nowej karcie
  25. C.L. Boldrini, N. Manfredi, F.M. Perna, V. Capriati, A. Abbotto, Designing eco- sustainable dye-sensitized solar cells by the use of a menthol-based hydrophobic eutectic solvent as an effective electrolyte medium, Chem. -A Eur. J. 24 (2018) 17656-17659, https://doi.org/10.1002/chem.201803668. otwiera się w nowej karcie
  26. J. Cao, M. Yang, F. Cao, J. Wang, E. Su, Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves, J. Clean. Prod. 152 (2017) 399-405, https://doi.org/10.1016/J.JCLEPRO.2017.03. 140. otwiera się w nowej karcie
  27. J. Cao, M. Yang, F. Cao, J. Wang, E. Su, Well-Designed hydrophobic deep eutectic solvents as green and efficient media for the extraction of Artemisinin from Artemisia Annua leaves, ACS Sustain. Chem. Eng. 5 (2017) 3270-3278, https:// doi.org/10.1021/acssuschemeng.6b03092. otwiera się w nowej karcie
  28. O.S. Hammond, D.T. Bowron, K.J. Edler, The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solu- tion, Angew. Chemie -Int. 56 (2017) 9782-9785, https://doi.org/10.1002/anie. 201702486 Ed. otwiera się w nowej karcie
  29. X. Li, K.H. Row, Development of deep eutectic solvents applied in extraction and separation, J. Sep. Sci. 39 (2016) 3505-3520, https://doi.org/10.1002/jssc. 201600633. otwiera się w nowej karcie
  30. C. Florindo, F.S. Oliveira, L.P.N. Rebelo, A.M. Fernandes, I.M. Marrucho, Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids, ACS Sustain. Chem. Eng. 2 (2014) 2416-2425, https://doi.org/10.1021/sc500439w. otwiera się w nowej karcie
  31. D.J.G.P. Van Osch, L.F. Zubeir, A. Van Den Bruinhorst, M.A.A. Rocha, M.C. Kroon, Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem 17 (2015) 4518-4521, https://doi.org/10.1039/c5gc01451d. otwiera się w nowej karcie
  32. W. Tang, Y. Dai, K.H. Row, Evaluation of fatty acid / alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water, Anal. Bioanal. Chem. 410 (2018) 7325-7336, https://doi.org/10.1002/ cssc.201701282. otwiera się w nowej karcie
  33. S.Y. Dandan Ge, Yi Zhang, Yixiu Dai, Air-assisted dispersive liquid-liquid micro- extraction based on a new hydrophobic deep eutectic solvent for the pre- concentration of benzophenone-type UV filters from aqueous samples, J. Sep. Sci. 41 (2018) 1635-1643, https://doi.org/10.1002/jssc.201701282. otwiera się w nowej karcie
  34. J. Cao, L. Chen, M. Li, F. Cao, L. Zhao, E. Su, Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities, Green Chem. (2018) 1879-1886, https://doi.org/10.1039/c7gc03820h. otwiera się w nowej karcie
  35. B.D. Ribeiro, C. Florindo, L.C. Iff, M.A.Z. Coelho, I.M. Marrucho, Menthol-based eutectic mixtures: hydrophobic low viscosity solvents, ACS Sustain. Chem. Eng. 3 (2015) 2469-2477, https://doi.org/10.1021/acssuschemeng.5b00532. otwiera się w nowej karcie
  36. C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic deep eu- tectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135-142, https://doi.org/10.1016/j.fluid.2017.04.002. otwiera się w nowej karcie
  37. D.J.G.P. Van Osch, C.H.J.T. Dietz, J. Van Spronsen, M.C. Kroon, F. Gallucci, M. Van Sint Annaland, R. Tuinier, A search for natural hydrophobic deep eutectic solvents based on natural components, ACS Sustain. Chem. Eng. 7 (2019) 2933-2942, https://doi.org/10.1021/acssuschemeng.8b03520. otwiera się w nowej karcie
  38. M.A.R. Martins, E.A. Crespo, P.V.A. Pontes, L.P. Silva, M. Bülow, G.J. Maximo, E.A.C. Batista, C. Held, S.P. Pinho, J.A.P. Coutinho, Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids, ACS Sustain. Chem. Eng. 6 (2018) 8836-8846, https://doi.org/10.1021/acssuschemeng.8b01203. otwiera się w nowej karcie
  39. M. Nedaei, A.R. Zarei, S.A. Ghorbanian, Development of a new emulsification microextraction method based on solidification of settled organic drop: applica- tion of a novel ultra-hydrophobic tailor-made deep eutectic solvent, New J. Chem. 42 (2018) 12520-12529, https://doi.org/10.1039/c8nj02219d. otwiera się w nowej karcie
  40. N. Schaeffer, M.A.R. Martins, C.M.S.S. Neves, S.P. Pinho, J.A.P. Coutinho, Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals, Chem. Commun. 54 (2018) 8104-8107, https://doi.org/10. 1039/c8cc04152k. otwiera się w nowej karcie
