LONG-TERM RISK CLASS MIGRATIONS OF NON-BANKRUPT AND BANKRUPT ENTERPRISES - Publikacja - MOST Wiedzy

Wyszukiwarka

LONG-TERM RISK CLASS MIGRATIONS OF NON-BANKRUPT AND BANKRUPT ENTERPRISES

Abstrakt

This paper investigates how the process of going bankrupt can be recognized much earlier by enterprises than by traditional forecasting models. The presented studies focus on the assessment of credit risk classes and on determination of the differences in risk class migrations between non-bankrupt enterprises and future insolvent firms. For this purpose, the author has developed a model of a Kohonen artificial neural network to determine six different classes of risk. Long-term analysis horizon of 15 years before the enterprises went bankrupt was conducted. This long forecasting horizon allows one to identify, visualize and compare the intensity and pattern of changes in risk classes during the 15-year trajectory of development between two separate groups of companies (150 bankrupt and 150 non-bankrupt firms). The effectiveness of the forecast of the developed model was compared to three popular statistical models that predict the financial failure of companies. These studies represent one of the first attempts in the literature to identify the long-term behavioral pattern differences between future “good” and “bad” enterprises from the perspective of risk class migrations.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 54 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Business Economics and Management nr 21, strony 783 - 804,
ISSN: 1611-1699
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Korol T.: LONG-TERM RISK CLASS MIGRATIONS OF NON-BANKRUPT AND BANKRUPT ENTERPRISES// Journal of Business Economics and Management -Vol. 21,iss. 3 (2020), s.783-804
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3846/jbem.2020.12224
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 132 razy

Publikacje, które mogą cię zainteresować

Meta Tagi