  41. C. Florindo, L. Romero, I. Rintoul, L.C. Branco, I.M. Marrucho, From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eu- tectic solvents, ACS Sustain. Chem. Eng. 6 (2018) 3888-3895, https://doi.org/10. 1021/acssuschemeng.7b04235. otwiera się w nowej karcie
  42. D.J.G.P. Van Osch, D. Parmentier, C.H.J.T. Dietz, A. Van Den Bruinhorst, R. Tuinier, M.C. Kroon, Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents, Chem. Commun. 52 (2016) 11987-11990, https://doi.org/10.1039/c6cc06105b. otwiera się w nowej karcie
  43. Y. Kaplun-Frischoff, E. Touitou, Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids, J. Pharm. Sci. 86 (1997) 1394-1399, https://doi.org/10.1021/js9701465. otwiera się w nowej karcie
  44. C.S. Yong, S.H. Jung, J.D. Rhee, H.G. Choi, B.J. Lee, D.C. Kim, Y.W. Choi, C.K. Kim, Improved solubility and in vitro dissolution of ibuprofen from polox- amer gel using eutectic mixture with menthol, Drug Deliv. J. Deliv. Target. Ther. Agents. 10 (2003) 179-183, https://doi.org/10.1080/713840406. otwiera się w nowej karcie
  45. L. Kang, H.W. Jun, J.W. McCall, Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport, Int. J. Pharm. 206 (2000) 35-42, https://doi.org/10.1016/S0378-5173(00)00505-6. otwiera się w nowej karcie
  46. S. Nazzal, I.I. Smalyukh, O.D. Lavrentovich, M.A. Khan, Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation, Int. J. Pharm. 235 (2002) 247-265, https://doi.org/10.1016/S0378-5173(02) 00003-0. otwiera się w nowej karcie
  47. M. Ruesgas-Ramón, M.C. Figueroa-Espinoza, E. Durand, Application of Deep Eutectic Solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities, J. Agric. Food Chem. 65 (2017) 3591-3601, https://doi.org/ 10.1021/acs.jafc.7b01054. otwiera się w nowej karcie
  48. J. Chen, M. Liu, Q. Wang, H. Du, L. Zhang, Deep eutectic solvent-based micro- wave-assisted method for extraction of hydrophilic and hydrophobic components from radix salviae miltiorrhizae, Molecules 21 (2016), https://doi.org/10.3390/ molecules21101383. otwiera się w nowej karcie
  49. A.K. Dwamena, Investigating anions and hydrophobicity of deep eutectic solvents by experiment and computational software, Electronic Theses and Dissertations (2019). otwiera się w nowej karcie
  50. C. Florindo, L.G. Celia-Silva, L.F.G. Martins, L.C. Branco, I.M. Marrucho, Supramolecular hydrogel based on a sodium deep eutectic solvent, Chem. Commun. 54 (2018) 7527-7530, https://doi.org/10.1039/c8cc03266a. otwiera się w nowej karcie
  51. S. Basak, J. Nanda, A. Banerjee, Multi-stimuli responsive self-healing metallo- hydrogels: tuning of the gel recovery property, Chem. Commun. 50 (2014) 2356-2359, https://doi.org/10.1039/c3cc48896a. otwiera się w nowej karcie
  52. W. Deng, L. Yu, X. Li, J. Chen, X. Wang, Z. Deng, Y. Xiao, Hexafluoroisopropanol- based hydrophobic deep eutectic solvents for dispersive liquid-liquid micro- extraction of pyrethroids in tea beverages and fruit juices, Food Chem. 274 (2019) 891-899, https://doi.org/10.1016/j.foodchem.2018.09.048. otwiera się w nowej karcie
  53. Y.L. Yang, Y. Kou, PDetermination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Commun. 4 (2004) 226-227, https://doi.org/ 10.1039/b311615h. otwiera się w nowej karcie
  54. E.P. Parry, An infrared study of pyridi, J. Catal. 2 (1963) 371-379 http:// dns2.asia.edu.tw/∼ysho/YSHO-English/1000CE/PDF/J Cat2371.pdf. otwiera się w nowej karcie
  55. W.N. Sanders, J.E. Berger, Measurement and significance of the Hammett acidity function in non-hydroxylic solvents, Anal. Chem. 39 (1967) 1473-1476, https:// doi.org/10.1021/ac60256a047. otwiera się w nowej karcie
  56. M.B. Taysun, E. Sert, F.S. Atalay, Physical properties of benzyl tri-methyl ammo- nium chloride based deep eutectic solvents and employment as catalyst, J. Mol. Liq. 223 (2016) 845-852, https://doi.org/10.1016/j.molliq.2016.07.148. otwiera się w nowej karcie
  57. S. Zhu, J. Zhou, H. Jia, H. Zhang, Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent, Food Chem. 243 (2018) 351-356, https://doi.org/10.1016/j.foodchem.2017.09.141. otwiera się w nowej karcie
  58. P. Makoś, A. Fernandes, G. Boczkaj, Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry, J. Chromatogr. A. 1517 (2017) 26-34, https://doi.org/10.1016/J.CHROMA.2017. 08.045. otwiera się w nowej karcie
  59. O. Aschenbrenner, S. Supasitmongkol, M. Taylor, P. Styring, Measurement of va- pour pressures of ionic liquids and other low vapour pressure solvents, Green Chem. 11 (2009) 1217-1221, https://doi.org/10.1039/b904407h. otwiera się w nowej karcie
  60. C.H.J.T. Dietz, M.C. Kroon, M. Di Stefano, M. Van Sint Annaland, F. Gallucci, Selective separation of furfural and hydroxymethylfurfural from an aqueous so- lution using a supported hydrophobic deep eutectic solvent liquid membrane, Faraday Discuss 206 (2018) 77-92, https://doi.org/10.1039/c7fd00152e. otwiera się w nowej karcie
  61. K. Zhang, S. Li, C. Liu, Q. Wang, Y. Wang, J. Fan, A hydrophobic deep eutectic solvent-based vortex-assisted dispersive liquid-liquid microextraction combined with HPLC for the determination of nitrite in water and biological samples, J. Sep. Sci. 42 (2019) 574-581, https://doi.org/10.1002/jssc.201800921. otwiera się w nowej karcie
  62. F. Barontini, V. Cozzani, Thermogravimetry as a screening tool for the estimation of the vapor pressures of pure compounds, J. Therm. Anal. Calorim. 89 (2007) 309-314, https://doi.org/10.1007/s10973-006-7915-5. otwiera się w nowej karcie
  63. P. Phang, D. Dollimore, S.J. Evans, A comparative method for developing vapor pressure curves based on evaporation data obtained from a simultaneous TG-DTA unit, Thermochim. Acta. 392 (2002) 119-125, https://doi.org/10.1016/S0040- 6031(02)00092-8. otwiera się w nowej karcie
  64. M.A.A. Rocha, J.A.P. Coutinho, L.M.N.B.F. Santos, Cation symmetry effect on the volatility of ionic liquids, J. Phys. Chem. B. 116 (2012) 10922-10927, https://doi. org/10.1021/jp306937f. otwiera się w nowej karcie
  65. K. Shahbaz, F.S. Mjalli, G. Vakili-Nezhaad, I.M. AlNashef, A. Asadov, M.M. Farid, Thermogravimetric measurement of deep eutectic solvents vapor pressure, J. Mol. Liq. 222 (2016) 61-66, https://doi.org/10.1016/j.molliq.2016.06.106. otwiera się w nowej karcie
  66. C.H.J.T. Dietz, J.T. Creemers, M.A. Meuleman, C. Held, G. Sadowski, M. Van Sint Annaland, F. Gallucci, M.C. Kroon, Determination of the total vapor pressure of hydrophobic deep eutectic solvents: experiments and perturbed-chain statistical associating fluid theory modeling, ACS Sustain. Chem. Eng. 7 (2019) 4047-4057, https://doi.org/10.1021/acssuschemeng.8b05449. otwiera się w nowej karcie
  67. M. Francisco, A. van den Bruinhorst, L.F. Zubeir, C.J. Peters, M.C. Kroon, A new low transition temperature mixture (LTTM) formed by choline chloride+lactic acid: characterization as solvent for CO 2 capture, Fluid Phase Equilib. 340 (2013) 77-84, https://doi.org/10.1016/j.fluid.2012.12.001. otwiera się w nowej karcie
  68. W. Bi, M. Tian, K.H. Row, Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization, J. Chromatogr. A. 1285 (2013) 22-30, https://doi.org/10.1016/j. chroma.2013.02.041. otwiera się w nowej karcie
  69. S. Zhu, J. Zhou, H. Jia, H. Zhang, Liquid -liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent, Food Chem 243 (2018) 351-356, https://doi.org/10.1016/j.foodchem.2017.09.141. otwiera się w nowej karcie
  70. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Hydrophobic deep eutectic solvents in developing microextraction methods based on solidification of floating drop: application to the trace HPLC/FLD determination of PAHs, Chromatographia 81 (2018) 1201-1211, https://doi.org/10.1007/s10337-018-3548-7. otwiera się w nowej karcie
  71. E.E. Tereshatov, M.Y. Boltoeva, C.M. Folden, First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium ex- traction from hydrochloric and oxalic acids, Green Chem. 18 (2016) 4616-4622, https://doi.org/10.1039/c5gc03080c. otwiera się w nowej karcie
  72. M. Gilmore, É.N. McCourt, F. Connolly, P. Nockemann, M. Swadźba-Kwaśny, J.D. Holbrey, Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants, ACS Sustain. Chem. Eng. 6 (2018) 17323-17332, https://doi.org/10.1021/acssuschemeng.8b04843. otwiera się w nowej karcie
  73. R. Liu, X. Zhou, Selective transformations of cyclopentadienylligands of transition- metal and rare-earth metal complexes, Chem. Commun. 49 (2013) 3171-3187, https://doi.org/10.1039/c2cc35637f. otwiera się w nowej karcie
  74. S. Mahboobeh, Y. Farzaneh, S. Sohrab, A. Ghorbanian, Hydrophobic deep eutectic solvents in developing microextraction methods based on solidification of floating drop : application to the trace HPLC / FLD determination of PAHs, Chromatographia 81 (2018) 1201-1211, https://doi.org/10.1007/s10337-018- 3548-7. otwiera się w nowej karcie
  75. R. Verma, T. Banerjee, Liquid-Liquid extraction of lower alcohols using menthol- based hydrophobic deep eutectic solvent: experiments and COSMO-SAC predic- tions, Ind. Eng. Chem. Res. 57 (2018) 3371-3381, https://doi.org/10.1021/acs. iecr.7b05270. otwiera się w nowej karcie
  76. P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A. 1570 (2018) 28-37, https://doi.org/10.1016/j.chroma.2018.07. 070. otwiera się w nowej karcie
  77. T.E. Phelps, N. Bhawawet, S.S. Jurisson, G.A. Baker, Efficient and selective ex- traction of 99mTcO4-from Aqueous media using hydrophobic deep eutectic sol- vents, ACS Sustain. Chem. Eng. 6 (2018) 13656-13661, https://doi.org/10.1021/ acssuschemeng.8b03950. otwiera się w nowej karcie
  78. S. Ruggeri, F. Poletti, C. Zanardi, L. Pigani, B. Zanfrognini, E. Corsi, N. Dossi, M. Salomäki, H. Kivelä, J. Lukkari, F. Terzi, Chemical and electrochemical prop- erties of a hydrophobic deep eutectic solvent, Electrochim. Acta. 295 (2019) 124-129, https://doi.org/10.1016/j.electacta.2018.10.086. otwiera się w nowej karcie
  79. D.J.G.P. Van Osch, L.F. Zubeir, A. Van Den Bruinhorst, M.A.A. Rocha, M.C. Kroon, Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem. 17 (2015) 4518-4521, https://doi.org/10.1039/c5gc01451d. otwiera się w nowej karcie
  80. J. Cao, L. Chen, M. Li, F. Cao, L. Zhao, E. Su, Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities, Green. Chem. 20 (2018) 1879-1886, https://doi.org/10.1039/c7gc03820h. otwiera się w nowej karcie
  81. D. Yang, Y. Wang, J. Peng, C. Xun, Y. Yang, A green deep eutectic solvents mi- croextraction coupled with acid-base induction for extraction of trace phenolic compounds in large volume water samples, Ecotoxicol. Environ. Saf. 178 (2019) 130-136, https://doi.org/10.1016/J.ECOENV.2019.04.021. otwiera się w nowej karcie
  82. B. Hashemi, P. Zohrabi, K.H. Kim, M. Shamsipur, A. Deep, J. Hong, Recent ad- vances in liquid-phase microextraction techniques for the analysis of environmental pollutants, TrAC -Trends Anal. Chem. 97 (2017) 83-95, https:// doi.org/10.1016/j.trac.2017.08.014. otwiera się w nowej karcie
  83. D. Ge, Y. Wang, Q. Jiang, E. Dai, A deep eutectic solvent as an extraction solvent to separate and preconcentrate parabens in water samples using in situ liquid-liquid microextraction, J. Braz. Chem. Soc. 30 (2019) 1203-1210, https://doi.org/10. 21577/0103-5053.20190014. otwiera się w nowej karcie
  84. A.Y. Shishov, M.V. Chislov, D.V. Nechaeva, L.N. Moskvin, A.V. Bulatov, A new approach for microextraction of non-steroidal anti-inflammatory drugs from human urine samples based on in-situ deep eutectic mixture formation, J. Mol. Liq. 272 (2018) 738-745, https://doi.org/10.1016/j.molliq.2018.10.006. otwiera się w nowej karcie
  85. A. Shishov, R. Chromá, C. Vakh, J. Kuchár, A. Simon, V. Andruch, A. Bulatov, In situ decomposition of deep eutectic solvent as a novel approach in liquid-liquid microextraction, Anal. Chim. Acta. 1065 (2019) 49-55, https://doi.org/10.1016/ J.ACA.2019.03.038. otwiera się w nowej karcie
  86. E.A. Dil, M. Ghaedi, A. Asfaram, Application of hydrophobic deep eutectic solvent as the carrier for ferrofluid: a novel strategy for pre-concentration and determi- nation of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization, Talanta 202 (2019) 526-530, https://doi.org/10.1016/J.TALANTA.2019.05.027. otwiera się w nowej karcie
  87. M. Rezaee, Y. Assadi, M.-.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid mi- croextraction, J. Chromatogr. A. 1116 (2006) 1-9, https://doi.org/10.1016/J. CHROMA.2006.03.007. otwiera się w nowej karcie
  88. A. Zgoła-Grześkowiak, T. Grześkowiak, Dispersive liquid-liquid microextraction, TrAC Trends Anal. Chem. 30 (2011) 1382-1399, https://doi.org/10.1016/J. TRAC.2011.04.014. otwiera się w nowej karcie
  89. Q. Wang, R. Chen, W. Shatner, Y. Cao, Y. Bai, State-of-the-art on the technique of dispersive liquid-liquid microextraction, Ultrason. Sonochem. 51 (2019) 369-377, https://doi.org/10.1016/J.ULTSONCH.2018.08.010. otwiera się w nowej karcie
  90. A. Zgoła-Grześkowiak, T. Grześkowiak, Dispersive liquid-liquid microextraction, TrAC Trends Anal. Chem. 30 (2011) 1382-1399, https://doi.org/10.1016/J. TRAC.2011.04.014. otwiera się w nowej karcie
  91. P. Makoś, A. Fernandes, G. Boczkaj, Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with gas chromatography-mass spectro- metry, J. Sep. Sci. 41 (2018), https://doi.org/10.1002/jssc.201701464. otwiera się w nowej karcie
  92. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid mi- croextraction and gas chromatography with mass spectrometry for the determi- nation of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615, https://doi.org/10. 1002/jssc.201501355. otwiera się w nowej karcie
  93. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956, https://doi.org/10.1002/jssc.201600608. otwiera się w nowej karcie
  94. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the ex- amination of the degradation of volatile organonitrogen compounds during the treatment of industrial effluents, J. Sep. Sci. 40 (2017) 1301-1309, https://doi. org/10.1002/jssc.201601237. otwiera się w nowej karcie
  95. L. Kocúrová, I.S. Balogh, J. Šandrejová, V. Andruch, Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water. A review, Microchem. J. 102 (2012) 11-17, https://doi.org/10.1016/J.MICROC.2011.12. 002. otwiera się w nowej karcie
  96. I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid- liquid microextraction (DLLME) based on ionic liquids: a review, J. Mol. Liq. 259 (2018) 319-339, https://doi.org/10.1016/J.MOLLIQ.2018.03.043. otwiera się w nowej karcie
  97. M.A. Farajzadeh, M.R. Afshar Mogaddam, M. Aghanassab, Deep eutectic solvent- based dispersive liquid-liquid microextraction, Anal. Methods. 8 (2016) 2576-2583, https://doi.org/10.1039/c5ay03189c. otwiera się w nowej karcie
  98. Y. Liu, W. Xu, H. Zhang, W. Xu, Hydrophobic deep eutectic solvent-based dis- persive liquid-liquid microextraction for the simultaneous enantiomeric analysis of five β-agonists in the environmental samples, Electrophoresis (2019) 1-9, https://doi.org/10.1002/elps.201900149. otwiera się w nowej karcie
  99. Y. An, W. Ma, K.H. Row, Preconcentration and determination of chlorophenols in wastewater with dispersive liquid-liquid microextraction using hydrophobic deep eutectic solvents, Anal. Lett. 0 (2019) 1-11, https://doi.org/10.1080/00032719. 2019.1646754. otwiera się w nowej karcie
  100. S. Sadeghi, A. Davami, A rapid dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent for selective and sensitive preconcentration of thorium in water and rock samples: a multivariate study, J. Mol. Liq. 291 (2019) 111242, , https://doi.org/10.1016/J.MOLLIQ.2019.111242. otwiera się w nowej karcie
  101. Y.-.M. Liu, F.-.P. Zhang, B.-.Y. Jiao, J.-.Y. Rao, G. Leng, Automated dispersive li- quid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples, J. Chromatogr. A. 1493 (2017) 1-9, https://doi. org/10.1016/J.CHROMA.2017.03.002. otwiera się w nowej karcie
  102. M. Alexovič, M. Wieczorek, J. Kozak, P. Kościelniak, I.S. Balogh, V. Andruch, An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron, Talanta 133 (2015) 127-133, https://doi.org/10.1016/J.TALANTA.2014.04.095. otwiera się w nowej karcie
  103. B. Horstkotte, K. Fikarová, D.J. Cocovi-Solberg, H. Sklenářová, P. Solich, M. Miró, Online coupling of fully automatic in-syringe dispersive liquid-liquid micro- extraction with oxidative back-extraction to inductively coupled plasma spectro- metry for sample clean-up in elemental analysis: a proof of concept, Talanta 173 (2017) 79-87, https://doi.org/10.1016/J.TALANTA.2017.05.063. otwiera się w nowej karcie
  104. A. Shishov, N. Volodina, D. Nechaeva, S. Gagarinova, A. Bulatov, An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages, Microchem. J. 144 (2019) 469-473, https://doi.org/10.1016/J.MICROC.2018.10.014. otwiera się w nowej karcie
  105. A. Shishov, P. Terno, L. Moskvin, A. Bulatov, In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: determination of chro- mium (VI) in beverages, Talanta 206 (2020) 120209, , https://doi.org/10.1016/J. TALANTA.2019.120209. otwiera się w nowej karcie
  106. D. Ge, Y. Zhang, Y. Dai, S. Yang, Air-assisted dispersive liquid-liquid micro- extraction based on a new hydrophobic deep eutectic solvent for the pre- concentration of benzophenone-type UV filters from aqueous samples, J. Sep. Sci. 41 (2018) 1635-1643, https://doi.org/10.1002/jssc.201701282. otwiera się w nowej karcie
  107. M. Rajabi, N. Ghassab, M. Hemmati, A. Asghari, Emulsification microextraction of amphetamine and methamphetamine in complex matrices using an up-to-date generation of eco-friendly and relatively hydrophobic deep eutectic solvent, J. Chromatogr. A. 1576 (2018) 1-9, https://doi.org/10.1016/J.CHROMA.2018.07. 040. otwiera się w nowej karcie
  108. D. Djozan, M.A. Farajzadeh, S.M. Sorouraddin, T. Baheri, Molecularly imprinted- solid phase extraction combined with simultaneous derivatization and dispersive liquid-liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromato- graphy, J. Chromatogr. A. 1248 (2012) 24-31, https://doi.org/10.1016/J. CHROMA.2012.05.085. otwiera się w nowej karcie
  109. N. Lamei, M. Ezoddin, K. Abdi, Air assisted emulsification liquid-liquid micro- extraction based on deep eutectic solvent for preconcentration of methadone in water and biological samples, Talanta 165 (2017) 176-181, https://doi.org/10. 1016/J.TALANTA.2016.11.036. otwiera się w nowej karcie
  110. A.G. Moghadam, M. Rajabi, A. Asghari, Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples, J. Chromatogr. B. 1072 (2018) 50-59, https://doi.org/10.1016/J.JCHROMB.2017.09.042. otwiera się w nowej karcie
  111. R.A. Zounr, M. Tuzen, M.Y. Khuhawar, A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry, J. Mol. Liq. 259 (2018) 220-226, https://doi.org/10. 1016/J.MOLLIQ.2018.03.034. otwiera się w nowej karcie
  112. H.M. Al-Saidi, A.A.A. Emara, The recent developments in dispersive liquid-liquid microextraction for preconcentration and determination of inorganic analytes, J. Saudi Chem. Soc. 18 (2014) 745-761, https://doi.org/10.1016/J.JSCS.2011.11. 005. otwiera się w nowej karcie
  113. H. Zeng, K. Qiao, X. Li, M. Yang, S. Zhang, R. Lu, J. Li, H. Gao, W. Zhou, Dispersive liquid-liquid microextraction based on the solidification of deep eutectic solvent for the determination of benzoylureas in environmental water samples, J. Sep. Sci. 40 (2017) 4563-4570, https://doi.org/10.1002/jssc.201700890. otwiera się w nowej karcie
  114. B. Mostafavi, A. Feizbakhsh, E. Konoz, H. Faraji, Hydrophobic deep eutectic sol- vent based on centrifugation-free dispersive liquid-liquid microextraction for speciation of selenium in aqueous samples: one step closer to green analytical chemistry, Microchem. J. 148 (2019) 582-590, https://doi.org/10.1016/j.microc. 2019.05.021. otwiera się w nowej karcie
  115. S. Tang, T. Qi, P.D. Ansah, J.C. Nalouzebi Fouemina, W. Shen, C. Basheer, H.K. Lee, Single-drop microextraction, TrAC Trends Anal. Chem. 108 (2018) 306-313, https://doi.org/10.1016/J.TRAC.2018.09.016. otwiera się w nowej karcie
  116. A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Ferrofluid of magnetic clay and menthol based deep eutectic solvent: application in directly suspended droplet micro- extraction for enrichment of some emerging contaminant explosives in water and soil samples, J. Chromatogr. A. 1553 (2018) 32-42, https://doi.org/10.1016/J. CHROMA.2018.04.023. otwiera się w nowej karcie
  117. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Enhanced headspace single drop microextraction method using deep eutectic solvent based magnetic bucky gels: application to the determination of volatile aromatic hydrocarbons in water and urine samples, J. Sep. Sci. 41 (2018) 966-974, https://doi.org/10.1002/jssc. 201700807. otwiera się w nowej karcie
  118. S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 71 (1999) 2650-2656, https://doi.org/10.1021/ac990055n. otwiera się w nowej karcie
  119. A. Esrafili, M. Baharfar, M. Tajik, Y. Yamini, M. Ghambarian, Two-phase hollow fiber liquid-phase microextraction, TrAC Trends Anal. Chem. 108 (2018) 314-322, https://doi.org/10.1016/J.TRAC.2018.09.015. otwiera się w nowej karcie
  120. M.M. Khataei, Y. Yamini, A. Nazaripour, M. Karimi, Novel generation of deep eutectic solvent as an acceptor phase in three-phase hollow fiber liquid phase microextraction for extraction and preconcentration of steroidal hormones from biological fluids, Talanta 178 (2018) 473-480, https://doi.org/10.1016/j.talanta. 2017.09.068. otwiera się w nowej karcie
  121. M. Rajabi, N. Ghassab, M. Hemmati, A. Asghari, Highly effective and safe inter- mediate based on deep eutectic medium for carrier less-three phase hollow fiber microextraction of antiarrhythmic agents in complex matrices, J. Chromatogr. B. 1104 (2019) 196-204, https://doi.org/10.1016/J.JCHROMB.2018.11.008. otwiera się w nowej karcie
  122. L.M. Madikizela, S. Ncube, L. Chimuka, Recent developments in selective mate- rials for solid phase extraction, Chromatographia 82 (2018) 1171-1189, https:// doi.org/10.1007/s10337-018-3644-8. otwiera się w nowej karcie
  123. L. Liu, W. Tang, B. Tang, D. Han, K.H. Row, T. Zhu, Pipette-tip solid-phase ex- traction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water, J. Sep. Sci. 40 (2017) 1887-1895, https://doi.org/ 10.1002/jssc.201601436. otwiera się w nowej karcie
  124. D.-.D. Wang, Y. Zhao, M.-.N. Ou yang, H.-.M. Guo, Z.-.H. Yang, Magnetic poly- dopamine modified with deep eutectic solvent for the magnetic solid-phase ex- traction of sulfonylurea herbicides in water samples, J. Chromatogr. A. 1601 (2019) 53-59, https://doi.org/10.1016/J.CHROMA.2019.05.011. otwiera się w nowej karcie
  125. J. Chen, Y. Wang, X. Wei, P. Xu, W. Xu, R. Ni, J. Meng, Magnetic solid-phase extraction for the removal of mercury from water with ternary hydrosulphonyl- based deep eutectic solvent modified magnetic graphene oxide, Talanta 188 (2018) 454-462, https://doi.org/10.1016/J.TALANTA.2018.06.016. otwiera się w nowej karcie
  126. M. Karimi, A.M.H. Shabani, S. Dadfarnia, Deep eutectic solvent-mediated extrac- tion for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles, Microchim. Acta. 183 (2016) 563-571, https://doi.org/10.1007/s00604-015-1671-9. otwiera się w nowej karcie
  127. C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145-2148, https://doi. org/10.1021/ac00218a019. otwiera się w nowej karcie
  128. T. Li, Y. Song, J. Xu, J. Fan, A hydrophobic deep eutectic solvent mediated sol-gel coating of solid phase microextraction fiber for determination of toluene, ethyl- benzene and o-xylene in water coupled with GC-FID, Talanta 195 (2019) 298-305, https://doi.org/10.1016/J.TALANTA.2018.11.085. otwiera się w nowej karcie
  129. B. Socas-Rodríguez, A.V. Herrera-Herrera, M. Asensio-Ramos, J. Hernández- Borges, Dispersive solid-phase extraction, Anal. Sep. Sci. (2015) 1525-1570, https://doi.org/10.1002/9783527678129.assep056. otwiera się w nowej karcie
  130. N. Lamei, M. Ezoddin, M.S. Ardestani, K. Abdi, Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assis- tance for preconcentration of methadone in biological and water samples followed by GC-FID and GC-MS, Anal. Bioanal. Chem. 409 (2017) 6113-6121, https://doi. org/10.1007/s00216-017-0547-8. otwiera się w nowej karcie
  131. A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Application of deep eutectic solvent based magnetic colloidal gel for dispersive solid phase extraction of ultra-trace amounts of some nitroaromatic compounds in water samples, J. Mol. Liq. 246 (2017) 58-65, https://doi.org/10.1016/J.MOLLIQ.2017.09.039. otwiera się w nowej karcie
  132. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique, Talanta 168 (2017) 73-81, https://doi.org/10.1016/J. TALANTA.2017.03.020. otwiera się w nowej karcie
  133. T. Khezeli, A. Daneshfar, Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe 3 O 4 @MIL-100 (Fe) core-shell nanoparticles grafted with pyrocatechol, RSC Adv. 5 (2015) 65264-65273, https://doi.org/10.1039/ c5ra08058d. otwiera się w nowej karcie
  134. A. Mohebbi, S. Yaripour, M.A. Farajzadeh, M.R. Afshar Mogaddam, Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic anti- depressant drugs in biological fluids, J. Chromatogr. A. 1571 (2018) 84-93, https://doi.org/10.1016/J.CHROMA.2018.08.022. otwiera się w nowej karcie
  135. J.L. Benedé, A. Chisvert, D.L. Giokas, A. Salvador, Development of stir bar sorp- tive-dispersive microextraction mediated by magnetic nanoparticles and its ana- lytical application to the determination of hydrophobic organic compounds in aqueous media, J. Chromatogr. A. 1362 (2014) 25-33, https://doi.org/10.1016/J. CHROMA.2014.08.024. otwiera się w nowej karcie
  136. A.R. Zarei, M. Nedaei, S.A. Ghorbanian, Deep eutectic solvent based magnetic nanofluid in the development of stir bar sorptive dispersive microextraction: an efficient hyphenated sample preparation for ultra-trace nitroaromatic explosives extraction in wastewater, J. Sep. Sci. 40 (2017) 4757-4764, https://doi.org/10. 1002/jssc.201700915. otwiera się w nowej karcie
  137. X. Liu, C. Liu, H. Qian, Y. Qu, S. Zhang, R. Lu, H. Gao, W. Zhou, Ultrasound- assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to de- termination by high-performance liquid chromatography, Microchem. J. 146 (2019) 614-621, https://doi.org/10.1016/j.microc.2019.01.048. otwiera się w nowej karcie
  138. Y. Ji, Z. Meng, J. Zhao, H. Zhao, L. Zhao, Eco-friendly ultrasonic assisted li- quid-liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices, J. Chromatogr. A. (2019), https://doi.org/10.1016/J.CHROMA.2019.460520 460520. otwiera się w nowej karcie
  139. H. Wang, L. Hu, X. Liu, S. Yin, R. Lu, S. Zhang, W. Zhou, H. Gao, Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples, J. Chromatogr. A. 1516 (2017) 1-8, https://doi.org/10. 1016/J.CHROMA.2017.07.073. otwiera się w nowej karcie
  140. N. Altunay, A. Elik, R. Gürkan, A. novel, green and safe ultrasound-assisted emulsification liquid phase microextraction based on alcohol-based deep eutectic solvent for determination of patulin in fruit juices by spectrophotometry, J. Food Compos. Anal. 82 (2019) 103256, , https://doi.org/10.1016/J.JFCA.2019. 103256. otwiera się w nowej karcie
  141. G.S. Kanberoglu, E. Yilmaz, M. Soylak, Developing a new and simple ultrasound- assisted emulsification liquid phase microextraction method built upon deep eu- tectic solvents for Patent Blue V in syrup and water samples, Microchem. J. 145 (2019) 813-818, https://doi.org/10.1016/J.MICROC.2018.11.053. otwiera się w nowej karcie
  142. A. Thongsaw, Y. Udnan, G.M. Ross, W.C. Chaiyasith, Speciation of mercury in water and biological samples by eco-friendly ultrasound-assisted deep eutectic solvent based on liquid phase microextraction with electrothermal atomic ab- sorption spectrometry, Talanta 197 (2019) 310-318, https://doi.org/10.1016/J. TALANTA.2019.01.018. otwiera się w nowej karcie
  143. E. Yilmaz, M. Soylak, Ultrasound assisted-deep eutectic solvent based on emulsi- fication liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples, Talanta 160 (2016) 680-685, https://doi.org/10.1016/J. TALANTA.2016.08.001. otwiera się w nowej karcie
  144. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis, J. Chromatogr. A. 1555 (2018) 10-19, https://doi.org/10.1016/J. CHROMA.2018.04.054. otwiera się w nowej karcie
  145. A. Safavi, R. Ahmadi, A.M. Ramezani, Vortex-assisted liquid-liquid microextrac- tion based on hydrophobic deep eutectic solvent for determination of mal- ondialdehyde and formaldehyde by HPLC-UV approach, Microchem. J. 143 (2018) 166-174, https://doi.org/10.1016/J.MICROC.2018.07.036. otwiera się w nowej karcie
  146. M. Faraji, Novel hydrophobic deep eutectic solvent for vortex assisted dispersive liquid-liquid micro-extraction of two auxins in water and fruit juice samples and determination by high performance liquid chromatography, Microchem. J. 150 (2019) 104130, , https://doi.org/10.1016/J.MICROC.2019.104130. otwiera się w nowej karcie
  147. A. Chisvert, I.P. Román, L. Vidal, A. Canals, Simple and commercial readily- available approach for the direct use of ionic liquid-based single-drop micro- extraction prior to gas chromatography: determination of chlorobenzenes in real water samples as model analytical application, J. Chromatogr. A. 1216 (2009) 1290-1295, https://doi.org/10.1016/J.CHROMA.2008.12.078. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 418 razy

Publikacje, które mogą cię zainteresować

Meta Tagi